1
|
Zeng C, Li Y, Zhu M, Du Z, Liang H, Chen Q, Ye H, Li R, Liu W. Simultaneous detection of norepinephrine and 5-hydroxytryptophan using poly-alizarin/multi-walled carbon nanotubes-graphene modified carbon fiber microelectrode array sensor. Talanta 2024; 270:125565. [PMID: 38154355 DOI: 10.1016/j.talanta.2023.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Multi-walled carbon nanotubes, graphene and alizarin polymer composites coated carbon fiber microelectrode array sensor (p-AZ/MWCNT-GR/CFMEA) was constructed and used for the simultaneous detection of norepinephrine (NE) and 5-hydroxytryptophan (5-HT). The morphology and structural characteristics of sensor are characterized using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Its electrochemical behavior has been studied with cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibits excellent electrochemical activity for the oxidation of NE and 5-HT, two well separated oxidation peaks with the peak potential difference of 220 mV are observed on the cyclic voltammogram. NE and 5-HT both show two electrons and two protons electrochemical reaction on the p-AZ/MWCNT-GR/CFMEA. Under the optimized experiment conditions, the linear ranges of the sensor for NE and 5-HT are 0. 08- 8 μM and 0. 1-20 μM with detection limits of 4. 22 nM and 14. 2 nM (S/N = 3), respectively. In addition, the microsensor array show good reproducibility, stability and selectivity for the determination of NE and 5-HT. Finally, the p-AZ/MWCNT-GR/CFMEA is applied to the simultaneous detection of NE and 5-HT in human serum samples and macrophages.
Collapse
Affiliation(s)
- Chaoying Zeng
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yulan Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Zengcheng Du
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Qiqing Chen
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Rui Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Wenhao Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Sivaji SP, Jeyaraman A, Chen SM, Velmurugan S. Promote the electrocatalytic activity through the assembly of hexagonal SnS2/C sphere nanocomposite for determination of the immunosuppressant drug azathioprine in biological samples. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Gholizadeh A, Black K, Kipen H, Laumbach R, Gow A, Weisel C, Javanmard M. Detection of respiratory inflammation biomarkers in non-processed exhaled breath condensate samples using reduced graphene oxide. RSC Adv 2022; 12:35627-35638. [PMID: 36545081 PMCID: PMC9745889 DOI: 10.1039/d2ra05764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we studied several important parameters regarding the standardization of a portable sensor of nitrite, a key biomarker of inflammation in the respiratory tract in untreated EBC samples. The storage of the EBC samples and electrical properties of both EBC samples and the sensor as main standardization parameters were investigated. The sensor performance was performed using differential pulse voltammetry (DPV) in a standard nitrite solution and untreated EBC samples. The storage effect was monitored by comparing sensor data of fresh and stored samples for one month at -80 °C. Results show, on average, a 20 percent reduction of peak current for stored solutions. The sensor's performance was compared with a previous EBC nitrite sensor and chemiluminescence method. The results demonstrate a good correlation between the present sensor and chemiluminescence for low nitrite concentrations in untreated EBC samples. The electrical behavior of the sensor and electrical variation between EBC samples were characterized using methods such as noise analysis, electrochemical impedance spectroscopy (EIS), electrical impedance (EI), and voltage shift. Data show that reduced graphene oxide (rGO) has lower electrical noise and a higher electron transfer rate regarding nitrite detection. Also, a voltage shift can be applied to calibrate the data based on the electrical variation between different EBC samples. This result makes it easy to calibrate the electrical difference between EBC samples and have a more reproducible portable chip design without using bulky EI instruments. This work helps detect nitrite in untreated and pure EBC samples and evaluates critical analytical EBC properties essential for developing portable and on-site point-of-care sensors.
Collapse
Affiliation(s)
- Azam Gholizadeh
- Department of Electrical and Computer Engineering, Rutgers UniversityPiscatawayNJ 08854USA
| | - Kathleen Black
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Howard Kipen
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Robert Laumbach
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Andrew Gow
- Ernest Mario School of Pharmacy, Rutgers UniversityPiscatawayNJ 08854USA
| | - Clifford Weisel
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers UniversityPiscatawayNJ 08854USA
| |
Collapse
|
4
|
Sea-urchin-like cobalt-MOF on electrospun carbon nanofiber mat as a self-supporting electrode for sensing of xanthine and uric acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Xu L, Tang S, Zhang L, Du J, Xu J, Li N, Tang Z. Preparation of Copper Nanoplates in Aqueous Phase and Electrochemical Detection of Dopamine. Life (Basel) 2022; 12:999. [PMID: 35888088 PMCID: PMC9322136 DOI: 10.3390/life12070999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023] Open
Abstract
Compared with gold and silver, cheap copper has attracted more attention and can potentially be applied in non-enzymatic electrochemical sensors due to its excellent conductivity and catalytic activity. In this paper, copper nanoplates were rapidly synthesized using copper bromide as the copper precursor, polyethyleneimine as the stabilizer, and ascorbic acid as a reducing agent in the presence of silver nanoparticles at a reaction temperature of 90 °C. The Cu nanoplates with an average side length of 10.97 ± 3.45 μm were obtained after a short reaction time of 2 h, demonstrating the promoting effect of an appropriate amount of silver nanoparticle on the synthesis of Cu nanoplates. Then, the electrochemical dopamine sensor was constructed by modifying a glass carbon electrode (GCE) with the Cu nanoplates. The results obtained from the test of cyclic voltammetry and chronoamperometry indicated that the Cu-GCE showed a significant electrochemical response for the measurement of dopamine. The oxidation peak current increased linearly with the concentration of dopamine in the range of 200 µmol/L to 2.21 mmol/L, and the corresponding detection limit was calculated to be 62.4 μmol/L (S/N = 3). Furthermore, the anti-interference test showed that the dopamine sensor was not affected by a high concentration of ascorbic acid, glucose, uric acid, etc. Therefore, the constructed Cu-GCE with good selectivity, sensitivity, and stability possesses a high application value in the detection of dopamine.
Collapse
Affiliation(s)
- Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (S.T.); (L.Z.); (J.X.)
| | - Sijia Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (S.T.); (L.Z.); (J.X.)
| | - Ling Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (S.T.); (L.Z.); (J.X.)
| | - Jingjing Du
- College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China;
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (S.T.); (L.Z.); (J.X.)
| | - Na Li
- Hunan Key Laboratory of Electrochemical Green Metallurgy Technology, College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412007, China;
| | - Zengmin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (S.T.); (L.Z.); (J.X.)
| |
Collapse
|
6
|
A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). J Colloid Interface Sci 2022; 616:326-337. [PMID: 35219198 DOI: 10.1016/j.jcis.2022.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
Conductive metal-organic frameworks can provide unique porous structures, large pore volumes, many catalytically active sites and high crystallinity, and so are becoming increasingly important and attractive as electrocatalytic materials. The present work synthesized nanorods of the conductive compound Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) with a high degree of crystallinity from HITP ligands and Ni2+ ions. Screen-printed electrodes made with this material were employed to fabricate an enzyme-free sensor for the detection of ascorbic acid (AA). The sensor exhibited good catalytic activity during the electrocatalytic analysis of AA in alkaline media, attributed to the synergistic effect of highly active Ni-N4 catalytic sites in the nanorods, the two-dimensional superimposed honeycomb lattice of the Ni3(HITP)2, and the large specific surface area of this material. The latter property facilitated efficient electron transfer during catalytic oxidation. A portable electrochemical AA detection system was developed using Ni3(HITP)2 as the electrode material together with application-specific integrated circuits and a smartphone application with App. Good sensing performance was obtained, including a wide linear range (2-200 μM) with high sensitivity (0.814 μA μM-1 cm-2), and low detection limit (1 μM). This system can be used to monitor AA levels and trends in sweat to assess vitamin C intake as a part of personal health management.
Collapse
|
7
|
He Y, Lin X, Tang Y, Ye L. A selective sensing platform for the simultaneous detection of ascorbic acid, dopamine, and uric acid based on AuNPs/carboxylated COFs/Poly(fuchsin basic) film. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4503-4514. [PMID: 34514476 DOI: 10.1039/d1ay00849h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, an electrochemical sensing strategy was developed based on the synergies of gold nanoparticles (AuNPs) doped carboxylated covalent organic frameworks (ACOFs) and poly(fuchsin basic) film for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). This strategy not only took advantage of the adopted materials but also made use of the H-bonding and electrostatic interaction between the three compounds and materials. For this sensing, a poly-BFu film was formed on the surface of bare glass carbon electrode (GCE) under a constant potential. AuNPs was highly dispersed and immobilized on the constructed ACOF-TaTp to obtain AuNPs@ACOF. The constructed sensor AuNPs@ACOF/p-BFu/GCE combined the merits of high surface area, hydrophilicity, conductivity, and selective affinity, consequently exhibiting high sensitivity and selectivity toward the simultaneous detection of AA, DA, and UA with wide linear response ranges of 25-1500 μM, 0.75-40 μM, and 1-200 μM, respectively. The corresponding detection limits were 12.0 μM, 0.15 μM, and 0.22 μM. The simultaneous determination of UA in real human urine sample further confirmed the practicability of the designed electrode.
Collapse
Affiliation(s)
- Yasan He
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| | - Xiaogeng Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
| | - Yuan Tang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
| | - Ling Ye
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
| |
Collapse
|
8
|
Hayat K, Munawar A, Zulfiqar A, Akhtar MH, Ahmad HB, Shafiq Z, Akram M, Saleemi AS, Akhtar N. CuO Hollow Cubic Caves Wrapped with Biogenic N-Rich Graphitic C for Simultaneous Monitoring of Uric Acid and Xanthine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47320-47329. [PMID: 33023289 DOI: 10.1021/acsami.0c15243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we synthesized hollow cubic caves of CuO (HC) and wrapped it with N-rich graphitic C (NC), derived from a novel biogenic mixture composed of dopamine (DA) and purine. The synthesized NC wrapped HC (NC@HC) sensor shows enhanced electrocatalytic efficacy compared to unwrapped CuO with shapes including HC, sponge (SP), cabbage (CB), and solid icy cubes (SC). The shape and composition of synthesized materials were confirmed through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), whereas interfacial surface energy was calculated through contact angle measurement. The designed NC@HC sensor shows a remarkable response toward the simultaneous detection of uric acid (UA) and xanthine (Xn) with detection limits of 0.017 ± 0.001 (S/N of 3) and 0.004 ± 0.001 μM (S/N of 3), respectively. In addition, this platform was successfully applied to monitor UA from the gout patient serum. To the best of our knowledge, this is the first report on using such novel NC@HC materials for the simultaneous monitoring of UA and Xn.
Collapse
Affiliation(s)
- Khizer Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Aqsa Munawar
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Anam Zulfiqar
- Department of Biochemistry, Bahauddin Zakariya University, (BZU), Multan 60800, Pakistan
| | - Mahmood Hassan Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hafiz Badaruddin Ahmad
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Muhammad Akram
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Awais Siddique Saleemi
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060 Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
9
|
Fooladi E, Razavizadeh BM, Noori M, Kakooei S. Application of carboxylic acid-functionalized of graphene oxide for electrochemical simultaneous determination of tryptophan and tyrosine in milk. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2332-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
10
|
Synergy of Photocatalysis and Adsorption for Simultaneous Removal of Hexavalent Chromium and Methylene Blue by g-C 3N 4/BiFeO 3/Carbon Nanotubes Ternary Composites. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173219. [PMID: 31484371 PMCID: PMC6747399 DOI: 10.3390/ijerph16173219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022]
Abstract
A novel graphite-phase carbon nitride (g-C3N4)/bismuth ferrite (BiFeO3)/carbon nanotubes (CNTs) ternary magnetic composite (CNBT) was prepared by a hydrothermal synthesis. Using this material, Cr(VI) and methylene blue (MB) were removed from wastewater through synergistic adsorption and photocatalysis. The effects of pH, time, and pollutant concentration on the photocatalytic performance of CNBT, as well as possible interactions between Cr(VI) and MB species were analyzed. The obtained results showed that CNTs could effectively reduce the recombination rate of electron-hole pairs during the photocatalytic reaction of the g-C3N4/BiFeO3 composite, thereby improving its photocatalytic performance, while the presence of MB increased the reduction rate of Cr(VI). After 5 h of the simultaneous adsorption and photocatalysis by CNBT, the removal rates of Cr(VI) and MB were 93% and 98%, respectively. This study provides a new theoretical basis and technical guidance for the combined application of photocatalysis and adsorption in the treatment of wastewaters containing mixed pollutants.
Collapse
|
11
|
He Q, Wu Y, Tian Y, Li G, Liu J, Deng P, Chen D. Facile Electrochemical Sensor for Nanomolar Rutin Detection Based on Magnetite Nanoparticles and Reduced Graphene Oxide Decorated Electrode. NANOMATERIALS 2019; 9:nano9010115. [PMID: 30669370 PMCID: PMC6359613 DOI: 10.3390/nano9010115] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
A new electrochemical sensor for nanomolar rutin detection based on amine-functionalized Fe3O4 nanoparticles and electrochemically reduced graphene oxide nanocomposite modified glassy carbon electrode (NH2-Fe3O4 NPs-ErGO/GCE) was fabricated through a simple method, and the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and electrochemical technique were used to characterize the modified electrode. The electrochemical behavior of rutin on the Fe3O4 NPs-ErGO/GCE was studied in detail. The electrochemical response of rutin at this modified electrode was remarkably higher than that of the bare GCE or other modified GCE (GO/GCE, Fe3O4 NPs-GO/GCE, and ErGO/GCE). Under the optimum determination conditions, Fe3O4 NPs-ErGO/GCE provided rutin with a broader detection range of 6.0 nM–0.1 µM; 0.1–8.0 µM and 8.0–80 µM, a minimum detectable concentration of 4.0 nM was obtained after 210 s accumulation. This novel method was applied in determination of rutin in pharmaceutical tablets and urine samples with satisfactory results.
Collapse
Affiliation(s)
- Quanguo He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Yiyong Wu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
| | - Yaling Tian
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
| | - Guangli Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jun Liu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Peihong Deng
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Dongchu Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
12
|
Sol-Gel Mediated Greener Synthesis of γ-Fe2O3 Nanostructures for the Selective and Sensitive Determination of Uric Acid and Dopamine. Catalysts 2018. [DOI: 10.3390/catal8110512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Novel eco-freindly benign morphology-controlled biosynthesis of acicular iron oxide (γ-Fe2O3) nanostructures with various shapes and sizes have been synthesized through greener surfactant, Aloe vera (AV) extract assisted sol-gel method. By simply varying the experimental parameters, pure phase of cubic spinel superparamagnetic γ-Fe2O3 nanospherical aggregates, nanobelts and nanodots have been developed. The synthesized γ-Fe2O3 nanostructures are characterized through X-Ray Diffractommetry (XRD), X-Ray Photoelectron Spectroscopy (XPS), Fourier Transform-Infrared Spectrsocopy (FT-IR), Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). Moreover, the electrochemical determination of uric acid (UA) and dopamine (DA) of the as obtained γ-Fe2O3 nanostructures are systematically demonstrated. The electrochemical properties of the γ-Fe2O3 nanostructures modified glassy carbon electrode (GCE) displayed an excellent sensing capability for the determination of DA and UA, simultaneously than the bare GCE. When compared with the other iron oxide nanostructures, γ-Fe2O3 nanobelts/GCE exhibited remarkable oxidation current response towards the biomolecules. This occurred due to the high surface area and the unique one-dimensional nanostructure of γ-Fe2O3 nanobelts. Ultimately, the greener synthesis protocol explored in this research work may also be expanded for the preparation of other morphology controlled magnetic and non-magnetic nanomaterials, which could easily open up innovative potential avenues for the development of practical biosensors.
Collapse
|