1
|
Wang Y, Zhang C, Zhang J, Huang H, Guo J. Construction and Validation of a Novel T/NK-Cell Prognostic Signature for Pancreatic Cancer Based on Single-Cell RNA Sequencing. Cancer Invest 2024:1-17. [PMID: 39523741 DOI: 10.1080/07357907.2024.2424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Evidence with regards to the distinction between primary and metastatic tumors in pancreatic cancer and driving factors for metastases remains limited. METHODS Single-cell RNA sequencing (scRNA-seq) was conducted on metastatic pancreatic cancer. Bioinformatics analysis on relevant sequencing data was used to construct a risk model to predict patient prognosis. Furthermore, immune infiltration and metabolic differences were assessed. The biological function of key differential genes was evaluated. RESULTS Paired primary and metastatic tumor tissues from 3 pancreatic cancer patients were collected and conducted scRNA-seq. Subsequently, the T/NK cell subgroup was the most different cell type between primary tumors and liver metastases and was selected for further analysis. Eventually, 6 specifically expressed genes of T/NK cells (B2M, ZFP36L2, ANXA1, ARL4C, TSPYL2, FYN) were used constructing the prognostic model. The stability of this model was validated by an external cohort. Meanwhile, different immune infiltration abundances occurred between high and low risk groups stratified by the model. The high-risk group had a stronger metabolic capability. CONCLUSIONS A novel prognostic T/NK-cell signature for pancreatic cancer was constructed based on scRNA-seq data and externally validated. The involved key genes may play a role in multiple metabolic pathways of metastasis and affect the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yu Wang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jianlu Zhang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Huang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Chida K, Oshi M, Roy AM, Sato T, Takabe MP, Yan L, Endo I, Hakamada K, Takabe K. Enhanced cancer cell proliferation and aggressive phenotype counterbalance in breast cancer with high BRCA1 gene expression. Breast Cancer Res Treat 2024; 208:321-331. [PMID: 38972017 DOI: 10.1007/s10549-024-07421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE While comprehensive research exists on the mutation of the DNA repair gene BRCA1, limited information is available regarding the clinical significance of BRCA1 gene expression. Given that cancer cell proliferation is aggrevated by DNA repair, we hypothesized that high BRCA1 gene expression breast cancer (BC) might be linked with aggressive tumor biology and poor clinical outcomes. METHODS The cohorts: The Cancer Genome Atlas (TCGA, n = 1069), METABRIC (n = 1903), and SCAN-B (n = 3273) were utilzed to obtain data of 6245 BC patients. RESULTS BC patients without BRCA1 mutation exhibited higher BRCA1 expression, which was associated with DNA repair functionality. However, no such correlation was observed with BRCA2 expression. The association of high BRCA1 expression with cancer cell proliferation was evidenced by significant enrichment of cell proliferation-related gene sets, higher histological grade, and proliferation score. Furthermore, increased levels of homologous recombination deficiency, intratumoral heterogeneity, and altered fractions were associated with high BRCA1 expression. Moreover, BC with high BRCA1 expression exhibited reduced infiltration of dendritic cells and CD8 T-cells, while showing increased infiltration of Th1 cells. Surprisingly, BRCA1 expression was not associated with the survival of BC irrespective of the subtypes. Conversely, BC with low BRCA1 expression enriched cancer aggravating pathway gene sets, such as Cancer Stem Cell-related signaling (NOTCH and HEDGEHOG), Angiogenesis, Epithelial-Mesenchymal Transition, Inflammatory Response, and TGF-beta signaling. CONCLUSION Despite being linked to heightened proliferation of cancer cells and unassertive phenotype, BRCA1 expression did not show any association with survival in BC.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Takumi Sato
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medical Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Maya Penelope Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Department of Surgery, School of Medicine and Biomedical Sciences, University at Buffalo Jacobs, The State University of New York, Buffalo, NY, 14263, USA.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
3
|
Masuda F, Inami M, Takamura Y, Inatani M, Oki M. Identification of genes contributing to attenuation of rat model of galactose-induced cataract by pyruvate. Genes Cells 2024; 29:876-888. [PMID: 39219252 PMCID: PMC11555625 DOI: 10.1111/gtc.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (Mt1a, Mt1m, and Mt2A) and epithelial-mesenchymal transition-related factors (Acta2, Anxa1, Cd81, Mki67, Timp1, and Tyms) contribute to the therapeutic effect of cataracts.
Collapse
Affiliation(s)
- Fuuga Masuda
- Department of Applied Chemistry and Biotechnology, Graduate School of EngineeringUniversity of FukuiFukuiJapan
| | - Mayumi Inami
- Technical Division, School of EngineeringUniversity of FukuiFukuiJapan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of EngineeringUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| |
Collapse
|
4
|
Ganesan T, Sinniah A, Ramasamy TS, Alshawsh MA. Cracking the code of Annexin A1-mediated chemoresistance. Biochem Biophys Res Commun 2024; 725:150202. [PMID: 38885563 DOI: 10.1016/j.bbrc.2024.150202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.
Collapse
Affiliation(s)
- Thanusha Ganesan
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia; School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
5
|
Xu K, Huang RQ, Wen RM, Yao TT, Cao Y, Chang B, Cheng Y, Yi XJ. Annexin A family: A new perspective on the regulation of bone metabolism. Biomed Pharmacother 2024; 178:117271. [PMID: 39121589 DOI: 10.1016/j.biopha.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoblast-mediated bone formation and osteoclast-mediated bone resorption are critical processes in bone metabolism. Annexin A, a calcium-phospholipid binding protein, regulates the proliferation and differentiation of bone cells, including bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, and has gradually become a marker gene for the diagnosis of osteoporosis. As calcium channel proteins, the annexin A family members are closely associated with mechanical stress, which can target annexins A1, A5, and A6 to promote bone cell differentiation. Despite the significant clinical potential of annexin A family members in bone metabolism, few studies have reported on these mechanisms. Therefore, based on a review of relevant literature, this article elaborates on the specific functions and possible mechanisms of annexin A family members in bone metabolism to provide new ideas for their application in the prevention and treatment of bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Ming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Ting-Ting Yao
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cao
- Graduate School, Anhui University of Traditional Chinese Medicine, Heifei, Anhui 230012, China.
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Xue-Jie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| |
Collapse
|
6
|
Gao K, Li X, Luo S, Zhao L. An overview of the regulatory role of annexin A1 in the tumor microenvironment and its prospective clinical application (Review). Int J Oncol 2024; 64:51. [PMID: 38516766 PMCID: PMC10997369 DOI: 10.3892/ijo.2024.5639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Although annexin A1 (ANXA1), a 37 kDa phospholipid‑binding anti‑inflammatory protein expressed in various tissues and cell types, has been investigated extensively for its regulatory role in cancer biology, studies have mainly focused on its intracellular role. However, cancer cells and stromal cells expressing ANXA1 have the ability to transmit signals within the tumor microenvironment (TME) through autocrine, juxtacrine, or paracrine signaling. This bidirectional crosstalk between cancer cells and their environment is also crucial for cancer progression, contributing to uncontrolled tumor proliferation, invasion, metastasis and resistance to therapy. The present review explored the important role of ANXA1 in regulating the cell‑specific crosstalk between various compartments of the TME and analyzed the guiding significance of the crosstalk effects in promotion or suppressing cancer progression in the development of cancer treatments. The literature shows that ANXA1 is critical for the regulation of the TME, indicating that ANXA1 signaling between cancer cells and the TME is a potential therapeutic target for the development of novel therapeutic approaches for impeding cancer development.
Collapse
Affiliation(s)
- Kuan Gao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xinyang Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
7
|
Mozaffari MS, Abdelsayed R, Emami S, Kavuri S. Expression profiles of glucocorticoid-inducible proteins in human papilloma virus-related oropharyngeal squamous cell carcinoma. FRONTIERS IN ORAL HEALTH 2023; 4:1285139. [PMID: 37954869 PMCID: PMC10634427 DOI: 10.3389/froh.2023.1285139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human papillomavirus virus-related oropharyngeal squamous cell carcinoma (HPV-OPSCC) comprises a significant portion of head and neck cancers. Several glucocorticoid-inducible proteins play important roles in pathogenesis of some cancers but their status and roles in HPV-OPSCC remain elusive; these include the glucocorticoid-induced leucine zipper (GILZ), Annexin-A1 and serum glucocorticoid-regulated kinase-1 (SGK-1). Methods We determined expression profiles of these proteins, using immunohistochemistry, in archived biopsy samples of patients diagnosed with HPV-OPSCC; samples of non-cancer oral lesions (e.g., hyperkeratosis) were used as controls. Results GILZ staining was primarily confined to nuclei of all tissues but, in HPV-OPSCC specimens, neoplastic cells exhibiting mitosis displayed prominent cytoplasmic GILZ expression. On the other hand, nuclear, cytoplasmic and membranous Annexin-A1 staining was observed in suprabasal cell layers of control specimens. A noted feature of the HPV-OPSCC specimens was few clusters of matured and differentiated nonbasaloid cells that showed prominent nuclear and cytoplasmic Annexin-A1 staining while the remainder of the tumor mass was devoid of staining. Cytoplasmic and nuclear staining for SGK-1 was prominent for control than PV-OPSCC specimens while staining for phosphorylated SGK-1 (pSGK-1; active) was prominent for cell membrane and cytoplasm of control specimens but HPV-OPSCC specimens showed mild and patchy nuclear and cytoplasmic staining. Semi-quantitative analysis of GILZ immunostaining indicated increased staining area but similar normalized staining for HPV-OPSCC compared to control specimens. By contrast, staining area and normalized staining were reduced for other proteins in HPV-OPSCC than control specimens. Discussion Our collective observations suggest differential cellular localization and expression of glucocorticoid-inducible proteins in HPV-OPSCC suggestive of different functional roles in pathogenesis of this condition.
Collapse
Affiliation(s)
- Mahmood S. Mozaffari
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Rafik Abdelsayed
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sahar Emami
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sravan Kavuri
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Li TH, Qin XH, Wang LQ, Qin C, Zhao BB, Cao HT, Yang XY, Wang YY, Li ZR, Zhou XT, Wang WB. Prognostic value and immune infiltration of ARMC10 in pancreatic adenocarcinoma via integrated bioinformatics analyses. Heliyon 2023; 9:e20464. [PMID: 37842592 PMCID: PMC10569960 DOI: 10.1016/j.heliyon.2023.e20464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Background Armadillo repeat-containing 10 (ARMC10) is involved in the progression of multiple types of tumors. Pancreatic adenocarcinoma (PAAD) is a lethal disease with poor survival and prognosis. Methods We acquired the data of ARMC10 in PAAD patients from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets and compared the expression level with normal pancreatic tissues. We evaluated the relevance between ARMC10 expression and clinicopathological factors, immune infiltration degree and prognosis in PAAD. Results High expression of ARMC10 was relevant to T stage, M stage, pathologic stage, histologic grade, residual tumor, primary therapy outcome (P < 0.05) and related to lower Overall-Survival (OS), Disease-Specific Survival (DSS), and Progression-Free Interval (PFI). Gene set enrichment analysis showed that ARMC10 was related to methylation in neural precursor cells (NPC), G alpha (i) signaling events, APC targets, energy metabolism, potassium channels and IL10 synthesis. The expression level of ARMC10 was positively related to the abundance of T helper cells and negatively to that of plasmacytoid dendritic cells (pDCs). Knocking down of ARMC10 could lead to lower proliferation, invasion, migration ability and colony formation rate of PAAD cells in vitro. Conclusions Our research firstly discovered ARMC10 as a novel prognostic biomarker for PAAD patients and played a crucial role in immune regulation in PAAD.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department of Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Han Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li-Quan Wang
- Department of Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hong-Tao Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Ying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xing-Tong Zhou
- Department of Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Serrao S, Contini C, Guadalupi G, Olianas A, Lai G, Messana I, Castagnola M, Costanzo G, Firinu D, Del Giacco S, Manconi B, Cabras T. Salivary Cystatin D Interactome in Patients with Systemic Mastocytosis: An Exploratory Study. Int J Mol Sci 2023; 24:14613. [PMID: 37834061 PMCID: PMC10572539 DOI: 10.3390/ijms241914613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Mastocytosis, a rare blood disorder characterized by the proliferation of clonal abnormal mast cells, has a variegated clinical spectrum and diagnosis is often difficult and delayed. Recently we proposed the cathepsin inhibitor cystatin D-R26 as a salivary candidate biomarker of systemic mastocytosis (SM). Its C26 variant is able to form multiprotein complexes (mPCs) and since protein-protein interactions (PPIs) are crucial for studying disease pathogenesis, potential markers, and therapeutic targets, we aimed to define the protein composition of the salivary cystatin D-C26 interactome associated with SM. An exploratory affinity purification-mass spectrometry method was applied on pooled salivary samples from SM patients, SM patient subgroups with and without cutaneous symptoms (SM+C and SM-C), and healthy controls (Ctrls). Interactors specifically detected in Ctrls were found to be implicated in networks associated with cell and tissue homeostasis, innate system, endopeptidase regulation, and antimicrobial protection. Interactors distinctive of SM-C patients participate to PPI networks related to glucose metabolism, protein S-nitrosylation, antibacterial humoral response, and neutrophil degranulation, while interactors specific to SM+C were mainly associated with epithelial and keratinocyte differentiation, cytoskeleton rearrangement, and immune response pathways. Proteins sensitive to redox changes, as well as proteins with immunomodulatory properties and activating mast cells, were identified in patients; many of them were involved directly in cytoskeleton rearrangement, a process crucial for mast cell activation. Although preliminary, these results demonstrate that PPI alterations of the cystatin D-C26 interactome are associated with SM and provide a basis for future investigations based on quantitative proteomic analysis and immune validation.
Collapse
Affiliation(s)
- Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Greca Lai
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy;
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, 09124 Cagliari, Italy; (G.C.); (D.F.); (S.D.G.)
| | - Davide Firinu
- Department of Medical Sciences and Public Health, 09124 Cagliari, Italy; (G.C.); (D.F.); (S.D.G.)
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, 09124 Cagliari, Italy; (G.C.); (D.F.); (S.D.G.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| |
Collapse
|
10
|
Chavkin NW, Vippa T, Jung C, McDonnell S, Hirschi KK, Gokce N, Walsh K. Obesity accelerates endothelial-to-mesenchymal transition in adipose tissues of mice and humans. Front Cardiovasc Med 2023; 10:1264479. [PMID: 37795485 PMCID: PMC10546194 DOI: 10.3389/fcvm.2023.1264479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Vascular dysfunction and chronic inflammation are characteristics of obesity-induced adipose tissue dysfunction. Proinflammatory cytokines can drive an endothelial-to-mesenchymal transition (EndoMT), where endothelial cells undergo a phenotypic switch to mesenchymal-like cells that are pro-inflammatory and pro-fibrotic. In this study, we sought to determine whether obesity can promote EndoMT in adipose tissue. Methods Mice in which endothelial cells are lineage-traced with eYFP were fed a high-fat/high-sucrose (HF/HS) or Control diet for 13, 26, and 52 weeks, and EndoMT was assessed in adipose tissue depots as percentage of CD45-CD31-Acta2+ mesenchymal-like cells that were eYFP +. EndoMT was also assessed in human adipose endothelial cells through cell culture assays and by the analysis of single cell RNA sequencing datasets obtained from the visceral adipose tissues of obese individuals. Results Quantification by flow cytometry showed that mice fed a HF/HS diet display a time-dependent increase in EndoMT over Control diet in subcutaneous adipose tissue (+3.0%, +2.6-fold at 13 weeks; +10.6%, +3.2-fold at 26 weeks; +11.8%, +2.9-fold at 52 weeks) and visceral adipose tissue (+5.5%, +2.3-fold at 13 weeks; +20.7%, +4.3-fold at 26 weeks; +25.7%, +4.8-fold at 52 weeks). Transcriptomic analysis revealed that EndoMT cells in visceral adipose tissue have enriched expression of genes associated with inflammatory and TGFβ signaling pathways. Human adipose-derived microvascular endothelial cells cultured with TGF-β1, IFN-γ, and TNF-α exhibited a similar upregulation of EndoMT markers and induction of inflammatory response pathways. Analysis of single cell RNA sequencing datasets from visceral adipose tissue of obese patients revealed a nascent EndoMT sub-cluster of endothelial cells with reduced PECAM1 and increased ACTA2 expression, which was also enriched for inflammatory signaling genes and other genes associated with EndoMT. Discussion These experimental and clinical findings show that chronic obesity can accelerate EndoMT in adipose tissue. We speculate that EndoMT is a feature of adipose tissue dysfunction that contributes to local inflammation and the systemic metabolic effects of obesity..
Collapse
Affiliation(s)
- Nicholas W. Chavkin
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Tanvi Vippa
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Changhee Jung
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Stephanie McDonnell
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Karen K. Hirschi
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Noyan Gokce
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Hematovascular Biology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
11
|
Hagerty BL, Oshi M, Endo I, Takabe K. High Mesothelin expression in pancreatic adenocarcinoma is associated with aggressive tumor features but not prognosis. Am J Cancer Res 2023; 13:4235-4245. [PMID: 37818071 PMCID: PMC10560932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Mesothelin is a cell surface marker expressed on most pancreatic cancers and has been associated with aggressive biology. Despite its popularity as a drug target, clinical relevance of Mesothelin expression in pancreatic cancer is unclear. We set out to define transcriptomic signatures associated with high Mesothelin expression and identify its role in tumor biology and its clinical relevance. We analyzed pancreatic adenocarcinomas in the cancer genome atlas (TCGA), (n = 145) and the results were validated using GSE62452 cohort (n = 69). We divided the cohorts into high and low Mesothelin expression by the median. High Mesothelin was not associated with progression-free, disease-free, disease specific, nor overall survival in TCGA cohort. Despite this, high Mesothelin expression was associated with high Ki67 expression and enriched all five cell proliferation-related Hallmark gene sets, but not with previously investigated pathways: TNF-alpha, PI3K, nor angiogenesis. Mesothelin expression did not correlate with MUC16 expression. The high Mesothelin pancreatic cancers demonstrated higher homologous recombination deficiency, fraction altered, and silent and non-silent mutation rates (all P < 0.001) that indicate aggressive cancer biology. However, lymphocyte infiltration score, TIL regional fraction, TCR richness, infiltration of CD8 T-cells, and cytolytic activity were all significantly lower in Mesothelin high tumors (all P < 0.015). Finally, we found that Mesothelin expression significantly correlated with sensitivity to cytotoxic chemotherapy in pancreatic cancer cell lines. In conclusion, high Mesothelin expression is associated with enhanced proliferation, depressed immune response, and sensitivity to cytotoxic chemotherapy, which may explain there was no difference in survival in pancreatic cancer patients.
Collapse
Affiliation(s)
- Brendan L Hagerty
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
12
|
de Souza Ferreira LP, da Silva RA, Gil CD, Geisow MJ. Annexin A1, A2, A5, and A6 involvement in human pathologies. Proteins 2023; 91:1191-1204. [PMID: 37218507 DOI: 10.1002/prot.26512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The human genome codes for 12 annexins with highly homologous membrane-binding cores and unique amino termini, which endow each protein with its specific biological properties. Not unique to vertebrate biology, multiple annexin orthologs are present in almost all eukaryotes. Their ability to combine either dynamically or constitutively with membrane lipid bilayers is hypothetically the key property that has led to their retention and multiple adaptation in eukaryotic molecular cell biology. Annexin genes are differentially expressed in many cell types but their disparate functions are still being discovered after more than 40 years of international research. A picture is emerging from gene knock down and knock out studies of individual annexins that these are important supporters rather than critical players in organism development and normal cell and tissue function. However, they appear to be highly significant "early responders" toward challenges arising from cell and tissue abiotic or biotic stress. In humans, recent focus has been on involvement of the annexin family for its involvement in diverse pathologies, especially cancer. From what has become an exceedingly broad field of investigation, we have selected four annexins in particular: AnxA1, 2, 5, and 6. Present both within and external to cells, these annexins are currently under intensive investigation in translational research as biomarkers of cellular dysfunction and as potential therapeutic targets for inflammatory conditions, neoplasia, and tissue repair. Annexin expression and release in response to biotic stress appears to be a balancing act. Under- or over-expression in different circumstances appears to damage rather than restore a healthy homeostasis. This review reflects briefly on what is already known of the structures and molecular cell biology of these selected annexins and considers their actual and potential roles in human health and disease.
Collapse
Affiliation(s)
- Luiz Philipe de Souza Ferreira
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Michael J Geisow
- National Institute for Medical Research, Mill Hill, London UK & Delta Biotechnology Ltd, Nottingham, UK
| |
Collapse
|
13
|
Chida K, Oshi M, Roy AM, Sato T, Endo I, Takabe K. Pancreatic ductal adenocarcinoma with a high expression of alcohol dehydrogenase 1B is associated with less aggressive features and a favorable prognosis. Am J Cancer Res 2023; 13:3638-3649. [PMID: 37693153 PMCID: PMC10492124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Alcohol dehydrogenase (ADH) oxidizes alcohol into acetaldehyde (AA), which is a known carcinogen. Aldehyde dehydrogenase (ALDH) oxidizes AA into acetate. Therefore, pancreatic cancer that expresses a high level of ADH1B that generates more AA is expected to be associated with aggressive cancer. On the other hand, given that the differentiated cells that retain their cellular functions typically exhibit lower proliferation rates, it remains unclear whether pancreatic adenocarcinoma (PDAC) with high ADH1B gene expression is linked to aggressive features in patients. The Cancer Genome Atlas (n = 145) was used to obtain data of PDAC patients and GSE62452 cohort (n = 69) was used as a validation cohort. PDAC with high ADH1B expression was associated with less cancer cell proliferation as evidenced by lower MKI67 expression and lower histological grade; with a higher fraction of stromal cells consistent with less proliferative cancer. PDAC with high ADH1B expression also had lower homologous recombination deficiency and mutation rates, lower KRAS and TP53 mutation rates. ADH1B expression correlated with ALDH2 expression in PDAC, but not with DNA repair genes. High ADH1B expression PDAC was associated with high infiltration of anti-cancerous CD8+ T cells and pro-cancerous M2 macrophages but with lower levels of Th1 T cells, with a higher cytolytic activity. PDAC patients with a high ADH1B expression had better disease-specific survival (DSS) and overall survival (OS) and ADH1B was an independent prognostic biomarker for both DSS (HR = 0.89, 95% CI = 0.80-0.99, P = 0.045) and OS (HR = 0.90, 95% CI = 0.82-0.99, P = 0.044) in multivariate analysis. In conclusion, PDAC with high ADH1B expression had less cell proliferation and malignant features, along with higher immune cell infiltration, and had a better prognosis.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa 236-0004, Japan
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Takumi Sato
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Medical Science, The University of TokyoTokyo 113-8654, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
14
|
Zhulyn O, Rosenblatt HD, Shokat L, Dai S, Kuzuoglu-Öztürk D, Zhang Z, Ruggero D, Shokat KM, Barna M. Evolutionarily divergent mTOR remodels translatome for tissue regeneration. Nature 2023; 620:163-171. [PMID: 37495694 PMCID: PMC11181899 DOI: 10.1038/s41586-023-06365-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.
Collapse
Affiliation(s)
- Olena Zhulyn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Developmental and Stem Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Hannah D Rosenblatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Leila Shokat
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shizhong Dai
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Duygu Kuzuoglu-Öztürk
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zijian Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Wan Z, Zuo X, Wang S, Zhou L, Wen X, Yao Y, Song J, Gu J, Wang Z, Liu R, Luo C. Identification of angiogenesis-related genes signature for predicting survival and its regulatory network in glioblastoma. Cancer Med 2023; 12:17445-17467. [PMID: 37434432 PMCID: PMC10501277 DOI: 10.1002/cam4.6316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
Glioblastoma (GBM) is notorious for malignant neovascularization that contributes to undesirable outcome. However, its mechanisms remain unclear. This study aimed to identify prognostic angiogenesis-related genes and the potential regulatory mechanisms in GBM. RNA-sequencing data of 173 GBM patients were obtained from the Cancer Genome Atlas (TCGA) database for screening differentially expressed genes (DEGs), differentially transcription factors (DETFs), and reverse phase protein array (RPPA) chips. Differentially expressed genes from angiogenesis-related gene set were extracted for univariate Cox regression analysis to identify prognostic differentially expressed angiogenesis-related genes (PDEARGs). A risk predicting model was constructed based on 9 PDEARGs, namely MARK1, ITGA5, NMD3, HEY1, COL6A1, DKK3, SERPINA5, NRP1, PLK2, ANXA1, SLIT2, and PDPN. Glioblastoma patients were stratified into high-risk and low-risk groups according to their risk scores. GSEA and GSVA were applied to explore the possible underlying GBM angiogenesis-related pathways. CIBERSORT was employed to identify immune infiltrates in GBM. The Pearson's correlation analysis was performed to evaluate the correlations among DETFs, PDEARGs, immune cells/functions, RPPA chips, and pathways. A regulatory network centered by three PDEARGs (ANXA1, COL6A1, and PDPN) was constructed to show the potential regulatory mechanisms. External cohort of 95 GBM patients by immunohistochemistry (IHC) assay demonstrated that ANXA1, COL6A1, and PDPN were significantly upregulated in tumor tissues of high-risk GBM patients. Single-cell RNA sequencing also validated malignant cells expressed high levels of the ANXA1, COL6A1, PDPN, and key DETF (WWTR1). Our PDEARG-based risk prediction model and regulatory network identified prognostic biomarkers and provided valuable insight into future studies on angiogenesis in GBM.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaokun Zuo
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lei Zhou
- Department of OrthopedicsJinxian County People's HospitalNanchangChina
| | - Xiaojing Wen
- Department of InfectionJinxian County People's HospitalNanchangChina
| | - Ying Yao
- Department of Operating Room, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiefang Song
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Juan Gu
- Department of Operating Room, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhimin Wang
- Department of Emergency, Ruijin Hospital Luwan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ran Liu
- The Medical School of Zhengzhou UniversityZhengzhou CityPeople's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
16
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
17
|
Dong J, Liu J, Zhang B, Liang C, Hua J, Meng Q, Wei M, Wang W, Yu X, Xu J. Mitochondria-Related Transcriptome Characterization Associated with the Immune Microenvironment, Therapeutic Response and Survival Prediction in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24043270. [PMID: 36834681 PMCID: PMC9966003 DOI: 10.3390/ijms24043270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background: Pancreatic cancer (PC) is one of the most lethal tumors. Mitochondrial dysfunction has been reported to be involved in cancer development; however, its role in PC has remained unclear. (2) Methods: The differentially expressed NMGs were selected between PC and normal pancreatic tissue. The NMG-related prognostic signature was established by LASSO regression. A nomogram was developed based on the 12-gene signature combined with other significant pathological features. An extensive analysis of the 12 critical NMGs was performed in multiple dimensions. The expression of some key genes was verified in our external cohort. (3) Results: Mitochondria-related transcriptome features was obviously altered in PC compared with normal pancreas tissue. The 12-NMG signature showed good performance in predicting prognosis in various cohorts. The high- and low-risk groups exhibited notable diversity in gene mutation characteristics, biological characteristics, chemotherapy response, and the tumor immune microenvironment. Critical gene expression was demonstrated in our cohort at the mRNA and protein levels and in organelle localization. (4) Conclusions: Our study analyzed the mitochondrial molecular characterization of PC, proving the crucial role of NMGs in PC development. The established NMG signature helps classify patient subtypes in terms of prognosis prediction, treatment response, immunological features, and biological function, providing a potential therapeutic strategy targeting mitochondrial transcriptome characterization.
Collapse
Affiliation(s)
- Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.)
| | - Jin Xu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.)
| |
Collapse
|
18
|
Weng Y, Qian H, Hong L, Zhao S, Deng X, Shen B. Identification of EMT-related alternative splicing event of TMC7 to promote invasion and migration of pancreatic cancer. Front Immunol 2023; 13:1089008. [PMID: 36713450 PMCID: PMC9878378 DOI: 10.3389/fimmu.2022.1089008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Epithelial-to-mesenchymal transition (EMT) is tightly associated with the invasion and metastasis of pancreatic cancer with rapid progression and poor prognosis. Notably, gene alternative splicing (AS) event plays a critical role in regulating the progression of pancreatic cancer. Therefore, this study aims to identify the EMT-related AS event in pancreatic cancer. Methods The EMT-related gene sets, transcriptomes, and matched clinical data were obtained from the MSigDB, The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Key gene AS events associated with liver metastasis were identified by prognostic analysis, gene set variation analysis (GSVA), and correlation analysis in pancreatic cancer. The cell line and organoid model was constructed to evaluate these key gene AS events in regulating pancreatic cancer in vitro. Furthermore, we established an EMT-related gene set consisting of 13 genes by prognostic analysis, the role of which was validated in two other databases. Finally, the human pancreatic cancer tissue and organoid model was used to evaluate the correlation between the enrichment of this gene set and liver metastasis. Results Prognostic analysis and correlation analysis revealed that eight AS events were closely associated with the prognosis of pancreatic cancer. Furthermore, the expression of TMC7 and CHECK1 AS events was increased in the metastatic lesions of the human tissue and organoid model. Additionally, the knockdown of exon 17 of TMC7 significantly inhibited the proliferation, invasion, and migration of pancreatic cancer cells in 2D and 3D cell experiments. Finally, the expression of exon 17 of TMC17 exhibited a significant correlation with the poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Conclusion The AS events of TMC7 and CHECK1 were associated with liver metastasis in pancreatic cancer. Moreover, exon 17 of TMC7 could be a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yuanchi Weng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Qian
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaxing Deng, ; Baiyong Shen,
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaxing Deng, ; Baiyong Shen,
| |
Collapse
|
19
|
Targeting Annexin A1 as a Druggable Player to Enhance the Anti-Tumor Role of Honokiol in Colon Cancer through Autophagic Pathway. Pharmaceuticals (Basel) 2023; 16:ph16010070. [PMID: 36678567 PMCID: PMC9862434 DOI: 10.3390/ph16010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Colon cancer is one of the most common digestive tract malignancies, having the second highest mortality rate among all tumors, with a five-year survival of advanced patients of only 10%. Efficient, targeted drugs are still lacking in treating colon cancer, so it is urgent to explore novel druggable targets. Here, we demonstrated that annexin A1 (ANXA1) was overexpressed in tumors of 50% of colon cancer patients, and ANXA1 overexpression was significantly negatively correlated with the poor prognosis of colon cancer. ANXA1 promoted the abnormal proliferation of colon cancer cells in vitro and in vivo by regulating the cell cycle, while the knockdown of ANXA1 almost totally inhibited the growth of colon cancer cells in vivo. Furthermore, ANXA1 antagonized the autophagic death of honokiol in colon cancer cells via stabilizing mitochondrial reactive oxygen species. Based on these results, we speculated that ANXA1 might be a druggable target to control colon cancer and overcome drug resistance.
Collapse
|
20
|
Benesch MGK, Wu R, Menon G, Takabe K. High beta integrin expression is differentially associated with worsened pancreatic ductal adenocarcinoma outcomes. Am J Cancer Res 2022; 12:5403-5424. [PMID: 36628277 PMCID: PMC9827087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Outcomes in pancreatic ductal adenocarcinoma (PDAC) are known to be worse in tumors with high integrin β1 expression, but targeted monotherapy against this integrin has not been effective. Seven other beta integrins are expressed in mammalian biology and they are known to have overlapping and compensatory signaling in biological systems. However, their roles in PDAC are poorly understood and have not been systematically compared to integrin β1 biology. In this study, we analyzed the clinical outcomes against beta integrin 1-8 (ITGB1-8) expression in PDAC samples from two large independent cohorts, The Cancer Genome Atlas (TCGA) and GSE21501. Biological function and tumor microenvironment composition were studied using Gene Set Enrichment Analysis and xCell. Expression of all eight beta integrins is significantly increased in PDACs relative to normal pancreatic tissues (all P<0.001). ITGB1, 2, 5, and 6 have similarly enriched gene patterns related to transforming growth factor (TGF)-β, epithelial mesenchymal transition, inflammation, stemness, and angiogenesis pathways. Homologous recombination defects and neoantigens are increased in high-ITGB4, 5, and 6 tumors, with decreased overall survival in high-ITGB1, 5, and 6 tumors compared to low expression tumors (hazard ratios 1.5-2.0). High-ITGB1, 2, and 5 tumors have increased fibroblast infiltration (all P<0.01) while endothelial cells are increased in high-ITGB2 and 3 tumors (all P<0.05). Overall, beta integrin expression does not correlate to immune cell populations in PDACs. Therefore, while all beta integrins are overexpressed in PDACs, they exert differential effects on PDAC biology. ITGB2, 5, and 6 have a similar profile to ITGB1, suggesting that future research in PDAC integrin therapy needs to consider the complementary signaling profiles mediated by these integrins.
Collapse
Affiliation(s)
- Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Gopal Menon
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan,Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| |
Collapse
|
21
|
Fluid Shear Stress Regulates Osteogenic Differentiation via AnnexinA6-Mediated Autophagy in MC3T3-E1 Cells. Int J Mol Sci 2022; 23:ijms232415702. [PMID: 36555344 PMCID: PMC9779398 DOI: 10.3390/ijms232415702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Fluid shear stress (FSS) facilitates bone remodeling by regulating osteogenic differentiation, and extracellular matrix maturation and mineralization. However, the underlying molecular mechanisms of how mechanical stimuli from FSS are converted into osteogenesis remain largely unexplored. Here, we exposed MC3T3-E1 cells to FSS with different intensities (1 h FSS with 0, 5, 10, and 20 dyn/cm2 intensities) and treatment durations (10 dyn/cm2 FSS with 0, 0.5, 1, 2 and 4 h treatment). The results demonstrate that the 1 h of 10 dyn/cm2 FSS treatment greatly upregulated the expression of osteogenic markers (Runx2, ALP, Col I), accompanied by AnxA6 activation. The genetic ablation of AnxA6 suppressed the autophagic process, demonstrating lowered autophagy markers (Beclin1, ATG5, ATG7, LC3) and decreased autophagosome formation, and strongly reduced osteogenic differentiation induced by FSS. Furthermore, the addition of autophagic activator rapamycin to AnxA6 knockdown cells stimulated autophagy process, and coincided with more expressions of osteogenic proteins ALP and Col I under both static and FSS conditions. In conclusion, the findings in this study reveal a hitherto unidentified relationship between FSS-induced osteogenic differentiation and autophagy, and point to AnxA6 as a key mediator of autophagy in response to FSS, which may provide a new target for the treatment of osteoporosis and other diseases.
Collapse
|
22
|
Zheng L, Li L, Wang B, Zhang S, Fu Z, Cheng A, Liang X. Annexin A1 affects tumor metastasis through epithelial-mesenchymal transition: a narrative review. Transl Cancer Res 2022; 11:4416-4433. [PMID: 36644197 PMCID: PMC9834584 DOI: 10.21037/tcr-22-1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
Background and Objective Annexin A1 (annexin I, ANXA1), the first discovered member of the annexin superfamily, plays important roles in tumor development, invasion, metastasis, apoptosis and drug resistance based on tumor type-specific patterns of expression. The acquisition of the epithelial-mesenchymal transition (EMT) characteristics is an essential mechanism of metastasis because they increase the mobility and invasiveness of cancer cells. Cancer invasion and metastasis remain major health problems worldwide. Elucidating the role and mechanism of ANXA1 in the occurrence of EMT will help advance the development of novel therapeutic strategies. Hence, this review aims to attract everyone's attention to the important role of ANXA1 in tumors and provide new ideas for clinical tumor treatment. Methods The PubMed database was mainly used to search for various English research papers and reviews related to the role of ANXA1 in tumors and EMT published from November 1994 to April 2022. The search terms used mainly include ANXA1, EMT, tumor, cancer, carcinoma, and mechanism. Key Content and Findings This article mainly provides a summary of the roles of ANXA1 and EMT in tumor metastasis as well as the various mechanisms via which ANXA1 facilitates the occurrence of EMT, thereby affecting tumor metastasis. In addition, the expression of ANXA1 in different metastatic tumor cell lines and its roles in tumorigenesis and development are also elaborated. This article has found many tumorous therapeutic targets related to ANXA1 and EMT, further confirming that ANXA1 has a huge potential for the diagnosis, treatment and prognosis of certain cancers. Conclusions Both the abnormal expression of ANXA1 and the occurrence of EMT are closely related to the invasion and metastasis of tumors, and more interestingly, ANXA1 can impact EMT directly or indirectly by mediating signaling pathways and adhesion among cells. We need more studies to elucidate the effects of ANXA1 on tumor invasion, migration and metastasis through EMT in vitro and in vivo clearly, and ultimately in patients to identify more therapeutic targets.
Collapse
Affiliation(s)
- Lulu Zheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanxin Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shanshan Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhuqiong Fu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoqiu Liang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
23
|
Efeoglu E, Henry M, Clynes M, Meleady P. Label-Free Quantitative Proteomics Analysis of Adriamycin Selected Multidrug Resistant Human Lung Cancer Cells. Biomolecules 2022; 12:biom12101401. [PMID: 36291610 PMCID: PMC9599763 DOI: 10.3390/biom12101401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
The development of drug resistance in lung cancer is a major clinical challenge, leading to a 5-year survival rate of only 18%. Therefore, unravelling the mechanisms of drug resistance and developing novel therapeutic strategies is of crucial importance. This study systematically explores the novel biomarkers of drug resistance using a lung cancer model (DLKP) with a series of drug-resistant variants. In-depth label-free quantitative mass spectrometry-based proteomics and gene ontology analysis shows that parental DLKP cells significantly differ from drug-resistant variants, and the cellular proteome changes even among the drug-resistant subpopulations. Overall, ABC transporter proteins and lipid metabolism were determined to play a significant role in the formation of drug resistance in DKLP cells. A series of membrane-related proteins such as HMOX1, TMB1, EPHX2 and NEU1 were identified to be correlated with levels of drug resistance in the DLKP subpopulations. The study also showed enrichment in biological processes and molecular functions such as drug metabolism, cellular response to the drug and drug binding. In gene ontology analysis, 18 proteins were determined to be positively or negatively correlated with resistance levels. Overall, 34 proteins which potentially have a therapeutic and diagnostic value were identified.
Collapse
Affiliation(s)
- Esen Efeoglu
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland
- School of Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-7005910
| |
Collapse
|
24
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
25
|
Cuccu A, Francescangeli F, De Angelis ML, Bruselles A, Giuliani A, Zeuner A. Analysis of Dormancy-Associated Transcriptional Networks Reveals a Shared Quiescence Signature in Lung and Colorectal Cancer. Int J Mol Sci 2022; 23:9869. [PMID: 36077264 PMCID: PMC9456317 DOI: 10.3390/ijms23179869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Quiescent cancer cells (QCCs) are a common feature of solid tumors, representing a major obstacle to the long-term success of cancer therapies. We isolated QCCs ex vivo from non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenografts with a label-retaining strategy and compared QCCs gene expression profiles to identify a shared "quiescence signature". Principal Component Analysis (PCA) revealed a specific component neatly discriminating quiescent and replicative phenotypes in NSCLC and CRC. The discriminating component showed significant overlapping, with 688 genes in common including ZEB2, a master regulator of stem cell plasticity and epithelial-to-mesenchymal transition (EMT). Gene set enrichment analysis showed that QCCs of both NSCLC and CRC had an increased expression of factors related to stemness/self renewal, EMT, TGF-β, morphogenesis, cell adhesion and chemotaxis, whereas proliferating cells overexpressed Myc targets and factors involved in RNA metabolism. Eventually, we analyzed in depth by means of a complex network approach, both the 'morphogenesis module' and the subset of differentially expressed genes shared by NCSLC and CRC. This allowed us to recognize different gene regulation network wiring for quiescent and proliferating cells and to underpin few genes central for network integration that may represent new therapeutic vulnerabilities. Altogether, our results highlight common regulatory pathways in QCCs of lung and colorectal tumors that may be the target of future therapeutic interventions.
Collapse
Affiliation(s)
- Adriano Cuccu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
26
|
Rajesh C, Sagar S, Rathinavel AK, Chemparathy DT, Peng XL, Yeh JJ, Hollingsworth MA, Radhakrishnan P. Truncated O-Glycan-Bearing MUC16 Enhances Pancreatic Cancer Cells Aggressiveness via α4β1 Integrin Complexes and FAK Signaling. Int J Mol Sci 2022; 23:ijms23105459. [PMID: 35628269 PMCID: PMC9141077 DOI: 10.3390/ijms23105459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Elevated levels of Mucin-16 (MUC16) in conjunction with a high expression of truncated O-glycans is implicated in playing crucial roles in the malignancy of pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms by which such aberrant glycoforms present on MUC16 itself promote an increased disease burden in PDAC are yet to be elucidated. This study demonstrates that the CRISPR/Cas9-mediated genetic deletion of MUC16 in PDAC cells decreases tumor cell migration. We found that MUC16 enhances tumor malignancy by activating the integrin-linked kinase and focal adhesion kinase (ILK/FAK)-signaling axis. These findings are especially noteworthy in truncated O-glycan (Tn and STn antigen)-expressing PDAC cells. Activation of these oncogenic-signaling pathways resulted in part from interactions between MUC16 and integrin complexes (α4β1), which showed a stronger association with aberrant glycoforms of MUC16. Using a monoclonal antibody to functionally hinder MUC16 significantly reduced the migratory cascades in our model. Together, these findings suggest that truncated O-glycan containing MUC16 exacerbates malignancy in PDAC by activating FAK signaling through specific interactions with α4 and β1 integrin complexes on cancer cell membranes. Targeting these aberrant glycoforms of MUC16 can aid in the development of a novel platform to study and treat metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Christabelle Rajesh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (C.R.); (S.S.); (A.K.R.); (D.T.C.); (M.A.H.)
| | - Satish Sagar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (C.R.); (S.S.); (A.K.R.); (D.T.C.); (M.A.H.)
| | - Ashok Kumar Rathinavel
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (C.R.); (S.S.); (A.K.R.); (D.T.C.); (M.A.H.)
| | - Divya Thomas Chemparathy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (C.R.); (S.S.); (A.K.R.); (D.T.C.); (M.A.H.)
| | - Xianlu Laura Peng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514-7295, USA; (X.L.P.); (J.J.Y.)
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514-7295, USA; (X.L.P.); (J.J.Y.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (C.R.); (S.S.); (A.K.R.); (D.T.C.); (M.A.H.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (C.R.); (S.S.); (A.K.R.); (D.T.C.); (M.A.H.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
- Correspondence:
| |
Collapse
|
27
|
Wu R, Patel A, Tokumaru Y, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K. High RAD51 gene expression is associated with aggressive biology and with poor survival in breast cancer. Breast Cancer Res Treat 2022; 193:49-63. [PMID: 35249172 PMCID: PMC8995390 DOI: 10.1007/s10549-022-06552-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Although the DNA repair mechanism is important in preventing carcinogenesis, its activation in established cancer cells may support their proliferation and aggravate cancer progression. RAD51 cooperates with BRCA2 and is essential in the homologous recombination of DNA repair. To this end, we hypothesized that RAD51 gene expression is associated with cancer cell proliferation and poor prognosis of breast cancer (BC) patients. METHODS A total of 8515 primary BC patients with transcriptome and clinical data from 17 independent cohorts were analyzed. The median value was used to divide each cohort into high and low RAD51 expression groups. RESULTS High RAD51 expression enriched the DNA repair gene set and was correlated with DNA repair-related genes. Nottingham histological grade, Ki67 expression and cell proliferation-related gene sets (E2F Targets, G2M Checkpoint and Myc Targets) were all significantly associated with the high RAD51 BC group. RAD51 expression was positively correlated with Homologous Recombination Deficiency, as well as both mutational burden and neoantigens that accompanied a higher infiltration of immune cells. Primary BC with lymph node metastases was associated with high expression of RAD51 in two cohorts. There was no strong correlation between RAD51 expression and drug sensitivity in cell lines, and RAD51 expression was lower after the neoadjuvant chemotherapy compared to before the treatment. High RAD51 BC was associated with poor prognosis consistently in three independent cohorts. CONCLUSION RAD51 gene expression is associated with aggressive cancer biology, cancer cell proliferation, and poor survival in breast cancer.
Collapse
|
28
|
Khandakar GI, Satoh R, Takasaki T, Fujitani K, Tanabe G, Sakai K, Nishio K, Sugiura R. ACAGT-007a, an ERK MAPK Signaling Modulator, in Combination with AKT Signaling Inhibition Induces Apoptosis in KRAS Mutant Pancreatic Cancer T3M4 and MIA-Pa-Ca-2 Cells. Cells 2022; 11:702. [PMID: 35203351 PMCID: PMC8869916 DOI: 10.3390/cells11040702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol-3 kinase (PI3K)/AKT pathways are dysregulated in various human cancers, including pancreatic ductal adenocarcinoma (PDAC), which has a very poor prognosis due to its lack of efficient therapies. We have previously identified ACAGT-007a (GT-7), an anti-cancer compound that kills ERK-active melanoma cells by inducing ERK-dependent apoptosis. Here, we investigated the apoptosis-inducing effect of GT-7 on three PDAC cell lines and its relevance with the MAPK/ERK and PI3K/AKT signaling pathways. GT-7 induced apoptosis in PDAC cells with different KRAS mutations (MIA-Pa-Ca-2 (KRAS G12C), T3M4 (KRAS Q61H), and PANC-1 (KRAS G12D)), being T3M4 most susceptible, followed by MIA-Pa-Ca-2, and PANC-1 was most resistant to apoptosis induction by GT-7. GT-7 stimulated ERK phosphorylation in the three PDAC cells, but only T3M4 displayed ERK-activation-dependent apoptosis. Furthermore, GT-7 induced a marked down-regulation of AKT phosphorylation after a transient peak in T3M4, whereas PANC-1 displayed the strongest and most sustained AKT activation, followed by MIA-Pa-Ca-2, suggesting that sustained AKT phosphorylation as a determinant for the resistance to GT-7-mediated apoptosis. Consistently, a PI3K inhibitor, Wortmannin, abolished AKT phosphorylation and enhanced GT-7-mediated apoptosis in T3M4 and MIA-Pa-Ca-2, but not in PANC-1, which showed residual AKT phosphorylation. This is the first report that ERK stimulation alone or in combination with AKT signaling inhibition can effectively induce apoptosis in PDAC and provides a rationale for a novel concurrent targeting of the PI3K/AKT and ERK pathways.
Collapse
Affiliation(s)
- Golam Iftakhar Khandakar
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Kana Fujitani
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Genzoh Tanabe
- Laboratory of Organic Chemistry, Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan;
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University School of Medicine, Osaka 589-8511, Japan; (K.S.); (K.N.)
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University School of Medicine, Osaka 589-8511, Japan; (K.S.); (K.N.)
| | - Reiko Sugiura
- Laboratory of Organic Chemistry, Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan;
| |
Collapse
|
29
|
Angarita FA, Oshi M, Yamada A, Yan L, Matsuyama R, Edge SB, Endo I, Takabe K. Low RUFY3 expression level is associated with lymph node metastasis in older women with invasive breast cancer. Breast Cancer Res Treat 2022; 192:19-32. [PMID: 35018543 PMCID: PMC8844209 DOI: 10.1007/s10549-021-06482-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Sentinel lymph node biopsy is omitted in older women (≥ 70 years old) with clinical lymph node (LN)-negative hormone receptor-positive breast cancer as it does not influence adjuvant treatment decision-making. However, older women are heterogeneous in frailty while the chance of recurrence increase with improving longevity. Therefore, a biomarker that identifies LN metastasis may facilitate treatment decision-making. RUFY3 is associated with cancer progression. We evaluated RUFY3 expression level as a biomarker for LN-positive breast cancer in older women. METHODS Clinical and transcriptomic data of breast cancer patients were obtained from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1903) and The Cancer Genome Atlas (TCGA, n = 1046) Pan-cancer study cohorts. RESULTS A total of 510 (METABRIC) and 211 (TCGA) older women were identified. LN-positive breast cancer, which represented 51.4% (METABRIC) and 48.4% (TCGA), demonstrated worse disease-free, disease-specific, and overall survival. RUFY3 levels were significantly lower in LN-positive tumors regardless of age. The area under the curve for the receiver operator characteristic (AUC-ROC) curves showed RUFY3-predicted LN metastasis. Low RUFY3 enriched oxidative phosphorylation, DNA repair, MYC targets, unfolded protein response, and mtorc1 signaling gene sets, was associated with T helper type 1 cell infiltration, and with intratumor heterogeneity and fraction altered. Low RUFY3 expression was associated with LN-positive breast cancer and with worse disease-specific survival among older women. CONCLUSION Older women with breast cancers who had low expression level of RUFY3 were more frequently diagnosed with LN-positive tumors, which translated into worse prognosis.
Collapse
Affiliation(s)
- Fernando A. Angarita
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA;,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Stephen B. Edge
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA;,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA;,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan;,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA;,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan;,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
30
|
Pei X, Zheng F, Li Y, Lin Z, Han X, Feng Y, Tian Z, Ren D, Cao K, Li C. Niclosamide Ethanolamine Salt Alleviates Idiopathic Pulmonary Fibrosis by Modulating the PI3K-mTORC1 Pathway. Cells 2022; 11:cells11030346. [PMID: 35159160 PMCID: PMC8834116 DOI: 10.3390/cells11030346] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pneumonia characterized by chronic progressive fibrosis, ultimately leading to respiratory failure and early mortality. Although not fully explored, the major causative factors in IPF pathogenesis are dysregulated fibroblast proliferation and excessive accumulation of extracellular matrix (ECM) deposited by myofibroblasts differentiated from pulmonary fibroblasts. More signalling pathways, including the PI3K-Akt-mTOR and autophagy pathways, are involved in IPF pathogenesis. Niclosamide ethanolamine salt (NEN) is a highly effective multitarget small-molecule inhibitor reported in antitumor studies. Here, we reported that in an IPF animal model treated with NEN for 14 days, attractive relief of pulmonary function and hydroxyproline content were observed. To further explore, the therapeutic effect of NEN in IPF and pathological changes in bleomycin-challenged mouse lung sections were assessed. Additionally, the effects of NEN on abnormal proliferation and ECM production in IPF cell models established with TGF-β1-stimulated A549 cells or DHLF-IPF cells were studied. In nonclinical studies, NEN ameliorated lung function and histopathological changes in bleomycin-challenged mice, and the lung hydroxyproline content was significantly diminished with NEN treatment. In vitro, NEN inhibited PI3K-mTORC1 signalling and arrested the cell cycle to prevent uncontrolled fibroblast proliferation. Additionally, NEN inhibited TGF-β1-induced epithelial–mesenchymal transition (EMT) and ECM accumulation via the mTORC1-4EBP1 axis. Furthermore, NEN-activated noncanonical autophagy resensitized fibroblasts to apoptosis. The above findings demonstrated the potential antifibrotic effect of NEN mediated via modulation of the PI3K-mTORC1 and autophagy pathways. These data provide strong evidence for a therapeutic role for NEN in IPF.
Collapse
Affiliation(s)
- Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Fangxu Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China;
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China;
| | - Ke Cao
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China
- Correspondence: (K.C.); (C.L.)
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
- Correspondence: (K.C.); (C.L.)
| |
Collapse
|
31
|
Chen J, Qiao K, Zhang C, Zhou X, Du Q, Deng Y, Cao L. VRK2 activates TNFα/NF-κB signaling by phosphorylating IKKβ in pancreatic cancer. Int J Biol Sci 2022; 18:1288-1302. [PMID: 35173553 PMCID: PMC8771851 DOI: 10.7150/ijbs.66313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022] Open
Abstract
NF-κB signaling is active in more than 50% of patients with pancreatic cancer and plays an important role in promoting the progression of pancreatic cancer. Revealing the activation mechanism of NF-κB signaling is important for the treatment of pancreatic cancer. In this study, the regulation of TNFα/NF-κB signaling by VRK2 (vaccinia-related kinase 2) was investigated. The levels of VRK2 protein were examined by immunohistochemistry (IHC). The functions of VRK2 in the progression of pancreatic cancer were examined using CCK8 assay, anchorage-independent assay, EdU assay and tumorigenesis assay. The regulation of VRK2 on the NF-κB signaling was investigated by immunoprecipitation and invitro kinase assay. It was discovered in this study that the expression of VRK2 was upregulated in pancreatic cancer and that the VRK2 expression level was significantly correlated with the pathological characteristics and the survival time of patients. VRK2 promoted the growth, sphere formation and subcutaneous tumorigenesis of pancreatic carcinoma cells as well as the organoid growth derived from the pancreatic cancer mouse model. Investigation of the molecular mechanism indicated that VRK2 interacts with IKKβ, phosphorylating its Ser177 and Ser181 residues and thus activating the TNFα/NF-κB signaling pathway. An IKKβ inhibitors abolished the promotive effect of VRK2 on the growth of organoids. The findings of this study indicate that VRK2 promotes the progression of pancreatic cancer by activating the TNFα/NF-κB signaling pathway, suggesting that VRK2 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexiong Qiao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Du
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Greco L, Rubbino F, Morelli A, Gaiani F, Grizzi F, de’Angelis GL, Malesci A, Laghi L. Epithelial to Mesenchymal Transition: A Challenging Playground for Translational Research. Current Models and Focus on TWIST1 Relevance and Gastrointestinal Cancers. Int J Mol Sci 2021; 22:ijms222111469. [PMID: 34768901 PMCID: PMC8584071 DOI: 10.3390/ijms222111469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Resembling the development of cancer by multistep carcinogenesis, the evolution towards metastasis involves several passages, from local invasion and intravasation, encompassing surviving anoikis into the circulation, landing at distant sites and therein establishing colonization, possibly followed by the outgrowth of macroscopic lesions. Within this cascade, epithelial to mesenchymal transition (EMT) works as a pleiotropic program enabling cancer cells to overcome local, systemic, and distant barriers against diffusion by replacing traits and functions of the epithelial signature with mesenchymal-like ones. Along the transition, a full-blown mesenchymal phenotype may not be accomplished. Rather, the plasticity of the program and its dependency on heterotopic signals implies a pendulum with oscillations towards its reversal, that is mesenchymal to epithelial transition. Cells in intermixed E⇔M states can also display stemness, enabling their replication together with the epithelial reversion next to successful distant colonization. If we aim to include the EMT among the hallmarks of cancer that could modify clinical practice, the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers needs to be filled. We review the knowledge on EMT, derived from models and mechanistic studies as well as from translational studies, with an emphasis on gastrointestinal cancers (GI).
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Alessandra Morelli
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Alberto Malesci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Correspondence:
| |
Collapse
|
33
|
The Unfolded Protein Response Is Associated with Cancer Proliferation and Worse Survival in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13174443. [PMID: 34503253 PMCID: PMC8430652 DOI: 10.3390/cancers13174443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary We studied the association between the unfolded protein response (UPR) and carcinogenesis, cancer progression, and survival in hepatocellular carcinoma (HCC). We studied 655 HCC patients from 4 independent cohorts using an UPR score. The UPR was enhanced as normal liver became cancerous and as HCC advanced in stage. The UPR was correlated with cancer cell proliferation that was confirmed by multiple parameters. Significantly, a high UPR score was associated with worse patient survival. Interestingly, though UPR was associated with a high mutational load, it was not associated with immune response, immune cell infiltration, or angiogenesis. To our knowledge, this is the first study to investigate the clinical relevance of the unfolded protein response in HCC. Abstract Hepatocellular carcinoma is a leading cause of cancer death worldwide. The unfolded protein response (UPR) has been revealed to confer tumorigenic capacity in cancer cells. We hypothesized that a quantifiable score representative of the UPR could be used as a biomarker for cancer progression in HCC. In this study, a total of 655 HCC patients from 4 independent HCC cohorts were studied to examine the relationships between enhancement of the UPR and cancer biology and patient survival in HCC utilizing an UPR score. The UPR correlated with carcinogenic sequence and progression of HCC consistently in two cohorts. Enhanced UPR was associated with the clinical parameters of HCC progression, such as cancer stage and multiple parameters of cell proliferation, including histological grade, mKI67 gene expression, and enrichment of cell proliferation-related gene sets. The UPR was significantly associated with increased mutational load, but not with immune cell infiltration or angiogeneis across independent cohorts. The UPR was consistently associated with worse survival across independent cohorts of HCC. In conclusion, the UPR score may be useful as a biomarker to predict prognosis and to better understand HCC.
Collapse
|
34
|
Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells 2021; 10:2245. [PMID: 34571894 PMCID: PMC8464935 DOI: 10.3390/cells10092245] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023] Open
Abstract
Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| |
Collapse
|
35
|
The Association of Annexin A1 and Chemosensitivity to Osimertinib in Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13164106. [PMID: 34439260 PMCID: PMC8394458 DOI: 10.3390/cancers13164106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Annexin A1 (ANXA1) is associated with the growth and resistance to chemotherapy drugs in lung cancer cells. In this study, the association of ANXA1 with chemosensitivity to Osimertinib, a third generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) was studied. The knockdown of ANXA1 increased chemosensitivity to Osimertinib and decreased tumorigenesis, invasion and migration of lung cancer cells with EGFR mutations. The study showed that ANXA1 plays critical roles in chemosensitivity to Osimertinib in lung cancer cells with EGFR mutations. Abstract Annexin A1 (ANXA1) has been reported to promote tumor growth and resistance to chemotherapy drugs in lung cancer cells. In this study, we focused on the association of ANXA1 and chemosensitivity with a third generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), Osimertinib, in lung cancer cells with EGFR mutations. The overexpression of ANXA1 was observed in the lung cancer cells studied. The downregulation of ANXA1 with small interference RNA (siRNA) decreased the growth of lung cancer cells. In lung cancer cells with EGFR mutations, the knockdown of ANXA1 increased the chemosensitivity to Osimertinib, and decreased the tumorigenesis, invasion and migration of lung cancer cells. Further study showed that the knockdown of ANXA1 inhibited the phosphorylation of EGFR and down-stream Akt pathways and promoted apoptosis in lung cancer cells treated with Osimertinib. A mice xenograft lung cancer model was established in our study and showed that ANXA1 siRNA enhanced the effects of Osimertinib in vivo. Our study results showed that ANXA1 plays critical roles in chemosensitivity to EGFR-TKI in lung cancer cells with the EGFR mutation. Our efforts may be used in the development of lung cancer treatment strategies in the future.
Collapse
|
36
|
Tokumaru Y, Oshi M, Huyser MR, Yan L, Fukada M, Matsuhashi N, Futamura M, Akao Y, Yoshida K, Takabe K. Low expression of miR-29a is associated with aggressive biology and worse survival in gastric cancer. Sci Rep 2021; 11:14134. [PMID: 34239017 PMCID: PMC8266839 DOI: 10.1038/s41598-021-93681-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced gastric cancer (GC) is one of the most lethal cancer types, thus a better understanding of its biology in patients is urgently needed. MicroRNA (miR)-29a is a known tumor suppressive miR that is related to metastasis, but its clinical relevance in GC remains ambiguous. Here, using a large GC patient cohort we hypothesized that low expression of miR-29a in GC is associated with aggressive cancer biology and worse survival. We demonstrated that low miR-29a GC enriched cell proliferation, apoptosis, metastasis, and angiogenesis related gene sets, as well as the higher expression of related genes. Low miR-29a GC was associated with less anti-cancer immune cell infiltration as well as immune related scoring. Low miR-29a GC demonstrated a worse overall survival (OS) as well as disease specific survival (DSS) compared with high expressing miR-29a GC. Notably, low miR-29a expression was the only factor, other than residual tumor status, to be an independent prognostic biomarker of worse OS and DSS. In conclusion, low miR-29a GC was associated with aggressive cancer biology and worse OS as well as DSS. Additionally, low expression of miR-29a was an independent prognostic biomarker of OS and DSS in gastric cancer patients.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Michelle R Huyser
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Masahiro Fukada
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA. .,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, 14263, USA. .,Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo, 160-8402, Japan. .,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|