1
|
Xu Y, Jiang L, Gao J, Zhang W, Zhang M, Liu C, Jia J. Molecular Regulation of Photosynthetic Carbon Assimilation in Oat Leaves Under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3317. [PMID: 39683110 DOI: 10.3390/plants13233317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Common oat (Avena sativa L.) is one of the important minor grain crops in China, and drought stress severely affects its yield and quality. To investigate the drought resistance characteristics of oat seedlings, this study used Baiyan 2, an oat cultivar at the three-leaf stage, as the experimental material. Drought stress was simulated using polyethylene glycol (PEG) to treat the seedlings. The photosynthetic parameters and physicochemical indices of the treatment groups at 6 h and 12 h were measured and compared with the control group at 0 h. The results showed that drought stress did not significantly change chlorophyll content, but it significantly reduced net photosynthetic rate and other photosynthetic parameters while significantly increasing proline content. Transcriptome analysis was conducted using seedlings from both the control and treatment groups, comparing the two treatment groups with the control group using Tbtool software (v2.136). This analysis identified 344 differentially expressed genes. Enrichment analysis of these differentially expressed genes revealed significant enrichment in physiological pathways such as photosynthesis and ion transport. Ten differentially expressed genes related to the physiological process of photosynthetic carbon assimilation were identified, all of which were downregulated. Additionally, seven differentially expressed genes were related to ion transport. Through gene co-expression analysis combined with promoter region structure analysis, 11 transcription factors (from MYB, AP2/ERF, C2C2-dof) were found to regulate the expression of 10 genes related to photosynthetic carbon assimilation. Additionally, five transcription factors regulate the expression of two malate transporter protein-related genes (from LOB, zf-HD, C2C2-Dof, etc.), five transcription factors regulate the expression of two metal ion transporter protein-related genes (from MYB, zf-HD, C2C2-Dof), five transcription factors regulate the expression of two chloride channel protein-related genes (from MYB, bZIP, AP2/ERF), and two transcription factors regulate the expression of one Annexin-related gene (from NAC, MYB). This study provides a theoretical foundation for further research on the molecular regulation of guard cells and offers a molecular basis for enhancing drought resistance in oats.
Collapse
Affiliation(s)
- Yiqun Xu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030810, China
| | - Liling Jiang
- Academy of Agricultural and Forestry Sciences, Qinghai University National Duplicate Genebank for Crops, Xining 810016, China
| | - Jia Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030810, China
| | - Wei Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030810, China
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Meijun Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030810, China
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Changlai Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Juqing Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030810, China
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
2
|
Feng Z, Zheng Y, Jiang Y, Pei J, Huang L. Phylogenetic relationships, selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes. Sci Rep 2024; 14:9783. [PMID: 38684694 PMCID: PMC11059183 DOI: 10.1038/s41598-024-58934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yuan Jiang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
3
|
Meng Y, Zhan J, Liu H, Liu J, Wang Y, Guo Z, He S, Nie L, Kohli A, Ye G. Natural variation of OsML1, a mitochondrial transcription termination factor, contributes to mesocotyl length variation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:910-925. [PMID: 37133286 DOI: 10.1111/tpj.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/04/2023]
Abstract
Mesocotyl length (ML) is a crucial factor in determining the establishment and yield of rice planted through dry direct seeding, a practice that is increasingly popular in rice production worldwide. ML is determined by the endogenous and external environments, and inherits as a complex trait. To date, only a few genes have been cloned, and the mechanisms underlying mesocotyl elongation remain largely unknown. Here, through a genome-wide association study using sequenced germplasm, we reveal that natural allelic variations in a mitochondrial transcription termination factor, OsML1, predominantly determined the natural variation of ML in rice. Natural variants in the coding regions of OsML1 resulted in five major haplotypes with a clear differentiation between subspecies and subpopulations in cultivated rice. The much-reduced genetic diversity of cultivated rice compared to the common wild rice suggested that OsML1 underwent selection during domestication. Transgenic experiments and molecular analysis demonstrated that OsML1 contributes to ML by influencing cell elongation primarily determined by H2 O2 homeostasis. Overexpression of OsML1 promoted mesocotyl elongation and thus improved the emergence rate under deep direct seeding. Taken together, our results suggested that OsML1 is a key positive regulator of ML, and is useful in developing varieties for deep direct seeding by conventional and transgenic approaches.
Collapse
Affiliation(s)
- Yun Meng
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Junhui Zhan
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hongyan Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Jindong Liu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yamei Wang
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhan Guo
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Sang He
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lixiao Nie
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Ajay Kohli
- Rice Breeding Innovations Platform, International Rice Research Institute (IRRI), Metro Manila, 1301, Philippines
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Rice Breeding Innovations Platform, International Rice Research Institute (IRRI), Metro Manila, 1301, Philippines
| |
Collapse
|
4
|
Zumkeller S, Knoop V. Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases. BMC Ecol Evol 2023; 23:5. [PMID: 36915058 PMCID: PMC10012718 DOI: 10.1186/s12862-023-02108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
5
|
Solares E, Morales-Cruz A, Balderas RF, Focht E, Ashworth VETM, Wyant S, Minio A, Cantu D, Arpaia ML, Gaut BS. Insights into the domestication of avocado and potential genetic contributors to heterodichogamy. G3 (BETHESDA, MD.) 2023; 13:jkac323. [PMID: 36477810 PMCID: PMC9911064 DOI: 10.1093/g3journal/jkac323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
The domestication history of the avocado (Persea americana) remains unclear. We created a reference genome from the Gwen varietal, which is closely related to the economically dominant Hass varietal. Our genome assembly had an N50 of 3.37 megabases, a BUSCO score of 91%, and was scaffolded with a genetic map, producing 12 pseudo-chromosomes with 49,450 genes. We used the Gwen genome as a reference to investigate population genomics, based on a sample of 34 resequenced accessions that represented the 3 botanical groups of P. americana. Our analyses were consistent with 3 separate domestication events; we estimated that the Mexican group diverged from the Lowland (formerly known as "West Indian") and Guatemalan groups >1 million years ago. We also identified putative targets of selective sweeps in domestication events; within the Guatemalan group, putative candidate genes were enriched for fruit development and ripening. We also investigated divergence between heterodichogamous flowering types, providing preliminary evidence for potential candidate genes involved in pollination and floral development.
Collapse
Affiliation(s)
- Edwin Solares
- Deptartment of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - Abraham Morales-Cruz
- Deptartment of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - Rosa Figueroa Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Eric Focht
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Skylar Wyant
- Deptartment of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Mary Lu Arpaia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon S Gaut
- Deptartment of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| |
Collapse
|
6
|
Jiang D, Cai X, Gong M, Xia M, Xing H, Dong S, Tian S, Li J, Lin J, Liu Y, Li HL. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genomics 2023; 24:30. [PMID: 36653780 PMCID: PMC9848714 DOI: 10.1186/s12864-023-09115-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.
Collapse
Affiliation(s)
- Dongzhu Jiang
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.410654.20000 0000 8880 6009College of Horticulture and Gardening, Yangtze University, Jingzhou, 433200 China
| | - Xiaodong Cai
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Min Gong
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.411581.80000 0004 1790 0881College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100 China
| | - Maoqin Xia
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Haitao Xing
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Shanshan Dong
- grid.9227.e0000000119573309Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004 China
| | - Shuming Tian
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.411581.80000 0004 1790 0881College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100 China
| | - Jialin Li
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Junyao Lin
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Yiqing Liu
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.410654.20000 0000 8880 6009College of Horticulture and Gardening, Yangtze University, Jingzhou, 433200 China
| | - Hong-Lei Li
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| |
Collapse
|
7
|
Kang Y, Lee K, Hoshikawa K, Kang M, Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:837152. [PMID: 35481144 PMCID: PMC9036485 DOI: 10.3389/fpls.2022.837152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 05/09/2023]
Abstract
The effects of the climate change including an increase in the average global temperatures, and abnormal weather events such as frequent and severe heatwaves are emerging as a worldwide ecological concern due to their impacts on plant vegetation and crop productivity. In this review, the molecular processes of plants in response to heat stress-from the sensing of heat stress, the subsequent molecular cascades associated with the activation of heat shock factors and their primary targets (heat shock proteins), to the cellular responses-have been summarized with an emphasis on the classification and functions of heat shock proteins. Vegetables contain many essential vitamins, minerals, antioxidants, and fibers that provide many critical health benefits to humans. The adverse effects of heat stress on vegetable growth can be alleviated by developing vegetable crops with enhanced thermotolerance with the aid of various genetic tools. To achieve this goal, a solid understanding of the molecular and/or cellular mechanisms underlying various responses of vegetables to high temperature is imperative. Therefore, efforts to identify heat stress-responsive genes including those that code for heat shock factors and heat shock proteins, their functional roles in vegetable crops, and also their application to developing vegetables tolerant to heat stress are discussed.
Collapse
Affiliation(s)
- Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Kwanuk Lee
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Ken Hoshikawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|
8
|
Wang L, Xu D, Scharf K, Frank W, Leister D, Kleine T. The RNA-binding protein RBP45D of Arabidopsis promotes transgene silencing and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1397-1415. [PMID: 34919766 DOI: 10.1111/tpj.15637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
RNA-directed DNA methylation (RdDM) helps to defend plants against invasive nucleic acids. In the canonical form of RdDM, 24-nt small interfering RNAs (siRNAs) are produced by DICER-LIKE 3 (DCL3). The siRNAs are loaded onto ARGONAUTE (AGO) proteins leading ultimately to de novo DNA methylation. Here, we introduce the Arabidopsis thaliana prors1 (LUC) transgenic system, in which 24-nt siRNAs are generated to silence the promoter-LUC construct. A forward genetic screen performed with this system identified, besides known components of RdDM (NRPD2A, RDR2, AGO4 and AGO6), the RNA-binding protein RBP45D. RBP45D is involved in CHH (where H is A, C or T) DNA methylation, and maintains siRNA production originating from the LUC transgene. RBP45D is localized to the nucleus, where it is associated with small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). RNA-Seq analysis showed that in CRISPR/Cas-mediated rbp-ko lines FLOWERING LOCUS C (FLC) mRNA levels are upregulated and several loci differentially spliced, among them FLM. In consequence, loss of RBP45D delays flowering, presumably mediated by the release of FLC levels and/or alternative splicing of FLM. Moreover, because levels and processing of transcripts of known RdDM genes are not altered in rbp-ko lines, RBP45D should have a more direct function in transgene silencing, probably independent of the canonical RdDM pathway. We suggest that RBP45D facilitates siRNA production by stabilizing either the precursor RNA or the slicer protein. Alternatively, RBP45D could be involved in chromatin modifications, participate in retention of Pol IV transcripts and/or in Pol V-dependent lncRNA retention in chromatin to enable their scaffold function.
Collapse
Affiliation(s)
- Liangsheng Wang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Kristin Scharf
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Wang X, Wang J, Li S, Lu C, Sui N. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biol 2022; 19:897-907. [PMID: 35811474 PMCID: PMC9275481 DOI: 10.1080/15476286.2022.2096801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.
Collapse
Affiliation(s)
- Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Western Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| |
Collapse
|
10
|
Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 232:2026-2042. [PMID: 34482561 DOI: 10.1111/nph.17717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor-related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA. We previously found that mutations in Arabidopsis thaliana mTERF18/SHOT1 enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage. Here we discover that shot1 mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor of hot1-4 1 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted in shot1. Furthermore, three homologues of animal ATPase family AAA domain-containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1-interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen in shot1 mutants. Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects in shot1 mutants and ATAD3-disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vincent Schulz
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Lea Brings
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Theresa Schoeller
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kristina Kühn
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Li DM, Li J, Wang DR, Xu YC, Zhu GF. Molecular evolution of chloroplast genomes in subfamily Zingiberoideae (Zingiberaceae). BMC PLANT BIOLOGY 2021; 21:558. [PMID: 34814832 PMCID: PMC8611967 DOI: 10.1186/s12870-021-03315-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Zingiberoideae is a large and diverse subfamily of the family Zingiberaceae. Four genera in subfamily Zingiberoideae each possess 50 or more species, including Globba (100), Hedychium (> 80), Kaempferia (50) and Zingiber (150). Despite the agricultural, medicinal and horticultural importance of these species, genomic resources and suitable molecular markers for them are currently sparse. RESULTS Here, we have sequenced, assembled and analyzed ten complete chloroplast genomes from nine species of subfamily Zingiberoideae: Globba lancangensis, Globba marantina, Globba multiflora, Globba schomburgkii, Globba schomburgkii var. angustata, Hedychium coccineum, Hedychium neocarneum, Kaempferia rotunda 'Red Leaf', Kaempferia rotunda 'Silver Diamonds' and Zingiber recurvatum. These ten chloroplast genomes (size range 162,630-163,968 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 87,172-88,632 bp), a small single copy (SSC, 15,393-15,917 bp) and a pair of inverted repeats (IRs, 29,673-29,833 bp). The genomes contain 111-113 different genes, including 79 protein coding genes, 28-30 tRNAs and 4 rRNA genes. The dynamics of the genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats exhibit similarities, with slight differences observed among the ten genomes. Further comparative analysis of seventeen related Zingiberoideae species, 12 divergent hotspots are identified. Positive selection is observed in 14 protein coding genes, including accD, ccsA, ndhA, ndhB, psbJ, rbcL, rpl20, rpoC1, rpoC2, rps12, rps18, ycf1, ycf2 and ycf4. Phylogenetic analyses, based on the complete chloroplast-derived single-nucleotide polymorphism data, strongly support that Globba, Hedychium, and Curcuma I + "the Kaempferia clade" consisting of Curcuma II, Kaempferia and Zingiber, form a nested evolutionary relationship in subfamily Zingiberoideae. CONCLUSIONS Our study provides detailed information on ten complete Zingiberoideae chloroplast genomes, representing a valuable resource for future studies that seek to understand the molecular evolutionary dynamics in family Zingiberaceae. The identified divergent hotspots can be used for development of molecular markers for phylogenetic inference and species identification among closely related species within four genera of Globba, Hedychium, Kaempferia and Zingiber in subfamily Zingiberoideae.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dai-Rong Wang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ye-Chun Xu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Li T, Pan W, Yuan Y, Liu Y, Li Y, Wu X, Wang F, Cui L. Identification, Characterization, and Expression Profile Analysis of the mTERF Gene Family and Its Role in the Response to Abiotic Stress in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:684619. [PMID: 34335653 PMCID: PMC8319850 DOI: 10.3389/fpls.2021.684619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 05/17/2023]
Abstract
Plant mitochondrial transcription termination factor (mTERF) family regulates organellar gene expression (OGE) and is functionally characterized in diverse species. However, limited data are available about its functions in the agriculturally important cereal barley (Hordeum vulgare L.). In this study, we identified 60 mTERFs in the barley genome (HvmTERFs) through a comprehensive search against the most updated barley reference genome, Morex V2. Then, phylogenetic analysis categorized these genes into nine subfamilies, with approximately half of the HvmTERFs belonging to subfamily IX. Members within the same subfamily generally possessed conserved motif composition and exon-intron structure. Both segmental and tandem duplication contributed to the expansion of HvmTERFs, and the duplicated gene pairs were subjected to strong purifying selection. Expression analysis suggested that many HvmTERFs may play important roles in barley development (e.g., seedlings, leaves, and developing inflorescences) and abiotic stresses (e.g., cold, salt, and metal ion), and HvmTERF21 and HvmTERF23 were significant induced by various abiotic stresses and/or phytohormone treatment. Finally, the nucleotide diversity was decreased by only 4.5% for HvmTERFs during the process of barley domestication. Collectively, this is the first report to characterize HvmTERFs, which will not only provide important insights into further evolutionary studies but also contribute to a better understanding of the potential functions of HvmTERFs and ultimately will be useful in future gene functional studies.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiyuan Yuan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ying Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Licao Cui
| |
Collapse
|