1
|
Manamela L, Nombona N. Cellulose Acetate Supported MOF-5/Crystalline Nanocellulose Composite Film as an Adsorbent Material for Methylene Blue Removal from Aqueous Solutions. ACS OMEGA 2024; 9:37621-37635. [PMID: 39281923 PMCID: PMC11391463 DOI: 10.1021/acsomega.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
In this study, a novel, low-cost, and efficient adsorbent film was fabricated by a solvothermal method. The adsorbent film was developed to be hydrolytically stable, not vulnerable to aggregation in aqueous environments, and not prone to secondary contamination. The adsorbent consists of cellulose acetate (CA) as a support embedded with a MOF-5/crystalline nanocellulose (CNC) composite material. The CA-supported MOF-5/CNC film was characterized using a variety of techniques, including X-ray diffraction, thermal gravimetric analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, which revealed hydroxyl and carbonyl functional groups on the adsorbent film. The film was evaluated for the adsorptive removal of methylene blue (MB) from an aqueous solution. Adsorption was characterized by a rapid increase in MB adsorption during the first hour with equilibrium achieved within 4-5 h into the adsorption process. The maximum adsorption capacity was determined to be 4.29 mg/g and the maximum dye removal efficiency was 77%. The MB adsorption process best fitted the Freundlich isotherm and pseudo-second-order kinetic models. Thermodynamic studies showed that the adsorption was exothermic and feasible. The adsorbent film showed admirable regeneration ability, demonstrating its cost-effectiveness and its potential as a promising material for wastewater treatment.
Collapse
Affiliation(s)
- Lebogang Manamela
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Gauteng, Pretoria 0002, South Africa
| | - Nolwazi Nombona
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Gauteng, Pretoria 0002, South Africa
| |
Collapse
|
2
|
Wang Z, Gao Q, Luo H, Zhao J, Fan H, Chen Y, Xiang J. Visible Light-Driven SnIn 4S 8 Photocatalyst Decorated on Polyurethane-Impregnated Microfiber Non-Woven Fabric for Pollutant Degradation. Polymers (Basel) 2024; 16:369. [PMID: 38337258 DOI: 10.3390/polym16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, polyurethane has drawn great attention because of its many advantages in physical and chemical performance. In this work, firstly, polyurethane was impregnated in a non-woven fabric (NWF). Then, polyurethane-impregnated NWF was coagulated utilizing a wet phase inversion. Finally, after alkali treatment, microfiber non-woven fabrics with a porous polyurethane matrix (PNWF) were fabricated and used as substrates. SnIn4S8 (SIS) prepared by a microwave-assisted method was used as a photocatalyst and a novel SIS/PNWF substrate with multiple uses and highly efficient catalytic degradation ability under visible light was successfully fabricated. The surface morphology, chemical and crystal structures, optical performance, and wettability of SIS/PNWF substrates were observed. Subsequently, the photocatalytic performance of SIS/PNWF substrates was investigated by the decomposition of rhodamine B (RhB) under visible light irradiation. Compared with SIS/PNWF-2% (2%, the weight ratio of SIS and PNWF, same below), SIS/PNWF-5% as well as SIS/PNWF-15%, SIS/PNWF-10% substrates exhibited superior photocatalytic efficiency of 97% in 2 h. This may be due to the superior photocatalytic performance of SIS and the inherent hierarchical porous structure of PNWF substrates. Additionally, the hydrophobicity of SIS/PNWF substrates can enable them to float on the solution and further be applied on an open-water surface. Furthermore, tensile strength and recycle experiments demonstrated that SIS/PNWF substrates possessed superior mechanical strength and excellent recycle stability. This work provides a facile and efficient pathway to prepare SIS/PNWF substrates for the degradation of organic pollutants with enhanced catalytic efficiency.
Collapse
Affiliation(s)
- Zhonghui Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiang Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haihang Luo
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jianming Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haojun Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yi Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Shuvo MSH, Putul RA, Hossain KS, Masum SM, Molla MAI. Photocatalytic Removal of Metronidazole Antibiotics from Water Using Novel Ag-N-SnO 2 Nanohybrid Material. TOXICS 2024; 12:36. [PMID: 38250992 PMCID: PMC10820245 DOI: 10.3390/toxics12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
In this study, we employed a straightforward synthetic approach using the sol-gel method to fabricate a novel photocatalyst, Ag and N co-doped SnO2 (Ag-N-SnO2). The synthesized photocatalysts underwent characterization through various techniques including XRD, FTIR, FESEM-EDS, TEM, UV-vis DRS, BET, and XPS. The UV-vis DRS results confirmed a reduction in the bandgap energy of Ag-N-SnO2, leading to enhanced absorption of visible light. Additionally, TEM data demonstrated a smaller particle size for Ag-N-SnO2, and BET analysis revealed a significant increase in surface area compared to SnO2.The efficiency of the Ag-N-SnO2 photocatalyst in degrading metronidazole (MNZ) under natural sunlight surpassed that of SnO2. Under optimal conditions (Ag-N-SnO2 concentration of 0.4 g/L, MNZ concentration of 10 mg/L, pH 9, and 120 min of operation), the highest MNZ photocatalytic removal reached 97.03%. The reaction kinetics followed pseudo-first-order kinetics with a rate constant of 0.026 min-1. Investigation into the mineralization of MNZ indicated a substantial decrease in total organic carbon (TOC) values, reaching around 56% in 3 h of sunlight exposure. To elucidate the photocatalytic degradation mechanism of MNZ with Ag-N-SnO2, a scavenger test was employed which revealed the dominant role of •O2-. The results demonstrated the reusability of Ag-N-SnO2 for up to four cycles, highlighting its cost-effectiveness and environmental friendliness as a photocatalyst.
Collapse
Affiliation(s)
- Md. Shahriar Hossain Shuvo
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh; (M.S.H.S.); (R.A.P.)
| | - Rupna Akther Putul
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh; (M.S.H.S.); (R.A.P.)
| | - Khandker Saadat Hossain
- Nanophysics and Soft Matter Laboratory, Department of Physics, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Shah Md. Masum
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh; (M.S.H.S.); (R.A.P.)
| | - Md. Ashraful Islam Molla
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh; (M.S.H.S.); (R.A.P.)
| |
Collapse
|
4
|
Selvaraj S, Bhargav PB, Kumaravel V, Sadasivam SK, Chandra B. Polyol synthesis of one-dimensional Ag nanowires for the photocatalytic degradation of textile dye and effective removal of microbes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122601-122610. [PMID: 37971586 DOI: 10.1007/s11356-023-30913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Due to the excess release of hazardous pollutants to the environment, the quest for the synthesis of effective nanomaterials for wastewater treatment is never-ending. Present study reports the polyol synthesis of Ag NWs of ~ 85 nm diameter and average length of 4.08 µm using PVP and ethylene glycol. The experimental data on the methylene blue dye degradation substantiated the photocatalytic efficiency of Ag NWs (88% degradation in 120 min). Furthermore, the Ag NWs exhibited microbial load reducing property in air conditioner condensate water (ACW) within a time period of 60 min. Also, the anti-bacterial effect of Ag NWs was estimated using two human pathogenic bacterial strains, namely Staphylococcus aureus and Bacillus cereus. The antibacterial potential of Ag NWs against Staphylococcus aureus and Bacillus cereus was revealed significant with an inhibition zone size of 14 ± 0.1 mm and 9 ± 0.1 mm, respectively. Hence, the present work validates the potential efficiency of Ag NWs in the degradation of textile dyes and reduction of microbial population.
Collapse
Affiliation(s)
- Senthilnathan Selvaraj
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India
| | - Pamula Balaji Bhargav
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India.
| | - Varuna Kumaravel
- Geobiotechnology Laboratory, National College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620001, India
- PG and Research Department of Biotechnology and Microbiology, National College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620001, India
| | - Senthil Kumar Sadasivam
- Geobiotechnology Laboratory, National College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620001, India
- PG and Research Department of Botany, National College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620001, India
| | - Balaji Chandra
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India
| |
Collapse
|
5
|
Zhong Y, Zhang X, Xia Y, Zhang L, Xu Q, Zhu X, Feng W, Qin Q. A Fresh Perspective on the Impact of ZnTiO 3 Coupling on the Microstructure and Photocatalytic Properties of TiO 2 Fabricated at Varied Temperatures. Molecules 2023; 28:7626. [PMID: 38005348 PMCID: PMC10675743 DOI: 10.3390/molecules28227626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
ZnTiO3/TiO2 composite photocatalysts were synthesized via the sol-gel technique, and the impact of varying heat treatment temperatures (470, 570, 670 °C) on their crystalline arrangement, surface morphology, elemental composition, chemical state, specific surface area, optical characteristics, and photocatalytic efficacy was systematically investigated. The outcomes revealed that, as the temperature ascends, pure TiO2 undergoes a transition from anatase to rutile, ultimately forming a hybrid crystal structure at 670 °C. The incorporation of ZnTiO3 engenders a reduction in the TiO2 grain dimensions and retards the anatase-to-rutile phase transition. Consequently, the specimens manifest a composite constitution of anatase and ZnTiO3. In contrast, for pure TiO2, the specimen subjected to 670 °C annealing demonstrates superior photocatalytic performance due to its amalgamated crystal arrangement. The degradation efficacy of methylene blue (MB) aqueous solution attains 91% within a 60-min interval, with a calculated first-order reaction rate constant of 0.039 min-1. Interestingly, the ZnTiO3/TiO2 composite photocatalysts exhibit diminished photocatalytic activity in comparison to pristine TiO2 across all three temperature variations. Elucidation of the photocatalytic mechanism underscores that ZnTiO3 coupling augments the generation of photogenerated charge carriers. Nonetheless, concurrently, it undermines the crystalline integrity of the composite, yielding an excess of amorphous constituents that impede the mobility of photoinduced carriers. This dual effect also fosters escalated recombination of photogenerated charges, culminating in diminished quantum efficiency and reduced photocatalytic performance.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (Y.Z.); (X.Z.); (Y.X.); (L.Z.); (Q.X.)
| | - Xiuping Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (Y.Z.); (X.Z.); (Y.X.); (L.Z.); (Q.X.)
| | - Yangwen Xia
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (Y.Z.); (X.Z.); (Y.X.); (L.Z.); (Q.X.)
| | - Ling Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (Y.Z.); (X.Z.); (Y.X.); (L.Z.); (Q.X.)
| | - Qiao Xu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (Y.Z.); (X.Z.); (Y.X.); (L.Z.); (Q.X.)
| | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (Y.Z.); (X.Z.); (Y.X.); (L.Z.); (Q.X.)
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643002, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (Y.Z.); (X.Z.); (Y.X.); (L.Z.); (Q.X.)
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643002, China
| | - Qin Qin
- Intelligent Manufacturing College, Chengdu Jincheng College, Chengdu 611731, China;
| |
Collapse
|
6
|
Yueyu S. The synergistic degradation of pollutants in water by photocatalysis and PMS activation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10927. [PMID: 37723660 DOI: 10.1002/wer.10927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.
Collapse
Affiliation(s)
- Song Yueyu
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan, China
| |
Collapse
|
7
|
Sinha A, Sahu SK, Biswas S, Ghorai TK. Synthesis of CeO 2/ZrO 2/ZnO nano alloy oxide and investigation of photocatalysis of naphthol orange under sunlight. RSC Adv 2023; 13:22029-22042. [PMID: 37483663 PMCID: PMC10359764 DOI: 10.1039/d3ra03579d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
Novel metal-like cerium- and zirconium-doped ZnO photocatalysts were prepared herein with various proportions of molar ratios via a cost-effective co-precipitation method. The effects of novel metal doping on the photocatalytic activity of ZnO were studied. Various techniques were used to investigate the structural, morphological, and elemental composition, particle size, optical properties, and catalytic activity of the synthesized photocatalysts. It was found that the crystallite size and particle size of the nano alloy oxides were 15.12 ± 1 and 5 ± 1 nm, respectively, and the surface morphology of the nanoparticles indicated a satisfactory surface area. Among all synthesized nanocomposites, CexZrxZnxO5 (x = 1) [CZ1Z2-A] exhibited satisfactory photo-oxidation activity against naphthol orange (NO) under sunlight with a rate constant of 57.5 × 10-3 min-1. The effects of pH, inorganic salts, dye concentrations, and catalytic dosage on NO degradation were studied. A probable mechanistic pathway for the degradation of NO in the presence of CZ1Z2-A was proposed, and studies of sacrificial agents indicated that superoxide radical anion (O2˙-) was the main accountable active species in NO degradation. In addition, CZ1Z2-A exhibited excellent recyclability potential, and XRD studies revealed that there was no change in the crystal structure before or after degradation, which indicated its high stability. The intriguing finding was that Ce- and Zr-doped ZnO did not exhibit satisfactory catalytic performance in the photo-oxidation of NO. However, the composite formula of CexZrxZnxO5 (x = 1) with a 1 : 1 : 1 ratio of metal ions offered excellent catalytic activity.
Collapse
Affiliation(s)
- Anik Sinha
- Department of Chemistry, West Bengal State University Barasat Kolkata 700126 West Bengal India
| | - Sanjay Kumar Sahu
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India +9107629269712 +919432512461
| | - Suman Biswas
- Department of Chemistry, West Bengal State University Barasat Kolkata 700126 West Bengal India
| | - Tanmay Kumar Ghorai
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India +9107629269712 +919432512461
| |
Collapse
|
8
|
Jakhrani MA, Bhatti MA, Tahira A, Shah AA, Dawi EA, Vigolo B, Nafady A, Saleem LM, Haj Ismail AAK, Ibupoto ZH. Biogenic Preparation of ZnO Nanostructures Using Leafy Spinach Extract for High-Performance Photodegradation of Methylene Blue under the Illumination of Natural Sunlight. Molecules 2023; 28:molecules28062773. [PMID: 36985746 PMCID: PMC10054875 DOI: 10.3390/molecules28062773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
To cope with environmental pollution caused by toxic emissions into water streams, high-performance photocatalysts based on ZnO semiconductor materials are urgently needed. In this study, ZnO nanostructures are synthesized using leafy spinach extract using a biogenic approach. By using phytochemicals contained in spinach, ZnO nanorods are transformed into large clusters assembled with nanosheets with visible porous structures. Through X-ray diffraction, it has been demonstrated that leafy spinach extract prepared with ZnO is hexagonal in structure. Surface properties of ZnO were altered by using 10 mL, 20 mL, 30 mL, and 40 mL quantities of leafy spinach extract. The size of ZnO crystallites is typically 14 nanometers. In the presence of sunlight, ZnO nanostructures mineralized methylene blue. Studies investigated photocatalyst doses, dye concentrations, pH effects on dye solutions, and scavengers. The ZnO nanostructures prepared with 40 mL of leafy spinach extract outperformed the degradation efficiency of 99.9% for the MB since hydroxyl radicals were primarily responsible for degradation. During degradation, first-order kinetics were observed. Leafy spinach extract could be used to develop novel photocatalysts for the production of solar hydrogen and environmental hydrogen.
Collapse
Affiliation(s)
| | - Muhammad Ali Bhatti
- Institute of Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University, Khairpur Mirs 66111, Pakistan
| | - Aqeel Ahmed Shah
- Department of Metallurgy, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Elmuez A. Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (E.A.D.); (Z.H.I.)
| | - Brigitte Vigolo
- Institute Jean Lamour, Université de Lorraine, CNRS, Institut Jean Lamour (IJL), F-54000 Nancy, France
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lama M. Saleem
- Biomolecular Science, Earth and Life Science, Amsterdam University, Kruislaan 404, 1098 SM Amsterdam, The Netherlands
| | - Abd Al Karim Haj Ismail
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Zafar Hussain Ibupoto
- Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
- Correspondence: (E.A.D.); (Z.H.I.)
| |
Collapse
|
9
|
Effect of Calcination Temperature of SiO2/TiO2 Photocatalysts on UV-VIS and VIS Removal Efficiency of Color Contaminants. Catalysts 2023. [DOI: 10.3390/catal13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This paper presents the effect of fumed silica modification and calcination temperature on the physicochemical properties of photocatalysts and their activity under the UV-VIS and VIS light range. The materials were obtained by hydrolysis of titanium tetraisopropoxide (TTIP) combined with a calcination step. The obtained nanomaterials were characterized using analytical methods such as X-ray diffraction XRD, FT-IR/DRS infrared spectroscopy, UV-Vis/DRS spectroscopy and SEM scanning electron microscopy. BET specific surface area and zeta potential were also measured. It was observed that SiO2 modification inhibited the transformation phase of anatase to rutile and the increase in crystallite size during calcination. The calcination process contributed to a change in the surface character of photocatalysts under study from positively to negatively charged. The photocatalytic activity of samples was identified by determining the methylene blue decomposition under UV-VIS and VIS light. Experimental results showed that the addition of SiO2 and the calcination process increased the photoactivity. The obtained materials showed higher activity compared to the reference samples. It was found that the degree of dye removal increased along with increased calcination temperature. The highest activity was observed for photocatalyst SiO2(11.1%)/TiO2_600.
Collapse
|
10
|
Wang Q, Xiao M, Peng Z, Zhang C, Du X, Wang Z, Wang W. Visible LED photocatalysis combined with ultrafiltration driven by metal-free oxygen-doped graphitic carbon nitride for sulfamethazine degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129632. [PMID: 35872449 DOI: 10.1016/j.jhazmat.2022.129632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
A novel visible light emitting diode (LED) photocatalysis combined ultrafiltration (UF) system driven by metal-free O-doped C3N4 was established for sulfamethazine (SMZ) removal in environmental remediation. Among different O-doping ratios, 8%O-C3N4 exhibited the optimal SMZ degradation efficiency (89.36%) and the flux of 8%O-C3N4/LED/UF system could reach up to 38.92 L/m2/h. Benefitting from the O-doping, the synergetic effect of the expansion of visible-light absorption, enhancement of electron redox capacity, and improvement of e--h+ separation efficiency could produce the intensified photoactivity. Superoxide radical (O2•-) and single oxygen (1O2) were proved to be the primary active species by EPR and quenching tests. Moreover, the influence of several parameters such as photocatalyst dosage, SMZ concentration, raw turbidity and humic acid concentration in 8%O-C3N4/LED/UF system on SMZ removal were systematically studied. Under simulated surface water matrix, 8%O-C3N4/LED/UF system could also remove 96.88% SMZ and stable membrane flux stabilized as high as 33.36 L/m2/h. This study makes a demonstration for applying highly-effective powdery photocatalysts in the actual wastewater treatment and designing future photocatalytic reactors.
Collapse
Affiliation(s)
- Qiao Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mengyao Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhitian Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chao Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
11
|
Radia D, Fouzia T, Rachida R, Wahib NM, Bentahar F. Photocatalysis process to treat polluted water by azo dye Cibacron Brilliant Yellow 3G-P. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1774-1789. [PMID: 36240311 DOI: 10.2166/wst.2022.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The main objective of this study was to investigate the photodegradation of azo dye Cibacron Brilliant Yellow 3G-P using Anatase, Degussa-P25 and ZnO. These semi-conductors were characterized using XRD, BET and TEM-EDX. The variation of the amount of semi-conductors significantly affect the rate of color removal. The decolorization rate increased as the catalyst dosage was increased. Other parameters were also studied, such as stirring speed, pH, and initial dye concentration. It was found that the rate of decolorization increases with the increase of stirring speed. Decolorization of about 30, 60 and 80% was respectively achieved in the case of Anatase, Degussa-P25 and ZnO at low stirring speed (50rpm). At pH = 3, the degradation rate was found to be higher than the alkaline pH, about 95.58 and 85.71% of color has been decolorized with Anatase and Degussa-P25 respectively. While using ZnO, the color removal reached maximum in acidic and alkaline solutions, more than 95% of dye was decolorized. The concentrations dye solutions less than 80ppm led to the removal rate of about 95% in the case of ZnO, while it was only about 8-15% in the case of TiO2 with the concentration more than 20 ppm.
Collapse
Affiliation(s)
- Djouder Radia
- Laboratoire Phénomènes de transfert (LPDT), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab-Ezzouar 16111, Algiers, Algeria; Centre de Développement des Énergies Renouvelables (CDER), Algiers 16340, Algeria
| | - Touahra Fouzia
- Research Centre in Analytical Chemistry and Physics (CRAPC), BP 248, Algiers 16004, Algeria E-mail:
| | - Rihani Rachida
- Laboratoire Phénomènes de transfert (LPDT), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab-Ezzouar 16111, Algiers, Algeria
| | - Naceur Mohamed Wahib
- Laboratoire Eau, Environnement, et Developpement Durable (2E2D), Chemical Engineering Department, Blida1 University, BP 270 Blida, Algeria
| | - Fatiha Bentahar
- Laboratoire Phénomènes de transfert (LPDT), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab-Ezzouar 16111, Algiers, Algeria
| |
Collapse
|