1
|
de Gonzalo G, Coto-Cid JM, Lončar N, Fraaije MW. Asymmetric Sulfoxidations Catalyzed by Bacterial Flavin-Containing Monooxygenases. Molecules 2024; 29:3474. [PMID: 39124879 PMCID: PMC11313838 DOI: 10.3390/molecules29153474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Flavin-containing monooxygenase from Methylophaga sp. (mFMO) was previously discovered to be a valuable biocatalyst used to convert small amines, such as trimethylamine, and various indoles. As FMOs are also known to act on sulfides, we explored mFMO and some mutants thereof for their ability to convert prochiral aromatic sulfides. We included a newly identified thermostable FMO obtained from the bacterium Nitrincola lacisaponensis (NiFMO). The FMOs were found to be active with most tested sulfides, forming chiral sulfoxides with moderate-to-high enantioselectivity. Each enzyme variant exhibited a different enantioselective behavior. This shows that small changes in the substrate binding pocket of mFMO influence selectivity, representing a tunable biocatalyst for enantioselective sulfoxidations.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, c/Profesor García González 1, 41012 Sevilla, Spain;
| | - Juan M. Coto-Cid
- Departamento de Química Orgánica, Universidad de Sevilla, c/Profesor García González 1, 41012 Sevilla, Spain;
| | - Nikola Lončar
- Gecco Biotech B.V., Zernikepark 6-8, 9747AN Groningen, The Netherlands;
| | - Marco W. Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands;
| |
Collapse
|
2
|
Bhat A, Carranza FR, Tuckowski AM, Leiser SF. Flavin-containing monooxygenase (FMO): Beyond xenobiotics. Bioessays 2024; 46:e2400029. [PMID: 38713170 PMCID: PMC11447872 DOI: 10.1002/bies.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Flavin-containing monooxygenases (FMOs), traditionally known for detoxifying xenobiotics, are now recognized for their involvement in endogenous metabolism. We recently discovered that an isoform of FMO, fmo-2 in Caenorhabditis elegans, alters endogenous metabolism to impact longevity and stress tolerance. Increased expression of fmo-2 in C. elegans modifies the flux through the key pathway known as One Carbon Metabolism (OCM). This modified flux results in a decrease in the ratio of S-adenosyl-methionine (SAM) to S-adenosyl-homocysteine (SAH), consequently diminishing methylation capacity. Here we discuss how FMO-2-mediated formate production during tryptophan metabolism may serve as a trigger for changing the flux in OCM. We suggest formate bridges tryptophan and OCM, altering metabolic flux away from methylation during fmo-2 overexpression. Additionally, we highlight how these metabolic results intersect with the mTOR and AMPK pathways, in addition to mitochondrial metabolism. In conclusion, the goal of this essay is to bring attention to the central role of FMO enzymes but lack of understanding of their mechanisms. We justify a call for a deeper understanding of FMO enzyme's role in metabolic rewiring through tryptophan/formate or other yet unidentified substrates. Additionally, we emphasize the identification of novel drugs and microbes to induce FMO activity and extend lifespan.
Collapse
Affiliation(s)
- Ajay Bhat
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Faith R Carranza
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Nicoll C, Mascotti M. Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny. BBA ADVANCES 2023; 4:100108. [PMID: 38034983 PMCID: PMC10682829 DOI: 10.1016/j.bbadva.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things - xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a 'golden' set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.
Collapse
Affiliation(s)
- C.R. Nicoll
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - M.L. Mascotti
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, D5700HHW, San Luis, Argentina
| |
Collapse
|
4
|
Phillips IR, Veeravalli S, Khadayate S, Shephard EA. Metabolomic and transcriptomic analyses of Fmo5-/- mice reveal roles for flavin-containing monooxygenase 5 (FMO5) in NRF2-mediated oxidative stress response, unfolded protein response, lipid homeostasis, and carbohydrate and one-carbon metabolism. PLoS One 2023; 18:e0286692. [PMID: 37267233 PMCID: PMC10237457 DOI: 10.1371/journal.pone.0286692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Flavin-containing monooxygenase 5 (FMO5) is a member of the FMO family of proteins, best known for their roles in the detoxification of foreign chemicals and, more recently, in endogenous metabolism. We have previously shown that Fmo5-/- mice display an age-related lean phenotype, with much reduced weight gain from 20 weeks of age. The phenotype is characterized by decreased fat deposition, lower plasma concentrations of glucose, insulin and cholesterol, higher glucose tolerance and insulin sensitivity, and resistance to diet-induced obesity. In the present study we report the use of metabolomic and transcriptomic analyses of livers of Fmo5-/- and wild-type mice to identify factors underlying the lean phenotype of Fmo5-/- mice and gain insights into the function of FMO5. Metabolomics was performed by the Metabolon platform, utilising ultrahigh performance liquid chromatography-tandem mass spectroscopy. Transcriptomics was performed by RNA-Seq and results analysed by DESeq2. Disruption of the Fmo5 gene has wide-ranging effects on the abundance of metabolites and expression of genes in the liver. Metabolites whose concentration differed between Fmo5-/- and wild-type mice include several saturated and monounsaturated fatty acids, complex lipids, amino acids, one-carbon intermediates and ADP-ribose. Among the genes most significantly and/or highly differentially expressed are Apoa4, Cd36, Fitm1, Hspa5, Hyou1, Ide, Me1 and Mme. The results reveal that FMO5 is involved in upregulating the NRF2-mediated oxidative stress response, the unfolded protein response and response to hypoxia and cellular stress, indicating a role for the enzyme in adaptation to oxidative and metabolic stress. FMO5 also plays a role in stimulating a wide range of metabolic pathways and processes, particularly ones involved in lipid homeostasis, the uptake and metabolism of glucose, the generation of cytosolic NADPH, and in one-carbon metabolism. The results predict that FMO5 acts by stimulating the NRF2, XBP1, PPARA and PPARG regulatory pathways, while inhibiting STAT1 and IRF7 pathways.
Collapse
Affiliation(s)
- Ian R. Phillips
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Sunil Veeravalli
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Elizabeth A. Shephard
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
6
|
Cheropkina H, Catucci G, Marucco A, Fenoglio I, Gilardi G, Sadeghi SJ. Human flavin-containing monooxygenase 1 and its long-sought hydroperoxyflavin intermediate. Biochem Pharmacol 2021; 193:114763. [PMID: 34509493 DOI: 10.1016/j.bcp.2021.114763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023]
Abstract
Out of the five isoforms of human flavin-containing monooxygenase (hFMO), FMO1 and FMO3 are the most relevant to Phase I drug metabolism. They are involved in the oxygenation of xenobiotics including drugs and pesticides using NADPH and FAD as cofactors. Majority of the characterization of these enzymes has involved hFMO3, where intermediates of its catalytic cycle have been described. On the other hand, research efforts have so far failed in capturing the same key intermediate that is responsible for the monooxygenation activity of hFMO1. In this work we demonstrate spectrophotometrically the formation of a highly stable C4a-hydroperoxyflavin intermediate of hFMO1 upon reduction by NADPH and in the presence of O2. The measured half-life of this flavin intermediate revealed it to be stable and not fully re-oxidized even after 30 min at 15 °C in the absence of substrate, the highest stability ever observed for a human FMO. In addition, the uncoupling reactions of hFMO1 show that this enzyme is <1% uncoupled in the presence of substrate, forming small amounts of H2O2 with no observable superoxide as confirmed by EPR spin trapping experiments. This behaviour is different from hFMO3, that is shown to form both H2O2 and superoxide anion radical as a result of ∼50% uncoupling. These data are consistent with the higher stability of the hFMO1 intermediate in comparison to hFMO3. Taken together, these data demonstrate the different behaviours of these two closely related enzymes with consequences for drug metabolism as well as possible toxicity due to reactive oxygen species.
Collapse
Affiliation(s)
- Hanna Cheropkina
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| |
Collapse
|
7
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
8
|
Editorial: Special Issue on “Flavin Monooxygenases”. Catalysts 2021. [DOI: 10.3390/catal11010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flavin-containing monooxygenase are a large family of enzymes involved in an array of different reactions by activating molecular oxygen and transferring one atom of oxygen to their substrates [...]
Collapse
|
9
|
Bortolussi S, Catucci G, Gilardi G, Sadeghi SJ. N- and S-oxygenation activity of truncated human flavin-containing monooxygenase 3 and its common polymorphic variants. Arch Biochem Biophys 2020; 697:108663. [PMID: 33152328 DOI: 10.1016/j.abb.2020.108663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Human flavin-containing monooxygenase 3 (FMO3) is a membrane-bound, phase I drug metabolizing enzyme. It is highly polymorphic with some of its variants demonstrating differences in rates of turnover of its substrates: xenobiotics including drugs as well as dietary compounds. In order to measure its in vitro activity and compare any differences between the wild type enzyme and its polymorphic variants, we undertook a systematic study using different engineered proteins, heterologously expressed in bacteria, purified and catalytically characterized with 3 different substrates. These included the full-length as well as the more soluble C-terminal truncated versions of the common polymorphic variants (E158K, V257M and E308G) of FMO3 in addition to the full-length and truncated wild-type proteins. In vitro activity assays were performed with benzydamine, tamoxifen and sulindac sulfide, whose products were measured by HPLC. Differences in catalytic properties between the wild-type FMO3 and its common polymorphic variants were similar to those observed with the truncated, more soluble versions of the enzymes. Interestingly, the truncated enzymes were better catalysts than the full-length proteins. The data obtained point to the feasibility of using the more soluble forms of this enzyme for in vitro drug assays as well as future biotechnological applications possibly in high throughput systems such as bioelectrochemical platforms and biosensors.
Collapse
Affiliation(s)
- Stefania Bortolussi
- Department of Life Sciences and Systems Biology, University of Torino, Italy; School of Health, Sport and Bioscience, University of East London, UK.
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| |
Collapse
|
10
|
Catucci G, Gilardi G, Sadeghi SJ. Production of drug metabolites by human FMO3 in Escherichia coli. Microb Cell Fact 2020; 19:74. [PMID: 32197603 PMCID: PMC7085137 DOI: 10.1186/s12934-020-01332-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background In the course of drug discovery and development process, sufficient reference standards of drug metabolites are required, especially for preclinical/clinical or new therapeutic drugs. Whole-cell synthesis of drug metabolites is of great interest due to its low cost, low environmental impact and specificity of the enzymatic reaction compared to chemical synthesis. Here, Escherichia coli (E. coli) JM109 cells over-expressing the recombinant human FMO3 (flavin-containing monooxygenase isoform 3) were used for the conversions of clomiphene, dasatinib, GSK5182 and tozasertib to their corresponding N-oxide metabolites. Results The effects of NADPH regeneration, organic solvents as well as C-terminal truncations of human FMO3 were investigated. Under the optimized conditions, in excess of 200 mg/L of N-oxide metabolite of each of the four drugs could be produced by whole-cell catalysis within 24 h. Of these, more than 90% yield conversions were obtained for the N-oxidation of clomiphene and dasatinib. In addition, FMO3 shows high regio-selectivity in metabolizing GSK5182 where only the (Z) isomer is monooxygenated. Conclusions The study shows the successful use of human FMO3-based whole-cell as a biocatalyst for the efficient synthesis of drug metabolites including regio-selective reactions involving GSK5182, a new candidate against type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Turin, Italy.
| |
Collapse
|