1
|
Schaiter A, Hentschel A, Kleefeld F, Schuld J, Umathum V, Procida-Kowalski T, Nelke C, Roth A, Hahn A, Krämer HH, Ruck T, Horvath R, van der Ven PFM, Bartkuhn M, Roos A, Schänzer A. Molecular composition of skeletal muscle in infants and adults: a comparative proteomic and transcriptomic study. Sci Rep 2024; 14:22965. [PMID: 39362957 PMCID: PMC11450201 DOI: 10.1038/s41598-024-74913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
To gain a deeper understanding of skeletal muscle function in younger age and aging in elderly, identification of molecular signatures regulating these functions under physiological conditions is needed. Although molecular studies of healthy muscle have been conducted on adults and older subjects, there is a lack of research on infant muscle in terms of combined morphological, transcriptomic and proteomic profiles. To address this gap of knowledge, we performed RNA sequencing (RNA-seq), tandem mass spectrometry (LC-MS/MS), morphometric analysis and assays for mitochondrial maintenance in skeletal muscle biopsies from both, infants aged 4-28 months and adults aged 19-65 years. We identified differently expressed genes (DEGs) and differentially expressed proteins (DEPs) in adults compared to infants. The down-regulated genes in adults were associated with functional terms primarily related to sarcomeres, cellular maintenance, and metabolic, immunological and developmental processes. Thus, our study indicates age-related differences in the molecular signatures and associated functions of healthy skeletal muscle. Moreover, the findings assert that processes previously associated solely with aging are indeed part of development and healthy aging. Hence, combined findings of this study also indicate that age-dependent controls are crucial in muscle disease studies, as otherwise the comparative results may not be reliable.
Collapse
Affiliation(s)
| | - Andreas Hentschel
- Leibnitz Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Felix Kleefeld
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Vincent Umathum
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | | | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Pediatric Neurology, Justus-Liebig University Giessen, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany.
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Hamwi MN, Elsayed E, Dabash H, Abuawad A, Aweer NA, Al Zeir F, Pedersen S, Al-Mansoori L, Burgon PG. MLIP and Its Potential Influence on Key Oncogenic Pathways. Cells 2024; 13:1109. [PMID: 38994962 PMCID: PMC11240681 DOI: 10.3390/cells13131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud N. Hamwi
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Engy Elsayed
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Hanan Dabash
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Amani Abuawad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Noor A. Aweer
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Faissal Al Zeir
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| |
Collapse
|
3
|
Weldrick JJ, Yi R, Megeney LA, Burgon PG. MicroRNA205: A Key Regulator of Cardiomyocyte Transition from Proliferative to Hypertrophic Growth in the Neonatal Heart. Int J Mol Sci 2024; 25:2206. [PMID: 38396885 PMCID: PMC10889831 DOI: 10.3390/ijms25042206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The mammalian myocardium grows rapidly during early development due to cardiomyocyte proliferation, which later transitions to cell hypertrophy to sustain the heart's postnatal growth. Although this cell transition in the postnatal heart is consistently preserved in mammalian biology, little is known about the regulatory mechanisms that link proliferation suppression with hypertrophy induction. We reasoned that the production of a micro-RNA(s) could serve as a key bridge to permit changes in gene expression that control the changed cell fate of postnatal cardiomyocytes. We used sequential expression analysis to identify miR205 as a micro-RNA that was uniquely expressed at the cessation of cardiomyocyte growth. Cardiomyocyte-specific miR205 deletion animals showed a 35% increase in heart mass by 3 months of age, with commensurate changes in cell cycle and Hippo pathway activity, confirming miR205's potential role in controlling cardiomyocyte proliferation. In contrast, overexpression of miR205 in newborn hearts had little effect on heart size or function, indicating a complex, probably redundant regulatory system. These findings highlight miR205's role in controlling the shift from cardiomyocyte proliferation to hypertrophic development in the postnatal period.
Collapse
Affiliation(s)
- Jonathan J. Weldrick
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (J.J.W.); (L.A.M.)
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lynn A. Megeney
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Al Amrani F, Al-Thihli K, Narayanappa G, Al-Maawali A. MLIP-Associated Myopathy: A Case Report and Review of the Literature. J Neuromuscul Dis 2023; 10:293-299. [PMID: 36641683 DOI: 10.3233/jnd-221520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Muscular A-type lamin-interacting protein (MLIP) has a regulatory role in myoblast differentiation and organization of myonuclear positioning in skeletal muscle. It is ubiquitously expressed but abundantly in cardiac, skeletal, and smooth muscles. Recently, two studies confirmed the causation of biallelic pathogenic variants in the MLIP gene of a novel myopathy phenotype. OBJECTIVE Description of the phenotypic spectrum and features of MLIP-related myopathy. METHODS report a patient with biallelic variants in MLIP gene with the clinical features, and histomorphological findings of MLIP-related myopathy and provide a literature review of the previously reported 12 patients. RESULTS MLIP-related myopathy is characterized by episodes of rhabdomyolysis, myalgia triggered by mild to moderate exercise, mild muscle weakness, and sometimes cardiac involvement characterized by cardiomyopathy and cardiac rhythm abnormalities. CONCLUSIONS This report reviews and extends the clinical features of a novel myopathy caused by biallelic pathogenic variants in the MLIP gene.
Collapse
Affiliation(s)
- Fatema Al Amrani
- Pediatric Neurology Unit, Department of Child Health, Sultan Qaboos University Hospital, Sultan Qaboos University, Oman
| | - Khalid Al-Thihli
- Department of Genetics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman, Oman
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neuroscience (NIMHANS), Bangalore, India
| | - Almundher Al-Maawali
- Department of Genetics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman, Oman
| |
Collapse
|
5
|
Cabrera-Serrano M, Ravenscroft G. Recent advances in our understanding of genetic rhabdomyolysis. Curr Opin Neurol 2022; 35:651-657. [PMID: 35942668 DOI: 10.1097/wco.0000000000001096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent advances in our understanding of the genetics of rhabdomyolysis. RECENT FINDINGS Rhabdomyolysis is the acute breakdown of myofibres resulting in systemic changes that can be life-threatening. Environmental triggers, including trauma, exercise, toxins and infections, and/or gene defects can precipitate rhabdomyolysis. A schema (aptly titled RHABDO) has been suggested for evaluating whether a patient with rhabdomyolysis is likely to harbour an underlying genetic defect. It is becoming increasingly recognized that defects in muscular dystrophy and myopathy genes can trigger rhabdomyolysis, even as the sole or presenting feature. Variants in genes not previously associated with human disease have been identified recently as causative of rhabdomyolysis, MLIP , MYH1 and OBSCN . Our understanding of the pathomechanisms contributing to rhabdomyolysis have also improved with an increased awareness of the role of mitochondrial dysfunction in LPIN1 , FDX2 , ISCU and TANGO2 -mediated disease. SUMMARY An accurate genetic diagnosis is important for optimal clinical management of the patient, avoiding associated triggers and genetic counselling and cascade screening. Despite recent advances in our understanding of the genetics contributing to rhabdomyolysis, many patients remain without an accurate genetic diagnosis, suggesting there are many more causative genes, variants and disease mechanisms to uncover.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Harry Perkins Institute of Medical Research
- Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
- Unidad de Enfermedades Neuromusculares, Servicio de Neurologia y Neurofisiologia and Instituto de Biomedicina de Sevilla (IBiS)., Hospital Virgen del Rocio, Sevilla, Spain
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research
- Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Zhang Y, Tong GH, Wei XX, Chen HY, Liang T, Tang HP, Wu CA, Wen GM, Yang WK, Liang L, Shen H. Identification of Five Cytotoxicity-Related Genes Involved in the Progression of Triple-Negative Breast Cancer. Front Genet 2022; 12:723477. [PMID: 35046993 PMCID: PMC8762060 DOI: 10.3389/fgene.2021.723477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is one of the deadly tumors in women, and its incidence continues to increase. This study aimed to identify novel therapeutic molecules using RNA sequencing (RNA-seq) data of breast cancer from our hospital. Methods: 30 pairs of human breast cancer tissue and matched normal tissue were collected and RNA sequenced in our hospital. Differentially expressed genes (DEGs) were calculated with raw data by the R package "edgeR", and functionally annotated using R package "clusterProfiler". Tumor-infiltrating immune cells (TIICs) were estimated using a website tool TIMER 2.0. Effects of key genes on therapeutic efficacy were analyzed using RNA-seq data and drug sensitivity data from two databases: the Cancer Cell Line Encyclopedia (CCLE) and the Cancer Therapeutics Response Portal (CTRP). Results: There were 2,953 DEGs between cancerous and matched normal tissue, as well as 975 DEGs between primary breast cancer and metastatic breast cancer. These genes were primarily enriched in PI3K-Akt signaling pathway, calcium signaling pathway, cAMP signaling pathway, and cell cycle. Notably, CD8+ T cell, M0 macrophage, M1 macrophage, regulatory T cell and follicular helper T cell were significantly elevated in cancerous tissue as compared with matched normal tissue. Eventually, we found five genes (GALNTL5, MLIP, HMCN2, LRRN4CL, and DUOX2) were markedly corelated with CD8+ T cell infiltration and cytotoxicity, and associated with therapeutic response. Conclusion: We found five key genes associated with tumor progression, CD8+ T cell and therapeutic efficacy. The findings would provide potential molecular targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University/Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China.,Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Gui-Hui Tong
- Department of Pathology,The first Affiliated Hospital,Guangzhou Medical University, Guangzhou, China
| | - Xu-Xuan Wei
- Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China
| | - Hai-Yang Chen
- Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China
| | - Tian Liang
- Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China
| | - Hong-Ping Tang
- Department of Pathology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Chuan-An Wu
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Guo-Ming Wen
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Wei-Kang Yang
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University/Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hong Shen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University/Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Salzer‐Sheelo L, Fellner A, Orenstein N, Bazak L, Lev‐El Halabi N, Daue M, Smirin‐Yosef P, Van Hout CV, Fellig Y, Ruhrman‐Shahar N, Staples J, Magal N, Shuldiner AR, Mitchell BD, Nevo Y, Pollin TI, Gonzaga‐Jauregui C, Basel‐Salmon L. Biallelic Truncating Variants in the Muscular A‐Type Lamin‐Interacting Protein (
MLIP
) Gene Cause Myopathy with Hyper‐CKemia. Eur J Neurol 2021; 29:1174-1180. [DOI: 10.1111/ene.15218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Liat Salzer‐Sheelo
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Avi Fellner
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
- Department of Neurology Rabin Medical Center Beilinson Hospital Petah Tikva Israel
| | - Naama Orenstein
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Pediatric Genetics Clinic Schneider Children’s Medical Center of Israel Petah Tikva Israel
| | - Lily Bazak
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
| | - Noa Lev‐El Halabi
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
| | - Melanie Daue
- Division of Endocrinology Diabetes & Nutrition Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Pola Smirin‐Yosef
- Genomic Bioinformatics Laboratory Department of Molecular Biology Ariel University Israel
- Felsenstein Medical Research Center Rabin Medical Center Petah Tikva Israel
| | | | - Yakov Fellig
- Department of Pathology Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem Israel
| | - Noa Ruhrman‐Shahar
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
| | | | - Nurit Magal
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
| | | | - Braxton D. Mitchell
- Division of Endocrinology Diabetes & Nutrition Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Yoram Nevo
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Pediatric Neurology Unit Schneider Children’s Medical Center of Israel Petah Tikva Israel
| | - Toni I. Pollin
- Division of Endocrinology Diabetes & Nutrition Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Claudia Gonzaga‐Jauregui
- Regeneron Genetics Center Tarrytown NY USA
- International Laboratory for Human Genome Research Laboratorio Internacional de Investigación sobre el Genoma Humano Universidad Nacional Autónoma de México Juriquilla Querétaro Mexico
| | - Lina Basel‐Salmon
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Felsenstein Medical Research Center Rabin Medical Center Petah Tikva Israel
| |
Collapse
|
8
|
Lopes Abath Neto O, Medne L, Donkervoort S, Rodríguez-García ME, Bolduc V, Hu Y, Guadagnin E, Foley AR, Brandsema JF, Glanzman AM, Tennekoon GI, Santi M, Berger JH, Megeney LA, Komaki H, Inoue M, Cotrina-Vinagre FJ, Hernández-Lain A, Martin-Hernández E, Williams L, Borell S, Schorling D, Lin K, Kolokotronis K, Lichter-Konecki U, Kirschner J, Nishino I, Banwell B, Martínez-Azorín F, Burgon PG, Bönnemann CG. MLIP causes recessive myopathy with rhabdomyolysis, myalgia and baseline elevated serum creatine kinase. Brain 2021; 144:2722-2731. [PMID: 34581780 PMCID: PMC8536936 DOI: 10.1093/brain/awab275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023] Open
Abstract
Striated muscle needs to maintain cellular homeostasis in adaptation to increases in physiological and metabolic demands. Failure to do so can result in rhabdomyolysis. The identification of novel genetic conditions associated with rhabdomyolysis helps to shed light on hitherto unrecognized homeostatic mechanisms. Here we report seven individuals in six families from different ethnic backgrounds with biallelic variants in MLIP, which encodes the muscular lamin A/C-interacting protein, MLIP. Patients presented with a consistent phenotype characterized by mild muscle weakness, exercise-induced muscle pain, variable susceptibility to episodes of rhabdomyolysis, and persistent basal elevated serum creatine kinase levels. The biallelic truncating variants were predicted to result in disruption of the nuclear localizing signal of MLIP. Additionally, reduced overall RNA expression levels of the predominant MLIP isoform were observed in patients' skeletal muscle. Collectively, our data increase the understanding of the genetic landscape of rhabdomyolysis to now include MLIP as a novel disease gene in humans and solidifies MLIP's role in normal and diseased skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Osorio Lopes Abath Neto
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maria Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eleonora Guadagnin
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John F Brandsema
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Allan M Glanzman
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gihan I Tennekoon
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariarita Santi
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin H Berger
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Michio Inoue
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Martin-Hernández
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - Linford Williams
- Division of Medical Genetics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Sabine Borell
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - David Schorling
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Kimberly Lin
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Uta Lichter-Konecki
- Division of Medical Genetics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Department of Neuropediatrics, University Hospital Bonn, Faculty of Medicine, Bonn, Germany
| | - Ichizo Nishino
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Brenda Banwell
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Patrick G Burgon
- Department of Chemistry and Earth Science, College of Arts and Sciences, Qatar University, Qatar
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Ravenscroft G, Cabrera-Serrano M. Another step towards defining the genetic landscape of rhabdomyolysis. Brain 2021; 144:2560-2561. [PMID: 34581775 DOI: 10.1093/brain/awab308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
This scientific commentary refers to ‘MLIP causes recessive myopathy with rhabdomyolysis, myalgia and baseline high serum creatine kinase’, by Lopes Abath Neto et al. (doi:10.1093/brain/awab275).
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Macarena Cabrera-Serrano
- Unidad Enfermedades Neuromusculares, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|