1
|
Reed KB, Brooks SM, Wells J, Blake KJ, Zhao M, Placido K, d'Oelsnitz S, Trivedi A, Gadhiyar S, Alper HS. A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules. Nat Commun 2024; 15:3188. [PMID: 38609402 PMCID: PMC11015028 DOI: 10.1038/s41467-024-47387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Halogen-containing molecules are ubiquitous in modern society and present unique chemical possibilities. As a whole, de novo fermentation and synthetic pathway construction for these molecules remain relatively underexplored and could unlock molecules with exciting new applications in industries ranging from textiles to agrochemicals to pharmaceuticals. Here, we report a mix-and-match co-culture platform to de novo generate a large array of halogenated tryptophan derivatives in Escherichia coli from glucose. First, we engineer E. coli to produce between 300 and 700 mg/L of six different halogenated tryptophan precursors. Second, we harness the native promiscuity of multiple downstream enzymes to access unexplored regions of metabolism. Finally, through modular co-culture fermentations, we demonstrate a plug-and-play bioproduction platform, culminating in the generation of 26 distinct halogenated molecules produced de novo including precursors to prodrugs 4-chloro- and 4-bromo-kynurenine and new-to-nature halogenated beta carbolines.
Collapse
Affiliation(s)
- Kevin B Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Jordan Wells
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Kristin J Blake
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX, USA
| | - Minye Zhao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Kira Placido
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Simon d'Oelsnitz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, USA
| | - Adit Trivedi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Shruti Gadhiyar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, USA.
| |
Collapse
|
2
|
Yu K, Zhang K, Jakob RP, Maier T, Ward TR. An artificial nickel chlorinase based on the biotin-streptavidin technology. Chem Commun (Camb) 2024; 60:1944-1947. [PMID: 38277163 PMCID: PMC10863421 DOI: 10.1039/d3cc05847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Herein, we report on an artificial nickel chlorinase (ANCase) resulting from anchoring a biotinylated nickel-based cofactor within streptavidin (Sav). The resulting ANCase was efficient for the chlorination of diverse C(sp3)-H bonds. Guided by the X-ray analysis of the ANCase, the activity of the artificial chlorinase could be significantly improved. This approach opens interesting perspectives for late-stage functionalization of organic intermediates as it complements biocatalytic chlorination strategies.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Kailin Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Roman P Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| |
Collapse
|
3
|
Peh G, Tay T, Tan LL, Tiong E, Bi J, Goh YL, Ye S, Lin F, Tan CJX, Tan YZ, Wong J, Zhao H, Wong FT, Ang EL, Lim YH. Site-selective chlorination of pyrrolic heterocycles by flavin dependent enzyme PrnC. Commun Chem 2024; 7:7. [PMID: 38182798 PMCID: PMC10770391 DOI: 10.1038/s42004-023-01083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Halogenation of pyrrole requires strong electrophilic reagents and often leads to undesired polyhalogenated products. Biocatalytic halogenation is a highly attractive approach given its chemoselectivity and benign reaction conditions. While there are several reports of enzymatic phenol and indole halogenation in organic synthesis, corresponding reports on enzymatic pyrrole halogenation have been lacking. Here we describe the in vitro functional and structural characterization of PrnC, a flavin-dependent halogenase that can act on free-standing pyrroles. Computational modeling and site mutagenesis studies identified three key residues in the catalytic pocket. A moderate resolution map using single-particle cryogenic electron microscopy reveals PrnC to be a dimer. This native PrnC can halogenate a library of structurally diverse pyrrolic heterocycles in a site-selective manner and be applied in the chemoenzymatic synthesis of a chlorinated analog of the agrochemical fungicide Fludioxonil.
Collapse
Affiliation(s)
- GuangRong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Terence Tay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Lee Ling Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Elaine Tiong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jiawu Bi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yi Ling Goh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Suming Ye
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Fu Lin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Cheryl Jia Xin Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yong Zi Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Joel Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
4
|
Phintha A, Chaiyen P. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin. J Biol Chem 2023; 299:105413. [PMID: 37918809 PMCID: PMC10696468 DOI: 10.1016/j.jbc.2023.105413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
Flavin-dependent monooxygenases (FDMOs) are known for their remarkable versatility and for their crucial roles in various biological processes and applications. Extensive research has been conducted to explore the structural and functional relationships of FDMOs. The majority of reported FDMOs utilize C4a-(hydro)peroxyflavin as a reactive intermediate to incorporate an oxygen atom into a wide range of compounds. This review discusses and analyzes recent advancements in our understanding of the structural and mechanistic features governing the enzyme functions. State-of-the-art discoveries related to common and distinct structural properties governing the catalytic versatility of the C4a-(hydro)peroxyflavin intermediate in selected FDMOs are discussed. Specifically, mechanisms of hydroxylation, dehalogenation, halogenation, and light-emitting reactions by FDMOs are highlighted. We also provide new analysis based on the structural and mechanistic features of these enzymes to gain insights into how the same intermediate can be harnessed to perform a wide variety of reactions. Challenging questions to obtain further breakthroughs in the understanding of FDMOs are also proposed.
Collapse
Affiliation(s)
- Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand.
| |
Collapse
|
5
|
Montua N, Sewald N. Extended Biocatalytic Halogenation Cascades Involving a Single-Polypeptide Regeneration System for Diffusible FADH 2. Chembiochem 2023; 24:e202300478. [PMID: 37549375 DOI: 10.1002/cbic.202300478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Flavin-dependent halogenases have attracted increasing interest for aryl halogenation at unactivated C-H positions because they are characterised by high regioselectivity, while requiring only FADH2 , halide salts, and O2 . Their use in combined crosslinked enzyme aggregates (combiCLEAs) together with an NADH-dependent flavin reductase and an NADH-regeneration system for the preparative halogenation of tryptophan and indole derivatives has been previously described. However, multiple cultivations and protein purification steps are necessary for their production. We present a bifunctional regeneration enzyme for two-step catalytic flavin regeneration using phosphite as an inexpensive sacrificial substrate. This fusion protein proved amenable to co-expression with various flavin-dependent Trp-halogenases and enables carrier-free immobilisation as combiCLEAs from a single cultivation for protein production and the preparative synthesis of halotryptophan. The scalability of this system was demonstrated by fed-batch fermentation in bench-top bioreactors on a 2.5 L scale. Furthermore, the inclusion of a 6-halotryptophan-specific dioxygenase into the co-expression strain further converts the halogenation product to the kynurenine derivative. This reaction cascade enables the one-pot synthesis of l-4-Cl-kynurenine and its brominated analogue on a preparative scale.
Collapse
Affiliation(s)
- Nicolai Montua
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
6
|
Lukowski AL, Hubert FM, Ngo TE, Avalon NE, Gerwick WH, Moore BS. Enzymatic Halogenation of Terminal Alkynes. J Am Chem Soc 2023; 145:18716-18721. [PMID: 37594919 PMCID: PMC10486310 DOI: 10.1021/jacs.3c05750] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The biosynthetic installation of halogen atoms is largely performed by oxidative halogenases that target a wide array of electron-rich substrates, including aromatic compounds and conjugated systems. Halogenated alkyne-containing molecules are known to occur in Nature; however, halogen atom installation on the terminus of an alkyne has not been demonstrated in enzyme catalysis. Herein, we report the discovery and characterization of an alkynyl halogenase in natural product biosynthesis. We show that the flavin-dependent halogenase from the jamaicamide biosynthetic pathway, JamD, is not only capable of terminal alkyne halogenation on a late-stage intermediate en route to the final natural product but also has broad substrate tolerance for simple to complex alkynes. Furthermore, JamD is specific for terminal alkynes over other electron-rich aromatic substrates and belongs to a newly identified family of halogenases from marine cyanobacteria, indicating its potential as a chemoselective biocatalyst for the formation of haloalkynes.
Collapse
Affiliation(s)
- April L Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Felix M Hubert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Thuan-Ethan Ngo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Nicole E Avalon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Gäfe S, Niemann HH. Structural basis of regioselective tryptophan dibromination by the single-component flavin-dependent halogenase AetF. Acta Crystallogr D Struct Biol 2023; 79:596-609. [PMID: 37314407 PMCID: PMC10306068 DOI: 10.1107/s2059798323004254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
The flavin-dependent halogenase (FDH) AetF successively brominates tryptophan at C5 and C7 to generate 5,7-dibromotryptophan. In contrast to the well studied two-component tryptophan halogenases, AetF is a single-component flavoprotein monooxygenase. Here, crystal structures of AetF alone and in complex with various substrates are presented, representing the first experimental structures of a single-component FDH. Rotational pseudosymmetry and pseudomerohedral twinning complicated the phasing of one structure. AetF is structurally related to flavin-dependent monooxygenases. It contains two dinucleotide-binding domains for binding the ADP moiety with unusual sequences that deviate from the consensus sequences GXGXXG and GXGXXA. A large domain tightly binds the cofactor flavin adenine dinucleotide (FAD), while the small domain responsible for binding the nicotinamide adenine dinucleotide (NADP) is unoccupied. About half of the protein forms additional structural elements containing the tryptophan binding site. FAD and tryptophan are about 16 Å apart. A tunnel between them presumably allows diffusion of the active halogenating agent hypohalous acid from FAD to the substrate. Tryptophan and 5-bromotryptophan bind to the same site but with a different binding pose. A flip of the indole moiety identically positions C5 of tryptophan and C7 of 5-bromotryptophan next to the tunnel and to catalytic residues, providing a simple explanation for the regioselectivity of the two successive halogenations. AetF can also bind 7-bromotryptophan in the same orientation as tryptophan. This opens the way for the biocatalytic production of differentially dihalogenated tryptophan derivatives. The structural conservation of a catalytic lysine suggests a way to identify novel single-component FDHs.
Collapse
Affiliation(s)
- Simon Gäfe
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Chen L, Champramary S, Sahu N, Indic B, Szűcs A, Nagy G, Maróti G, Pap B, Languar O, Vágvölgyi C, Nagy LG, Kredics L, Sipos G. Dual RNA-Seq Profiling Unveils Mycoparasitic Activities of Trichoderma atroviride against Haploid Armillaria ostoyae in Antagonistic Interaction Assays. Microbiol Spectr 2023; 11:e0462622. [PMID: 37140425 PMCID: PMC10269595 DOI: 10.1128/spectrum.04626-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Armillaria ostoyae, a species among the destructive forest pathogens from the genus Armillaria, causes root rot disease on woody plants worldwide. Efficient control measures to limit the growth and impact of this severe underground pathogen are under investigation. In a previous study, a new soilborne fungal isolate, Trichoderma atroviride SZMC 24276 (TA), exhibited high antagonistic efficacy, which suggested that it could be utilized as a biocontrol agent. The dual culture assay results indicated that the haploid A. ostoyae-derivative SZMC 23085 (AO) (C18/9) is highly susceptible to the mycelial invasion of TA. In the present study, we analyzed the transcriptome of AO and that of TA in in vitro dual culture assays to test the molecular arsenal of Trichoderma antagonism and the defense mechanisms of Armillaria. We conducted time-course analysis and functional annotation and analyzed enriched pathways and differentially expressed genes including biocontrol-related candidate genes from TA and defense-related candidate genes from AO. The results indicated that TA deployed several biocontrol mechanisms when confronted with AO. In response, AO initiated multiple defense mechanisms to protect against the fungal attack. To our knowledge, the present study offers the first transcriptome analysis of a biocontrol fungus attacking AO. Overall, this study provides insights that aid the further exploration of plant pathogen-biocontrol agent interaction mechanisms. IMPORTANCE Armillaria species can survive for decades in the soil on dead woody debris, develop rapidly under favorable conditions, and harmfully infect newly planted forests. Our previous study found Trichoderma atroviride to be highly effective in controlling Armillaria growth; therefore, our current work explored the molecular mechanisms that might play a key role in Trichoderma-Armillaria interactions. Direct confrontation assays combined with time course-based dual transcriptome analysis provided a reliable system for uncovering the interactive molecular dynamics between the fungal plant pathogen and its mycoparasitic partner. Furthermore, using a haploid Armillaria isolate allowed us to survey the deadly prey-invading activities of the mycoparasite and the ultimate defensive strategies of its prey. Our current study provides detailed insights into the essential genes and mechanisms involved in Armillaria defense against Trichoderma and the genes potentially involved in the efficiency of Trichoderma to control Armillaria. In addition, using a sensitive haploid Armillaria strain (C18/9), with its complete genome data already available, also offers the opportunity to test possible variable molecular responses of Armillaria ostoyae toward diverse Trichoderma isolates with various biocontrol abilities. Initial molecular tests of the dual interactions may soon help to develop a targeted biocontrol intervention with mycoparasites against plant pathogens.
Collapse
Affiliation(s)
- Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Simang Champramary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Bernadett Pap
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Omar Languar
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| |
Collapse
|
9
|
Matysik J, Gerhards L, Theiss T, Timmermann L, Kurle-Tucholski P, Musabirova G, Qin R, Ortmann F, Solov'yov IA, Gulder T. Spin Dynamics of Flavoproteins. Int J Mol Sci 2023; 24:ijms24098218. [PMID: 37175925 PMCID: PMC10179055 DOI: 10.3390/ijms24098218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This short review reports the surprising phenomenon of nuclear hyperpolarization occurring in chemical reactions, which is called CIDNP (chemically induced dynamic nuclear polarization) or photo-CIDNP if the chemical reaction is light-driven. The phenomenon occurs in both liquid and solid-state, and electron transfer systems, often carrying flavins as electron acceptors, are involved. Here, we explain the physical and chemical properties of flavins, their occurrence in spin-correlated radical pairs (SCRP) and the possible involvement of flavin-carrying SCRPs in animal magneto-reception at earth's magnetic field.
Collapse
Affiliation(s)
- Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Luca Gerhards
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tobias Theiss
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lisa Timmermann
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | | | - Guzel Musabirova
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Ruonan Qin
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Frank Ortmann
- TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tanja Gulder
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
10
|
France SP, Lewis RD, Martinez CA. The Evolving Nature of Biocatalysis in Pharmaceutical Research and Development. JACS AU 2023; 3:715-735. [PMID: 37006753 PMCID: PMC10052283 DOI: 10.1021/jacsau.2c00712] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
Biocatalysis is a highly valued enabling technology for pharmaceutical research and development as it can unlock synthetic routes to complex chiral motifs with unparalleled selectivity and efficiency. This perspective aims to review recent advances in the pharmaceutical implementation of biocatalysis across early and late-stage development with a focus on the implementation of processes for preparative-scale syntheses.
Collapse
|
11
|
Sharma H, Raju B, Narendra G, Motiwale M, Sharma B, Verma H, Silakari O. QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update. ChemistrySelect 2023. [DOI: 10.1002/slct.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Himani Sharma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Gera Narendra
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Mohit Motiwale
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Bhavna Sharma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Himanshu Verma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Om Silakari
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| |
Collapse
|
12
|
Büchler J, Hegarty E, Schroer K, Snajdrova R, Turner NJ, Loiseleur O, Buller R, Le Chapelain C. A Collaborative Journey towards the Late‐Stage Functionalization of Added‐Value Chemicals Using Engineered Halogenases. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Johannes Büchler
- Zurich University of Applied Sciences School of Life Sciences and Facility Management Institute of Chemistry and Biotechnology, CH- 8820 Wädenswil Switzerland
- Department of Chemistry The University of Manchester Manchester Institute of Biotechnology, UK- Manchester M1 7DN United Kingdom
| | - Eimear Hegarty
- Zurich University of Applied Sciences School of Life Sciences and Facility Management Institute of Chemistry and Biotechnology, CH- 8820 Wädenswil Switzerland
| | - Kirsten Schroer
- Novartis Institutes for BioMedical Research Global Discovery Chemistry, CH- 4056 Basel Switzerland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry, CH- 4056 Basel Switzerland
| | - Nicholas J. Turner
- Department of Chemistry The University of Manchester Manchester Institute of Biotechnology, UK- Manchester M1 7DN United Kingdom
| | - Olivier Loiseleur
- Syngenta Crop Protection AG Schaffhauserstr. 101 CH-4332 Stein Switzerland
| | - Rebecca Buller
- Zurich University of Applied Sciences School of Life Sciences and Facility Management Institute of Chemistry and Biotechnology, CH- 8820 Wädenswil Switzerland
| | | |
Collapse
|
13
|
Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase. Nat Catal 2022. [DOI: 10.1038/s41929-022-00800-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Molecules 2022; 27:3157. [PMID: 35630634 PMCID: PMC9144378 DOI: 10.3390/molecules27103157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.
Collapse
Affiliation(s)
- Bastien Cochereau
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Laurence Meslet-Cladière
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| |
Collapse
|
15
|
Bering L, Thompson J, Micklefield J. New reaction pathways by integrating chemo- and biocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Büchler J, Malca SH, Patsch D, Voss M, Turner NJ, Bornscheuer UT, Allemann O, Le Chapelain C, Lumbroso A, Loiseleur O, Buller R. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens. Nat Commun 2022; 13:371. [PMID: 35042883 PMCID: PMC8766452 DOI: 10.1038/s41467-022-27999-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Late-stage functionalization of natural products offers an elegant route to create novel entities in a relevant biological target space. In this context, enzymes capable of halogenating sp3 carbons with high stereo- and regiocontrol under benign conditions have attracted particular attention. Enabled by a combination of smart library design and machine learning, we engineer the iron/α-ketoglutarate dependent halogenase WelO5* for the late-stage functionalization of the complex and chemically difficult to derivatize macrolides soraphen A and C, potent anti-fungal agents. While the wild type enzyme WelO5* does not accept the macrolide substrates, our engineering strategy leads to active halogenase variants and improves upon their apparent kcat and total turnover number by more than 90-fold and 300-fold, respectively. Notably, our machine-learning guided engineering approach is capable of predicting more active variants and allows us to switch the regio-selectivity of the halogenases facilitating the targeted analysis of the derivatized macrolides’ structure-function activity in biological assays. The late-stage functionalization of unactivated carbon–hydrogen bonds is a difficult but important task, which has been met with promising but limited success through synthetic organic chemistry. Here the authors use machine learning to engineer WelO5* halogenase variants, which led to regioselective chlorination of inert C–H bonds on a representative polyketide that is a non-natural substrate for the enzyme.
Collapse
Affiliation(s)
- Johannes Büchler
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.,School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, Manchester, M1 7DN, United Kingdom
| | - Sumire Honda Malca
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - David Patsch
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.,Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Moritz Voss
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Nicholas J Turner
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, Manchester, M1 7DN, United Kingdom
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Oliver Allemann
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland.,Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | | | - Alexandre Lumbroso
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland
| | - Olivier Loiseleur
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland.
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| |
Collapse
|
17
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
18
|
De Silva AJ, Sehgal R, Kim J, Bellizzi JJ. Steady-state kinetic analysis of halogenase-supporting flavin reductases BorF and AbeF reveals different kinetic mechanisms. Arch Biochem Biophys 2021; 704:108874. [PMID: 33862020 DOI: 10.1016/j.abb.2021.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
The short-chain flavin reductases BorF and AbeF reduce FAD to FADH2, which is then used by flavin-dependent halogenases (BorH and AbeH respectively) to regioselectively chlorinate tryptophan in the biosynthesis of indolotryptoline natural products. Recombinant AbeF and BorF were overexpressed and purified as homodimers from E. coli, and copurified with substoichiometric amounts of FAD, which could be easily removed. AbeF and BorF can reduce FAD, FMN, and riboflavin in vitro and are selective for NADH over NADPH. Initial velocity studies in the presence and absence of inhibitors showed that BorF proceeds by a sequential ordered kinetic mechanism in which FAD binds first, while AbeF follows a random-ordered sequence of substrate binding. Fluorescence quenching experiments verified that NADH does not bind BorF in the absence of FAD, and that both AbeF and BorF bind FAD with higher affinity than FADH2. pH-rate profiles of BorF and AbeF were bell-shaped with maximum kcat at pH 7.5, and site-directed mutagenesis of BorF implicated His160 and Arg38 as contributing to the catalytic activity and the pH dependence.
Collapse
Affiliation(s)
- Aravinda J De Silva
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Rippa Sehgal
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Jennifer Kim
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - John J Bellizzi
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA.
| |
Collapse
|
19
|
Li C, Bao W, Zhang H, Lyu Z, Chen Y, Guo Z. Discovery of Brominated Alboflavusins With Anti-MRSA Activities. Front Microbiol 2021; 12:641025. [PMID: 33664724 PMCID: PMC7920986 DOI: 10.3389/fmicb.2021.641025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
As methicillin-resistant Staphylococcus aureus (MRSA) is becoming a serious pathogenic threaten to human health worldwide, there is an urgent need to discover new antibiotics for the treatment of MRSA infections. Alboflavusins (AFNs) are a group of halogenated cyclohexapeptides with anti-MRSA activities. In this study, two novel brominated AFN congeners (compounds 1 and 2) were isolated from the wild-type strain Streptomyces alboflavus sp. 313 that was fermented in the production medium supplemented with NaBr; two new (compounds 3 and 5) and a known (compound 4) dehelogenated AFN congeners were isolated from S. alboflavus ΔafnX, in which the tryptophan halogenase gene afnX was inactivated. The structures of these compounds were assigned by careful NMR and MS analyses. The anti-MRSA activities of varied AFN congeners were assessed against different MRSA strains, which revealed that compounds 1 and 2 with bromine displayed effective activities against the tested MRSA strains. Especially, compound 2 showed good anti-MRSA activity, while compounds 3, 4, and 5 without halogen exhibited weak anti-MRSA activities, outlining the influence of halogen substitution to the bioactivities of AFNs.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wuyundalai Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Haoyue Zhang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Zhitang Lyu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 586] [Impact Index Per Article: 195.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
21
|
Neubauer PR, Pienkny S, Wessjohann L, Brandt W, Sewald N. Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH. Chembiochem 2020; 21:3282-3288. [PMID: 32645255 PMCID: PMC7754283 DOI: 10.1002/cbic.202000444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 01/16/2023]
Abstract
The recently described flavin-dependent halogenase BrvH is able to catalyse both the bromination and chlorination of indole, but shows significantly higher bromination activity. BrvH was annotated as a tryptophan halogenase, but does not accept tryptophan as a substrate. Its native substrate remains unknown. A predictive model with the data available for BrvH was analysed. A training set of compounds tested in vitro was docked into the active site of a complete protein model based on the X-ray structure of BrvH. The atoms not resolved experimentally were modelled by using molecular mechanics force fields to obtain this protein model. Furthermore, docking poses for the substrates and known non-substrates have been calculated. Parameters like distance, partial charge and hybridization state were analysed to derive rules for predicting activity. With this model for activity of the BrvH, a virtual screening suggested several structures for potential substrates. Some of the compounds preselected in this way were tested in vitro, and several could be verified as convertible substrates. Based on information on halogenated natural products, a new dataset was created to specifically search for natural products as substrates/products, and virtual screening in this database yielded further hits.
Collapse
Affiliation(s)
- Pia R. Neubauer
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| | - Silke Pienkny
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Ludger Wessjohann
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Wolfgang Brandt
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Norbert Sewald
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| |
Collapse
|
22
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
23
|
Minges H, Sewald N. Recent Advances in Synthetic Application and Engineering of Halogenases. ChemCatChem 2020. [DOI: 10.1002/cctc.202000531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hannah Minges
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| |
Collapse
|
24
|
Magalhães RP, Fernandes HS, Sousa SF. Modelling Enzymatic Mechanisms with QM/MM Approaches: Current Status and Future Challenges. Isr J Chem 2020. [DOI: 10.1002/ijch.202000014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rita P. Magalhães
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Henriques S. Fernandes
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| |
Collapse
|
25
|
Exploring the Biocatalytic Potential of Fe/α‐Ketoglutarate‐Dependent Halogenases. Chemistry 2020; 26:7336-7345. [DOI: 10.1002/chem.201905752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/18/2022]
|