1
|
Zhuang Y, Jiang W, Zhao Z, Li W, Deng Z, Liu J. Ion channel-mediated mitochondrial volume regulation and its relationship with mitochondrial dynamics. Channels (Austin) 2024; 18:2335467. [PMID: 38546173 PMCID: PMC10984129 DOI: 10.1080/19336950.2024.2335467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The mitochondrion, one of the important cellular organelles, has the major function of generating adenosine triphosphate and plays an important role in maintaining cellular homeostasis, governing signal transduction, regulating membrane potential, controlling programmed cell death and modulating cell proliferation. The dynamic balance of mitochondrial volume is an important factor required for maintaining the structural integrity of the organelle and exerting corresponding functions. Changes in the mitochondrial volume are closely reflected in a series of biological functions and pathological changes. The mitochondrial volume is controlled by the osmotic balance between the cytoplasm and the mitochondrial matrix. Thus, any disruption in the influx of the main ion, potassium, into the cells can disturb the osmotic balance between the cytoplasm and the matrix, leading to water movement between these compartments and subsequent alterations in mitochondrial volume. Recent studies have shown that mitochondrial volume homeostasis is closely implicated in a variety of diseases. In this review, we provide an overview of the main influencing factors and research progress in the field of mitochondrial volume homeostasis.
Collapse
Affiliation(s)
- Yujia Zhuang
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
- Clinical College of Shantou University Medical College, Shantou, China
| | - Wenting Jiang
- Operating room, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Guo P, Li Q, Wang S, Jiang X, Yang Q, Yu W, Al-Mutairi KA, Tang Z, Han Q, Liao J. Hesperidin alleviates terbuthylazine-induced ferroptosis via maintenance of mitochondria-associated endoplasmic reticulum membrane integrity in chicken hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109989. [PMID: 39089429 DOI: 10.1016/j.cbpc.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.
Collapse
Affiliation(s)
- Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Xinyue Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | | | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
3
|
Li Y, Wang Y, Jiang Z, Yang C, Wu Y, Wu A, Zhang Q, Liu X, Xiao B, Feng Y, Wu J, Liang Z, Yuan Z. Apoptosis mediated by crosstalk between mitochondria and endoplasmic reticulum: A possible cause of citrinin disruption of the intestinal barrier. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116877. [PMID: 39142118 DOI: 10.1016/j.ecoenv.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Citrinin (CTN) is a mycotoxin commonly found in contaminated foods and feed, posing health risks to both humans and animals. However, the mechanism by which CTN damages the intestine remains unclear. In this study, a model of intestinal injury was induced by administering 1.25 mg/kg and 5 mg/kg of CTN via gavage for 28 consecutive days in 6-week-old Kunming mice, aiming to explore the potential mechanisms underlying intestinal injury. The results demonstrate that CTN can cause structural damage to the mouse jejunum. Additionally, CTN reduces the protein expression of Claudin-1, Occludin, ZO-1, and MUC2, thereby disrupting the physical and chemical barriers of the intestine. Furthermore, exposure to CTN alters the structure of the intestinal microbiota in mice, thus compromising the intestinal microbial barrier. Meanwhile, the results showed that CTN exposure could induce excessive apoptosis in intestinal cells by altering the expression of proteins such as CHOP and GRP78 in the endoplasmic reticulum and Bax and Cyt c in mitochondria. The mitochondria and endoplasmic reticulum are connected through the mitochondria-associated endoplasmic reticulum membrane (MAM), which regulates the membrane. We found that the expression of bridging proteins Fis1 and BAP31 on the membrane was increased after CTN treatment, which would exacerbate the endoplasmic reticulum dysfunction, and could activate proteins such as Caspase-8 and Bid, thus further inducing apoptosis via the mitochondrial pathway. Taken together, these results suggest that CTN exposure can cause intestinal damage by disrupting the intestinal barrier and inducing excessive apoptosis in intestinal cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zonghan Jiang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Qike Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaofang Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Bo Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yiya Feng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, PR China; Longping Branch Graduate School, Hunan University, Changsha 410125, PR China.
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China.
| |
Collapse
|
4
|
Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res 2024; 208:107409. [PMID: 39284429 DOI: 10.1016/j.phrs.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, China
| | - Fukun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
5
|
Wen C, Jiang Y, Chen W, Xu Y, Chen G, Zhou Q, Liu Q, Jiang H, Liu Y, Cao X, Yao Y, Zhang R, Qiu Z, Liu S. Targeting translocator protein protects against myocardial ischemia/reperfusion injury by alleviating mitochondrial dysfunction. Exp Ther Med 2024; 28:349. [PMID: 39071907 PMCID: PMC11273255 DOI: 10.3892/etm.2024.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
Ischemic heart disease (IHD) remains a leading cause of mortalities worldwide, necessitating timely reperfusion to reduce acute mortality. Paradoxically, reperfusion can induce myocardial ischemia/reperfusion (I/R) injury, which is primarily characterized by mitochondrial dysfunction. Translocator protein (TSPO) participates in multiple cellular events; however, its role in IHD, especially in the process of myocardial I/R injury, has not been well determined. The aim of the present study was to investigate the functional role of TSPO in myocardial I/R injury and dissect the concomitant cellular events involved. This study utilized small interfering RNA (siRNA) technology to knock down TSPO expression. The I/R process was simulated using an anoxia/reoxygenation (A/R) model. The role of TSPO in H9c2 cardiomyocytes was assessed using various techniques, such as Western blotting, Flow cytometry, Reverse transcription-quantitative PCR (RT-qPCR), Immunofluorescence, Co-immunoprecipitation (co-IP) and similar methods. It was found that A/R markedly upregulated the expression of TSPO in cardiomyocytes. Inhibition of TSPO improved myocardial cell apoptosis and damage following A/R stimulation. Additionally, targeting TSPO alleviated mitochondrial damage, reduced mitochondrial ROS release and enhanced ATP synthesis following A/R stimulation. It was further confirmed that A/R stimulation induced a significant increase in the expression of pivotal markers [phosporylated-PKR-like ER kinase (PERK)/PERK, activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1] involved in the adaptive unfolded protein response, which is accompanied by downstream signaling during endoplasmic reticulum (ER) stress. Notably, TSPO knockdown increased the expression of the aforementioned markers and, subsequently, TSPO was confirmed to interact with ATF6, suggesting that TSPO might play a role in ER stress during myocardial I/R injury. Finally, inhibition of TSPO upregulated mitophagy, as indicated by further decreases in P62 and increases in Parkin and PINK1 levels following A/R stimulation. Together, the results suggest that TSPO plays a multifaceted role in myocardial I/R injury. Understanding TSPO-induced cellular responses could inform targeted therapeutic strategies for patients with IHD.
Collapse
Affiliation(s)
- Chenghao Wen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yunfei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Qiang Zhou
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Quan Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Southeast University, Nanjing, Jiangsu 210006, P.R. China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xu Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ruoyu Zhang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shengchen Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
6
|
Liu Y, Cui F, Xu A, Wang B, Ma Y, Zhang Q, Sun Q, Zheng Y, Xue Y, Sun Y, Bian L. Interaction Between the PERK/ATF4 Branch of the Endoplasmic Reticulum Stress and Mitochondrial One-Carbon Metabolism Regulates Neuronal Survival After Intracerebral Hemorrhage. Int J Biol Sci 2024; 20:4277-4296. [PMID: 39247810 PMCID: PMC11379068 DOI: 10.7150/ijbs.93787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/21/2024] [Indexed: 09/10/2024] Open
Abstract
Recent investigations have revealed that oxidative stress can lead to neuronal damage and disrupt mitochondrial and endoplasmic reticulum functions after intracerebral hemorrhage (ICH). However, there is limited evidence elucidating their role in maintaining neuronal homeostasis. Metabolomics analysis, RNA sequencing, and CUT&Tag-seq were performed to investigate the mechanism underlying the interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress (ERS) and mitochondrial one-carbon (1C) metabolism during neuronal resistance to oxidative stress. The association between mitochondrial 1C metabolism and the PERK/ATF4 branch of the ERS after ICH was investigated using transcription factor motif analysis and co-immunoprecipitation. The findings revealed interactions between the GRP78/PERK/ATF4 and mitochondrial 1C metabolism, which are important in preserving neuronal homeostasis after ICH. ATF4 is an upstream transcription factor that directly regulates the expression of 1C metabolism genes. Additionally, the GRP78/PERK/ATF4 forms a negative regulatory loop with MTHFD2 because of the interaction between GRP78 and MTHFD2. This study presents evidence of disrupted 1C metabolism and the occurrence of ERS in neurons post-ICH. Supplementing exogenous NADPH or interfering with the PERK/ATF4 could reduce symptoms related to neuronal injuries, suggesting new therapeutic prospects for ICH.
Collapse
Affiliation(s)
- Yikui Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengzhen Cui
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Aoqian Xu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Ma
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixiang Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Xue
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Pang M, Yu L, Li X, Lu C, Xiao C, Liu Y. A promising anti-tumor targeting on ERMMDs mediated abnormal lipid metabolism in tumor cells. Cell Death Dis 2024; 15:562. [PMID: 39098929 PMCID: PMC11298533 DOI: 10.1038/s41419-024-06956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The investigation of aberrations in lipid metabolism within tumor has become a burgeoning field of study that has garnered significant attention in recent years. Lipids can serve as a potent source of highly energetic fuel to support the rapid growth of neoplasia, in where the ER-mitochondrial membrane domains (ERMMDs) provide an interactive network for facilitating communication between ER and mitochondria as well as their intermembrane space and adjunctive proteins. In this review, we discuss fatty acids (FAs) anabolic and catabolic metabolism, as well as how CPT1A-VDAC-ACSL clusters on ERMMDs participate in FAs transport, with a major focus on ERMMDs mediated collaborative loop of FAO, Ca2+ transmission in TCA cycle and OXPHOS process. Here, we present a comprehensive perspective on the regulation of aberrant lipid metabolism through ERMMDs conducted tumor physiology might be a promising and potential target for tumor starvation therapy.
Collapse
Affiliation(s)
- Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Xu L, Xu Y, Jiang Y, Jiang J, Chen S, Sun D, Li S, Wei F, Zhu H. IP3R2 regulates apoptosis by Ca2+ transfer through mitochondria-ER contacts in hypoxic photoreceptor injury. Exp Eye Res 2024; 245:109965. [PMID: 38851477 DOI: 10.1016/j.exer.2024.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Mitochondria-associated ER membranes (MAMs) are contact sites that enable bidirectional communication between the ER (endoplasmic reticulum) and mitochondria, including the transfer of Ca2+ signals. MAMs are essential for mitochondrial function and cellular energy metabolism. However, unrestrained Ca2+ transfer to the mitochondria can lead to mitochondria-dependent apoptosis. IP3R2 (Inositol 1,4,5-trisphosphate receptor 2) is an important intracellular Ca2+ channel. This study investigated the contribution of IP3R2-MAMs to hypoxia-induced apoptosis in photoreceptor cells. A photoreceptor hypoxia model was established by subretinal injection of hyaluronic acid (1%) in C57BL/6 mice and 1% O2 treatment in 661W cells. Transmission electron microscopy (TEM), ER-mitochondria colocalization, and the MAM reporter were utilized to evaluate MAM alterations. Cell apoptosis and mitochondrial homeostasis were evaluated using immunofluorescence (IF), flow cytometry, western blotting (WB), and ATP assays. SiRNA transfection was employed to silence IP3R2 in 661W cells. Upon hypoxia induction, MAMs were significantly increased in photoreceptors both in vivo and in vitro. This was accompanied by the activation of mitochondrial apoptosis and disruption of mitochondrial homeostasis. Elevated MAM-enriched IP3R2 protein levels induced by hypoxic injury led to mitochondrial calcium overload and subsequent photoreceptor apoptosis. Notably, IP3R2 knockdown not only improved mitochondrial morphology but also restored mitochondrial function in photoreceptors by limiting MAM formation and thereby attenuating mitochondrial calcium overload under hypoxia. Our results suggest that IP3R2-MAM-mediated mitochondrial calcium overload plays a critical role in mitochondrial dyshomeostasis, ultimately contributing to photoreceptor cell death. Targeting MAM constitutive proteins might provide an option for a therapeutic approach to mitigate photoreceptor death in retinal detachment.
Collapse
Affiliation(s)
- Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihua Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaoxu Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingjing Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
9
|
Ding Y, Liu N, Zhang D, Guo L, Shang Q, Liu Y, Ren G, Ma X. Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases. Front Pharmacol 2024; 15:1398381. [PMID: 38694924 PMCID: PMC11061472 DOI: 10.3389/fphar.2024.1398381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide. In 2022, the CVDs contributed to 19.8 million deaths globally, accounting for one-third of all global deaths. With an aging population and changing lifestyles, CVDs pose a major threat to human health. Mitochondria-associated endoplasmic reticulum membranes (MAMs) are communication platforms between cellular organelles and regulate cellular physiological functions, including apoptosis, autophagy, and programmed necrosis. Further research has shown that MAMs play a critical role in the pathogenesis of CVDs, including myocardial ischemia and reperfusion injury, heart failure, pulmonary hypertension, and coronary atherosclerosis. This suggests that MAMs could be an important therapeutic target for managing CVDs. The goal of this study is to summarize the protein complex of MAMs, discuss its role in the pathological mechanisms of CVDs in terms of its functions such as Ca2+ transport, apoptotic signaling, and lipid metabolism, and suggest the possibility of MAMs as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yanqiu Ding
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijun Guo
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Shang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yicheng Liu
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaocan Ren
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Li M, Zhang Y, Yu G, Gu L, Zhu H, Feng S, Xiong X, Jian Z. Mitochondria-associated endoplasmic reticulum membranes tethering protein VAPB-PTPIP51 protects against ischemic stroke through inhibiting the activation of autophagy. CNS Neurosci Ther 2024; 30:e14707. [PMID: 38584329 PMCID: PMC10999572 DOI: 10.1111/cns.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
AIMS Mitochondria-associated endoplasmic reticulum membranes (MAMs) serve as a crucial bridge connecting the endoplasmic reticulum (ER) and mitochondria within cells. Vesicle-associated membrane protein-associated protein B (VAPB) and protein tyrosine phosphatase interacting protein 51 (PTPIP51) are responsible for the formation and stability of MAMs, which have been implicated in the pathogenesis of various diseases. However, the role of MAMs in ischemic stroke (IS) remains unclear. We aimed to investigate the role of MAMs tethering protein VAPB-PTPIP51 in experimental cerebral ischemia. METHODS We simulated cerebral ischemia-reperfusion injury (CIRI) by using a mouse middle cerebral artery occlusion (MCAO) model. RESULTS We observed a decrease in VAPB-PTPIP51 expression in the brain tissue. Our findings suggested compromised MAMs after MCAO, as a decreased mitochondria-ER contact (MERC) coverage and an increased distance were observed through the transmission electron microscope (TEM). Upon VAPB or PTPIP51 knockdown, the damage to MAMs was exacerbated, accompanied by excessive autophagy activation and increased reactive oxygen species (ROS) production, resulting in an enlarged infarct area and exacerbated neurological deficits. Notably, we observed that this damage was concomitant with the inhibition of the PI3K/AKT/mTOR pathway and was successfully mitigated by the treatment with the PI3K activator. CONCLUSIONS Our findings suggest that the downregulation of VAPB-PTPIP51 expression after IS mediates structural damage to MAMs. This may exacerbate CIRI by inhibiting the PI3K pathway and activating autophagy, thus providing new therapeutic targets for IS.
Collapse
Affiliation(s)
- Mingyang Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guixiang Yu
- Department of OphthalmologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lijuan Gu
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
11
|
Wu Y, Li M, Ying H, Gu Y, Zhu Y, Gu Y, Huang L. Mitochondrial quality control alterations and placenta-related disorders. Front Physiol 2024; 15:1344951. [PMID: 38390447 PMCID: PMC10883312 DOI: 10.3389/fphys.2024.1344951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Mitochondria are ubiquitous in eukaryotic cells. Normal maintenance of function is the premise and basis for various physiological activities. Mitochondrial dysfunction is commonly observed in a wide range of pathological conditions, such as neurodegenerative, metabolic, cardiovascular, and various diseases related to foetal growth and development. The placenta is a highly energy-dependent organ that acts as an intermediary between the mother and foetus and functions to maintain foetal growth and development. Recent studies have demonstrated that mitochondrial dysfunction is associated with placental disorders. Defects in mitochondrial quality control mechanisms may lead to preeclampsia and foetal growth restriction. In this review, we address the quality control mechanisms of mitochondria and the relevant pathologies of mitochondrial dysfunction in placenta-related diseases, such as preeclampsia and foetal growth restriction. This review also investigates the relation between mitochondrial dysfunction and placental disorders.
Collapse
Affiliation(s)
- Yamei Wu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Meng Li
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yunlong Zhu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yanfang Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Lu Huang
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| |
Collapse
|
12
|
Tong D, Zhou J, Zhou J, Wang X, Gao B, Rui X, Liu L, Chen Q, Huang C. LAMC2 mitigates ER stress by enhancing ER-mitochondria interaction via binding to MYH9 and MYH10. Cancer Gene Ther 2024; 31:43-57. [PMID: 37891404 PMCID: PMC10794146 DOI: 10.1038/s41417-023-00680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Highly proliferative and metastatic tumors are constantly exposed to both intrinsic and extrinsic factors that induce adaptation to stressful conditions. Chronic adaptation to endoplasmic reticulum (ER) ER stress is common to many different types of cancers, and poses a major challenge for acquired drug resistance. Here we report that LAMC2, an extracellular matrix protein upregulated in many types of cancers, is localized in the ER of lung, breast, and liver cancer cells. Under tunicamycin-induced ER stress, protein level of LAMC2 is upregulated. Transfection of cancer cells with LAMC2 resulted in the attenuation of ER stress phenotype, accompanied by elevation in mitochondrial membrane potential as well as reduction in reactive oxygen species (ROS) levels and apoptosis. In addition, LAMC2 forms protein complexes with MYH9 and MYH10 to promote mitochondrial aggregation and increased ER-mitochondria interaction at the perinuclear region. Moreover, overexpression of LAMC2 counteracts the effects of ER stress and promotes tumor growth in vivo. Taken together, our results revealed that in complex with MYH9 and MYH10, LAMC2 is essential for promoting ER-mitochondria interaction to alleviate ER stress and allow cancer cells to adapt and proliferate under stressful conditions. This study provides new insights and highlights the promising potential of LAMC2 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Jing Zhou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Xiaofei Wang
- Biomedical Experimental Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Beibei Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Xiaoyi Rui
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Liying Liu
- Biomedical Experimental Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - QiaoYi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China.
- Biomedical Experimental Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, 710061, Xi'an, China.
| |
Collapse
|
13
|
Shuwen H, Yinhang W, Jing Z, Qiang Y, Yizhen J, Quan Q, Yin J, Jiang L, Xi Y. Cholesterol induction in CD8 + T cell exhaustion in colorectal cancer via the regulation of endoplasmic reticulum-mitochondria contact sites. Cancer Immunol Immunother 2023; 72:4441-4456. [PMID: 37919522 PMCID: PMC10991466 DOI: 10.1007/s00262-023-03555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Hypercholesterolemia is one of the risk factors for colorectal cancer (CRC). Cholesterol can participate in the regulation of human T cell function and affect the occurrence and development of CRC. OBJECTIVE To elucidate the pathogenesis of CRC immune escape mediated by CD8+ T cell exhaustion induced by cholesterol. METHODS CRC samples (n = 217) and healthy individuals (n = 98) were recruited to analyze the relationship between peripheral blood cholesterol levels and the clinical features of CRC. An animal model of CRC with hypercholesterolemia was established. Intraperitoneal intervention with endoplasmic reticulum stress (ERS) inhibitors in hypercholesterolemic CRC mice was performed. CD69, PD1, TIM-3, and CTLA-4 on CD8+ T cells of spleens from C57BL/6 J mice were detected by flow cytometry. CD8+ T cells were cocultured with MC38 cells (mouse colon cancer cell line). The proliferation, apoptosis, migration and invasive ability of MC38 cells were detected by CCK-8 assay, Annexin-V APC/7-AAD double staining, scratch assay and transwell assay, respectively. Transmission electron microscopy was used to observe the ER structure of CD8+ T cells. Western blotting was used to detect the expression of ERS and mitophagy-related proteins. Mitochondrial function and energy metabolism were measured. Immunoprecipitation was used to detect the interaction of endoplasmic reticulum-mitochondria contact site (ERMC) proteins. Immunofluorescence colocalization was used to detect the expression and intracellular localization of ERMC-related molecules. RESULTS Peripheral blood cholesterol-related indices, including Tc, low density lipoproteins (LDL) and Apo(a), were all increased, and high density lipoprotein (HDL) was decreased in CRCs. The proliferation, migration and invasion abilities of MC38 cells were enhanced, and the proportion of tumor cell apoptosis was decreased in the high cholesterol group. The expression of IL-2 and TNF-α was decreased, while IFN-γ was increased in the high cholesterol group. It indicated high cholesterol could induce exhaustion of CD8+ T cells, leading to CRC immune escape. Hypercholesterolemia damaged the ER structure of CD8+ T cells and increased the expression of ER stress molecules (CHOP and GRP78), lead to CD8+ T cell exhaustion. The expression of mitophagy-related proteins (BNIP3, PINK and Parkin) in exhausted CD8+ T cells increased at high cholesterol levels, causing mitochondrial energy disturbance. High cholesterol enhanced the colocalization of Fis1/Bap31, MFN2/cox4/HSP90B1, VAPB/PTPIP51, VDAC1/IPR3/GRP75 in ERMCs, indicated that high cholesterol promoted the intermolecular interaction between ER and mitochondrial membranes in CD8+ T cells. CONCLUSION High cholesterol regulated the ERS-ERMC-mitophagy axis to induce the exhaustion of CD8+ T cells in CRC.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Yan Qiang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jiang Yizhen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Qi Quan
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Jin Yin
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Liu Jiang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yang Xi
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China.
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
| |
Collapse
|
14
|
Li S, Zhao J, Han G, Zhang X, Li N, Zhang Z. Silicon dioxide-induced endoplasmic reticulum stress of alveolar macrophages and its role on the formation of silicosis fibrosis: a review article. Toxicol Res (Camb) 2023; 12:1024-1033. [PMID: 38145097 PMCID: PMC10734631 DOI: 10.1093/toxres/tfad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 10/07/2023] [Indexed: 12/26/2023] Open
Abstract
Silicosis is a chronic lung inflammatory disease induced by long-term inhalation of high concentrations of silicon dioxide (SiO2), characterized by pulmonary fibrosis. Inhalation of silica invades alveolar macrophages (AMs) and changes the micro-environment of the cell, resulting in abnormal morphology and dysfunction of the endoplasmic reticulum (ER). Once beyond the range of cell regulation, the endoplasmic reticulum stress (ERS) will occur, which will lead to cell damage, necrosis, and apoptosis, eventually causing silicosis fibrosis through various mechanisms. This is a complex and delicate process accompanied by various macrophage-derived cytokines. Unfortunately, the details have not been systematically summarized yet. In this review, we systematically introduce the basic two processes: the process of inducing ERS by inhaling SiO2 and the process of inducing pulmonary fibrosis by ERS. Moreover, the underlying mechanism of the above two sequential events is also be discussed. We conclude that the ERS of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis. Therefore, changing the states of SiO2-induced ERS of macrophage may be an attractive therapeutic target for silicosis fibrosis.
Collapse
Affiliation(s)
- Shuang Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Jiahui Zhao
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
- Department of Public Health, Weifang Medical University, Baotong west Street 7166, Weifang 261053, Shandong Province, China
| | - Guizhi Han
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Xin Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Ning Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Zhaoqiang Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| |
Collapse
|
15
|
Xiong W, Feng J, Liu Y, Liu J, Fu L, Wang Q, Li X, Li S. ShenQiWan ameliorates renal injury in type 2 diabetic mice by modulating mitochondrial fusion and endoplasmic reticulum stress. Front Pharmacol 2023; 14:1265551. [PMID: 38026991 PMCID: PMC10667480 DOI: 10.3389/fphar.2023.1265551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background: ShenQiWan is commonly used in traditional Chinese medicine for the treatment of diabetic nephropathy, which is closely related to mitochondrial fusion and endoplasmic reticulum stress. This study aimed to investigate the intervention effect and molecular mechanisms of ShenQiWan on renal injury in KKAy mice. Methods: C57BL/6J mice (11 weeks old) were fed a regular diet upon arrival, while KKAy mice (11 weeks old) were fed a high-fat diet upon arrival. At 12 weeks of age, KKAy mice with random blood glucose ≥13.9 mmol/L were identified as diabetic mice and randomly divided into the model group (n = 30) and the treatment group (n = 30), while C57BL/6J mice of 12 weeks old (n = 30) served as the control group. The treatment group received daily aqueous decoction of ShenQiWan (13.5 g/kg), while the control group and model group received daily equal amounts of saline from 12 weeks old to 24 weeks old. The general status of mice was observed regularly, and fasting blood glucose and 24-hour urine microalbumin were measured. Ten mice were euthanized in each group at the age of 16, 20, and 24 weeks, serum samples were used for biochemical indexes and kidney tissues were used for morphological studies. GRP78, OPA1, MFN1, MFN2 mRNA and protein expression were detected by Real-time PCR, immunohistochemistry and Western blot. Results: The mice in the model group exhibited symptoms of lethargy, slow movement, obesity, polyuria and proteinuria. Morphological observation revealed pathological changes, including thickening of the glomerular basement membrane and interstitial fibrosis. After treatment with ShenQiWan, the fasting blood glucose level of KKAy mice was significantly reduced, urinary albuminuria was decreased, serum biochemical indexes were improved, renal tissue pathological changes were significantly alleviated. The results also showed a significant reduction in the expression of endoplasmic reticulum stress-related factor GRP78 and an increase in the expression of mitochondrial fusion-related factors OPA1, MFN1 and MFN2 after treatment with ShenQiWan. Conclusion: ShenQiWan can protect diabetic mice from renal damage by modulating mitochondrial fusion and alleviating endoplasmic reticulum stress, exerting its protective effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xia Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
17
|
Zhang P, Yan X, Zhang X, Liu Y, Feng X, Yang Z, Zhang J, Xu X, Zheng Q, Liang L, Han H. TMEM215 Prevents Endothelial Cell Apoptosis in Vessel Regression by Blunting BIK-Regulated ER-to-Mitochondrial Ca Influx. Circ Res 2023; 133:739-757. [PMID: 37750320 DOI: 10.1161/circresaha.123.322686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND In developmental and pathological tissues, nascent vessel networks generated by angiogenesis require further pruning/regression to delete nonfunctional endothelial cells (ECs) by apoptosis and migration. Mechanisms underlying EC apoptosis during vessel pruning remain elusive. TMEM215 (transmembrane protein 215) is an endoplasmic reticulum-located, 2-pass transmembrane protein. We have previously demonstrated that TMEM215 knockdown in ECs leads to cell death, but its physiological function and mechanism are unclear. METHODS We characterized the role and mechanism of TMEM215 in EC apoptosis using human umbilical vein endothelial cells by identifying its interacting proteins with immunoprecipitation-mass spectrometry. The physiological function of TMEM215 in ECs was assessed by establishing a conditional knockout mouse strain. The role of TMEM215 in pathological angiogenesis was evaluated by tumor and choroidal neovascularization models. We also tried to evaluate its translational value by delivering a Tmem215 small interfering RNA (siRNA) using nanoparticles in vivo. RESULTS TMEM215 knockdown in ECs induced apoptotic cell death. We identified the chaperone BiP as a binding partner of TMEM215, and TMEM215 forms a complex with and facilitates the interaction of BiP (binding immunoglobin protein) with the BH (BCL-2 [B-cell lymphoma 2] homology) 3-only proapoptotic protein BIK (BCL-2 interacting killer). TMEM215 knockdown triggered apoptosis in a BIK-dependent way and was abrogated by BCL-2. Notably, TMEM215 knockdown increased the number and diminished the distance of mitochondria-associated endoplasmic reticulum membranes and increased mitochondrial calcium influx. Inhibiting mitochondrial calcium influx by blocking the IP3R (inositol 1,4,5-trisphosphate receptor) or MCU (mitochondrial calcium uniporter) abrogated TMEM215 knockdown-induced apoptosis. TMEM215 expression in ECs was induced by physiological laminar shear stress via EZH2 downregulation. In EC-specific Tmem215 knockout mice, induced Tmem215 depletion impaired the regression of retinal vasculature characterized by reduced vessel density, increased empty basement membrane sleeves, and increased EC apoptosis. Moreover, EC-specific Tmem215 ablation inhibited tumor growth with disrupted vasculature. However, Tmem215 ablation in adult mice attenuated lung metastasis, consistent with reduced Vcam1 expression. Administration of nanoparticles carrying Tmem215 siRNA also inhibited tumor growth and choroidal neovascularization injury. CONCLUSIONS TMEM215, which is induced by blood flow-derived shear stress via downregulating EZH2, protects ECs from BIK-triggered mitochondrial apoptosis mediated by calcium influx through mitochondria-associated ER membranes during vessel pruning, thus providing a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- The Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, China (Y.L.)
| | - Xingxing Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyuan Xu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, China (Q.Z.)
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Gastroenterology (H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Kaur S, Sehrawat A, Mastana SS, Kandimalla R, Sharma PK, Bhatti GK, Bhatti JS. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson's disease. Life Sci 2023; 330:121995. [PMID: 37541578 DOI: 10.1016/j.lfs.2023.121995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Current therapeutic strategies for PD are limited and mainly involve symptomatic relief, with no available treatment for the underlying causes of the disease. Therefore, there is a need for new therapeutic approaches that target the underlying pathophysiological mechanisms of PD. Calcium homeostasis is an essential process for maintaining proper cellular function and survival, including neuronal cells. Calcium dysregulation is also observed in various organelles, including the endoplasmic reticulum (ER), mitochondria, and lysosomes, resulting in organelle dysfunction and impaired inter-organelle communication. The ER, as the primary calcium reservoir, is responsible for folding proteins and maintaining calcium homeostasis, and its dysregulation can lead to protein misfolding and neurodegeneration. The crosstalk between ER and mitochondrial calcium signaling is disrupted in PD, leading to neuronal dysfunction and death. In addition, a lethal network of calcium cytotoxicity utilizes mitochondria, ER and lysosome to destroy neurons. This review article focused on the complex role of calcium dysregulation and its role in aggravating functioning of organelles in PD so as to provide new insight into therapeutic strategies for treating this disease. Targeting dysfunctional organelles, such as the ER and mitochondria and lysosomes and whole network of calcium dyshomeostasis can restore proper calcium homeostasis and improve neuronal function. Additionally targeting calcium dyshomeostasis that arises from miscommunication between several organelles can be targeted so that therapeutic effects of calcium are realised in whole cellular territory.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, India
| | | | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
20
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Li Y, Zhu L, Cai MX, Wang ZL, Zhuang M, Tan CY, Xie TH, Yao Y, Wei TT. TGR5 supresses cGAS/STING pathway by inhibiting GRP75-mediated endoplasmic reticulum-mitochondrial coupling in diabetic retinopathy. Cell Death Dis 2023; 14:583. [PMID: 37658045 PMCID: PMC10474119 DOI: 10.1038/s41419-023-06111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Diabetic retinopathy (DR) is a serious and relatively under-recognized complication of diabetes. Müller glial cells extend throughout the retina and play vital roles in maintaining retinal homeostasis. Previous studies have demonstrated that TGR5, a member of the bile acid-activated GPCR family, could ameliorate DR. However, the role of TGR5 in regulating Müller cell function and the underlying mechanism remains to be ascertained. To address this, high glucose (HG)-treated human Müller cells and streptozotocin-treated Sprague-Dawley rats were used in the study. The IP3R1-GRP75-VDAC1 axis and mitochondrial function were assessed after TGR5 ablation or agonism. Cytosolic mitochondrial DNA (mtDNA)-mediated cGAS-STING activation was performed. The key markers of retinal vascular leakage, apoptosis, and inflammation were examined. We found that mitochondrial Ca2+ overload and mitochondrial dysfunction were alleviated by TGR5 agonist. Mechanically, TGR5 blocked the IP3R1-GRP75-VDAC1 axis mediated Ca2+ efflux from the endoplasmic reticulum into mitochondria under diabetic condition. Mitochondrial Ca2+ overload led to the opening of the mitochondrial permeability transition pore and the release of mitochondrial DNA (mtDNA) into the cytosol. Cytoplasmic mtDNA bound to cGAS and upregulated 2'3' cyclic GMP-AMP. Consequently, STING-mediated inflammatory responses were activated. TGR5 agonist prevented retinal injury, whereas knockdown of TGR5 exacerbated retinal damage in DR rats, which was rescued by the STING inhibitor. Based on the above results, we propose that TGR5 might be a novel therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Yan Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
| | - Lingpeng Zhu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
| | - Meng-Xia Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
| | - Zi-Li Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
| | - Cheng-Ye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China.
| | - Ting-Ting Wei
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China.
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, P. R. China.
| |
Collapse
|
22
|
Glytsou C, Chen X, Zacharioudakis E, Al-Santli W, Zhou H, Nadorp B, Lee S, Lasry A, Sun Z, Papaioannou D, Cammer M, Wang K, Zal T, Zal MA, Carter BZ, Ishizawa J, Tibes R, Tsirigos A, Andreeff M, Gavathiotis E, Aifantis I. Mitophagy Promotes Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Discov 2023; 13:1656-1677. [PMID: 37088914 PMCID: PMC10330144 DOI: 10.1158/2159-8290.cd-22-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023]
Abstract
BH3 mimetics are used as an efficient strategy to induce cell death in several blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL-2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML. Moreover, MCL1 or dual BCL-2/BCL-xL antagonists are under investigation. Yet, resistance to single or combinatorial BH3-mimetic therapies eventually ensues. Integration of multiple genome-wide CRISPR/Cas9 screens revealed that loss of mitophagy modulators sensitizes AML cells to various BH3 mimetics targeting different BCL-2 family members. One such regulator is MFN2, whose protein levels positively correlate with drug resistance in patients with AML. MFN2 overexpression is sufficient to drive resistance to BH3 mimetics in AML. Insensitivity to BH3 mimetics is accompanied by enhanced mitochondria-endoplasmic reticulum interactions and augmented mitophagy flux, which acts as a prosurvival mechanism to eliminate mitochondrial damage. Genetic or pharmacologic MFN2 targeting synergizes with BH3 mimetics by impairing mitochondrial clearance and enhancing apoptosis in AML. SIGNIFICANCE AML remains one of the most difficult-to-treat blood cancers. BH3 mimetics represent a promising therapeutic approach to eliminate AML blasts by activating the apoptotic pathway. Enhanced mitochondrial clearance drives resistance to BH3 mimetics and predicts poor prognosis. Reverting excessive mitophagy can halt BH3-mimetic resistance in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Christina Glytsou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xufeng Chen
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wafa Al-Santli
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Soobeom Lee
- Department of Biology, New York University, New York, NY 10003, USA
| | - Audrey Lasry
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrios Papaioannou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tomasz Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Malgorzata Anna Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z. Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
24
|
Panes-Fernandez J, Godoy PA, Gavilan J, Ramírez-Molina O, Burgos CF, Marileo A, Flores-Núñez O, Castro PA, Moraga-Cid G, Yévenes GE, Muñoz-Montesino C, Fuentealba J. TG2 promotes amyloid beta aggregates: Impact on ER-mitochondria crosstalk, calcium homeostasis and synaptic function in Alzheimer’s disease. Biomed Pharmacother 2023; 162:114596. [PMID: 36989728 DOI: 10.1016/j.biopha.2023.114596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by cognitive impairment that increasingly affects the elderly. AD's main features have been related to cellular and molecular events, including the aberrant aggregation of the amyloid beta peptide (Aβ), Ca2+ dyshomeostasis, and increased mitochondria-associated membranes (MAMs). Transglutaminase type 2 (TG2) is a ubiquitous enzyme whose primary role is the Ca2+-dependent proteins transamidation, including the Aβ peptide. TG2 activity has been closely related to cellular damage and death. We detected increased TG2 levels in neuronal cells treated with Aβ oligomers (AβOs) and hippocampal slices from J20 mice using cellular and molecular approaches. In this work, we characterized the capacity of TG2 to interact and promote Aβ toxic aggregates (AβTG2). AβTG2 induced an acute increase in intracellular Ca2+, miniature currents, and hiperexcitability, consistent with an increased mitochondrial Ca2+ overload, IP3R-VDAC tethering, and mitochondria-endoplasmic reticulum contacts (MERCs). AβTG2 also decreased neuronal viability and excitatory postsynaptic currents, reinforcing the idea of synaptic failure associated with MAMs dysregulation mediated by TG2. Z-DON treatment, TG2 inhibitor, reduced calcium overload, mitochondrial membrane potential loss, and synaptic failure, indicating an involvement of TG2 in a toxic cycle which increases Aβ aggregation, Ca2+ overload, and MAMs upregulation. These data provide novel information regarding the role TG2 plays in synaptic function and contribute additional evidence to support the further development of TG2 inhibitors as a disease-modifying strategy for AD.
Collapse
|
25
|
Key genes expressed in mitochondria‑endoplasmic reticulum contact sites in cancer (Review). Oncol Rep 2023; 49:77. [PMID: 36866764 PMCID: PMC10018458 DOI: 10.3892/or.2023.8514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 03/04/2023] Open
Abstract
Cell fate is critically affected by mitochondrial activity, from ATP production to metabolism, Ca2+ homeostasis and signaling. These actions are regulated by proteins expressed in mitochondria (Mt)‑endoplasmic reticulum contact sites (MERCSs). The literature supports the fact that disruption to the physiology of the Mt and/or MERCSs can be due to alterations in the Ca2+ influx/efflux, which further regulates autophagy and apoptosis activity. The current review presents the findings of numerous studies with regard to the involvement of proteins positioned in MERCSs and how they express anti‑ and pro‑apoptotic properties by adjusting Ca2+ across membranes. The review also explores the involvement of mitochondrial proteins as hot spots in cancer development, cell death and/or survival, and the method via which they can potentially be targeted as a therapeutic option.
Collapse
|
26
|
Thoudam T, Chanda D, Lee JY, Jung MK, Sinam IS, Kim BG, Park BY, Kwon WH, Kim HJ, Kim M, Lim CW, Lee H, Huh YH, Miller CA, Saxena R, Skill NJ, Huda N, Kusumanchi P, Ma J, Yang Z, Kim MJ, Mun JY, Harris RA, Jeon JH, Liangpunsakul S, Lee IK. Enhanced Ca 2+-channeling complex formation at the ER-mitochondria interface underlies the pathogenesis of alcohol-associated liver disease. Nat Commun 2023; 14:1703. [PMID: 36973273 PMCID: PMC10042999 DOI: 10.1038/s41467-023-37214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Ca2+ overload-induced mitochondrial dysfunction is considered as a major contributing factor in the pathogenesis of alcohol-associated liver disease (ALD). However, the initiating factors that drive mitochondrial Ca2+ accumulation in ALD remain elusive. Here, we demonstrate that an aberrant increase in hepatic GRP75-mediated mitochondria-associated ER membrane (MAM) Ca2+-channeling (MCC) complex formation promotes mitochondrial dysfunction in vitro and in male mouse model of ALD. Unbiased transcriptomic analysis reveals PDK4 as a prominently inducible MAM kinase in ALD. Analysis of human ALD cohorts further corroborate these findings. Additional mass spectrometry analysis unveils GRP75 as a downstream phosphorylation target of PDK4. Conversely, non-phosphorylatable GRP75 mutation or genetic ablation of PDK4 prevents alcohol-induced MCC complex formation and subsequent mitochondrial Ca2+ accumulation and dysfunction. Finally, ectopic induction of MAM formation reverses the protective effect of PDK4 deficiency in alcohol-induced liver injury. Together, our study defines a mediatory role of PDK4 in promoting mitochondrial dysfunction in ALD.
Collapse
Affiliation(s)
- Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jung Yi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Min-Kyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ibotombi Singh Sinam
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Bo-Yoon Park
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Hee Kwon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyo-Jeong Kim
- Electron Microscopy Research Center, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea
| | - Myeongjin Kim
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Chae Won Lim
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea
| | - Caroline A Miller
- Electron Microscopy Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas J Skill
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea.
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
27
|
García-Rodríguez FJ, Buchrieser C, Escoll P. Legionella and mitochondria, an intriguing relationship. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:37-81. [PMID: 36858656 DOI: 10.1016/bs.ircmb.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, a severe pneumonia. L. pneumophila injects via a type-IV-secretion-system (T4SS) more than 300 bacterial proteins into macrophages, its main host cell in humans. Certain of these bacterial effectors target organelles in the infected cell and hijack multiple processes to facilitate all steps of the intracellular life cycle of this pathogen. In this review, we discuss the interplay between L. pneumophila, an intracellular bacterium fully armed with virulence tools, and mitochondria, the extraordinary eukaryotic organelles playing prominent roles in cellular bioenergetics, cell-autonomous immunity and cell death. We present and discuss key findings concerning the multiple interactions of L. pneumophila with mitochondria during infection and the mechanisms employed by T4SS effectors that target mitochondrial functions to subvert infected cells.
Collapse
Affiliation(s)
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France.
| | - Pedro Escoll
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France.
| |
Collapse
|
28
|
Milani M, Pihán P, Hetz C. Mitochondria-associated niches in health and disease. J Cell Sci 2022; 135:285141. [DOI: 10.1242/jcs.259634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
ABSTRACT
The appreciation of the importance of interorganelle contacts has steadily increased over the past decades. Advances in imaging, molecular biology and bioinformatic techniques allowed the discovery of new mechanisms involved in the interaction and communication between organelles, providing novel insights into the inner works of a cell. In this Review, with the mitochondria under the spotlight, we discuss the most recent findings on the mechanisms mediating the communication between organelles, focusing on Ca2+ signaling, lipid exchange, cell death and stress responses. Notably, we introduce a new integrative perspective to signaling networks that is regulated by interorganelle interactions – the mitochondria-associated niches – focusing on the link between the molecular determinants of contact sites and their functional outputs, rather than simply physical and structural communication. In addition, we highlight the neuropathological and metabolic implications of alterations in mitochondria-associated niches and outline how this concept might improve our understanding of multi-organelle interactions.
Collapse
Affiliation(s)
- Mateus Milani
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
- Buck Institute for Research on Aging 4 , Novato, CA 94945 , USA
| |
Collapse
|
29
|
GRP75 Modulates Endoplasmic Reticulum-Mitochondria Coupling and Accelerates Ca 2+-Dependent Endothelial Cell Apoptosis in Diabetic Retinopathy. Biomolecules 2022; 12:biom12121778. [PMID: 36551205 PMCID: PMC9776029 DOI: 10.3390/biom12121778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondrial dysfunction play fundamental roles in the pathogenesis of diabetic retinopathy (DR). However, the interrelationship between the ER and mitochondria are poorly understood in DR. Here, we established high glucose (HG) or advanced glycosylation end products (AGE)-induced human retinal vascular endothelial cell (RMEC) models in vitro, as well as a streptozotocin (STZ)-induced DR rat model in vivo. Our data demonstrated that there was increased ER-mitochondria coupling in the RMECs, which was accompanied by elevated mitochondrial calcium ions (Ca2+) and mitochondrial dysfunction under HG or AGE incubation. Mechanistically, ER-mitochondria coupling was increased through activation of the IP3R1-GRP75-VDAC1 axis, which transferred Ca2+ from the ER to the mitochondria. Elevated mitochondrial Ca2+ led to an increase in mitochondrial ROS and a decline in mitochondrial membrane potential. These events resulted in the elevation of mitochondrial permeability and induced the release of cytochrome c from the mitochondria into the cytoplasm, which further activated caspase-3 and promoted apoptosis. The above phenomenon was also observed in tunicamycin (TUN, ER stress inducer)-treated cells. Meanwhile, BAPTA-AM (calcium chelator) rescued mitochondrial dysfunction and apoptosis in DR, which further confirmed of our suspicions. In addition, 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, was shown to reverse retinal dysfunction in STZ-induced DR rats in vivo. Taken together, our findings demonstrated that DR fueled the formation of ER-mitochondria coupling via the IP3R1-GRP75-VDAC1 axis and accelerated Ca2+-dependent cell apoptosis. Our results demonstrated that inhibition of ER-mitochondrial coupling, including inhibition of GRP75 or Ca2+ overload, may be a potential therapeutic target in DR.
Collapse
|
30
|
Nieblas B, Pérez-Treviño P, García N. Role of mitochondria-associated endoplasmic reticulum membranes in insulin sensitivity, energy metabolism, and contraction of skeletal muscle. Front Mol Biosci 2022; 9:959844. [PMID: 36275635 PMCID: PMC9585326 DOI: 10.3389/fmolb.2022.959844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle has a critical role in the regulation of the energy balance of the organism, particularly as the principal tissue responsible for insulin-stimulated glucose disposal and as the major site of peripheral insulin resistance (IR), which has been related to accumulation of lipid intermediates, reduced oxidative capacity of mitochondria and endoplasmic reticulum (ER) stress. These organelles form contact sites, known as mitochondria-associated ER membranes (MAMs). This interconnection seems to be involved in various cellular processes, including Ca2+ transport and energy metabolism; therefore, MAMs could play an important role in maintaining cellular homeostasis. Evidence suggests that alterations in MAMs may contribute to IR. However, the evidence does not refer to a specific subcellular location, which is of interest due to the fact that skeletal muscle is constituted by oxidative and glycolytic fibers as well as different mitochondrial populations that appear to respond differently to stimuli and pathological conditions. In this review, we show the available evidence of possible differential responses in the formation of MAMs in skeletal muscle as well as its role in insulin signaling and the beneficial effect it could have in the regulation of energetic metabolism and muscular contraction.
Collapse
Affiliation(s)
- Bianca Nieblas
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Perla Pérez-Treviño
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Noemí García
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- *Correspondence: Noemí García,
| |
Collapse
|
31
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Gao L, Zhang C, Yu S, Liu S, Wang G, Lan H, Zheng X, Li S. Glycine ameliorates MBP-induced meiotic abnormalities and apoptosis by regulating mitochondrial-endoplasmic reticulum interactions in porcine oocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119756. [PMID: 35839969 DOI: 10.1016/j.envpol.2022.119756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 05/14/2023]
Abstract
Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP3R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca2+]i) levels and mitochondrial Ca2+ ([Ca2+]m) , increasing the ER Ca2+ ([Ca2+]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial-ER interactions caused by MBP exposure in vitro.
Collapse
Affiliation(s)
- Lepeng Gao
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Chang Zhang
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Sicong Yu
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Shuang Liu
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Guoxia Wang
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Hainan Lan
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xin Zheng
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Suo Li
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China.
| |
Collapse
|
33
|
Nikolaeva NS, Yandulova EY, Aleksandrova YR, Starikov AS, Neganova ME. The Role of a Pathological Interaction between β-amyloid and Mitochondria in the Occurrence and Development of Alzheimer's Disease. Acta Naturae 2022; 14:19-34. [PMID: 36348714 PMCID: PMC9611857 DOI: 10.32607/actanaturae.11723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in existence. It is characterized by an impaired cognitive function that is due to a progressive loss of neurons in the brain. Extracellular β-amyloid (Aβ) plaques are the main pathological features of the disease. In addition to abnormal protein aggregation, increased mitochondrial fragmentation, altered expression of the genes involved in mitochondrial biogenesis, disruptions in the ER-mitochondria interaction, and mitophagy are observed. Reactive oxygen species are known to affect Aβ expression and aggregation. In turn, oligomeric and aggregated Aβ cause mitochondrial disorders. In this review, we summarize available knowledge about the pathological effects of Aβ on mitochondria and the potential molecular targets associated with proteinopathy and mitochondrial dysfunction for the pharmacological treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N. S. Nikolaeva
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - E. Yu. Yandulova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - A. S. Starikov
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - M. E. Neganova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| |
Collapse
|
34
|
Li J, Wang Z, Li C, Song Y, Wang Y, Bo H, Zhang Y. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells 2022; 11:cells11132086. [PMID: 35805170 PMCID: PMC9266156 DOI: 10.3390/cells11132086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Aging causes degenerative changes such as epigenetic changes and mitochondrial dysfunction in skeletal muscle. Exercise can upregulate muscle mitochondrial homeostasis and enhance antioxidant capacity and represents an effective treatment to prevent muscle aging. Epigenetic changes such as DNA methylation, histone posttranslational modifications, and microRNA expression are involved in the regulation of exercise-induced adaptive changes in muscle mitochondria. Reactive oxygen species (ROS) play an important role in signaling molecules in exercise-induced muscle mitochondrial health benefits, and strong evidence emphasizes that exercise-induced ROS can regulate gene expression via epigenetic mechanisms. The majority of mitochondrial proteins are imported into mitochondria from the cytosol, so mitochondrial homeostasis is regulated by nuclear epigenetic mechanisms. Exercise can reverse aging-induced changes in myokine expression by modulating epigenetic mechanisms. In this review, we provide an overview of the role of exercise-generated ROS in the regulation of mitochondrial homeostasis mediated by epigenetic mechanisms. In addition, the potential epigenetic mechanisms involved in exercise-induced myokine expression are reviewed.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Zhe Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yu Song
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Department of Military Training Medicines, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
- Correspondence: (H.B.); (Y.Z.)
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Correspondence: (H.B.); (Y.Z.)
| |
Collapse
|
35
|
Li YE, Sowers JR, Hetz C, Ren J. Cell death regulation by MAMs: from molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death Dis 2022; 13:504. [PMID: 35624099 PMCID: PMC9142581 DOI: 10.1038/s41419-022-04942-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are interconnected intracellular organelles with vital roles in the regulation of cell signaling and function. While the ER participates in a number of biological processes including lipid biosynthesis, Ca2+ storage and protein folding and processing, mitochondria are highly dynamic organelles governing ATP synthesis, free radical production, innate immunity and apoptosis. Interplay between the ER and mitochondria plays a crucial role in regulating energy metabolism and cell fate control under stress. The mitochondria-associated membranes (MAMs) denote physical contact sites between ER and mitochondria that mediate bidirectional communications between the two organelles. Although Ca2+ transport from ER to mitochondria is vital for mitochondrial homeostasis and energy metabolism, unrestrained Ca2+ transfer may result in mitochondrial Ca2+ overload, mitochondrial damage and cell death. Here we summarize the roles of MAMs in cell physiology and its impact in pathological conditions with a focus on cardiovascular disease. The possibility of manipulating ER-mitochondria contacts as potential therapeutic approaches is also discussed.
Collapse
Affiliation(s)
- Yiran E Li
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Buck Institute for Research in Aging, Novato, CA, 94945, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
36
|
Hunt EG, Andrews AM, Larsen SR, Thaxton JE. The ER-Mitochondria Interface as a Dynamic Hub for T Cell Efficacy in Solid Tumors. Front Cell Dev Biol 2022; 10:867341. [PMID: 35573704 PMCID: PMC9091306 DOI: 10.3389/fcell.2022.867341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
The endoplasmic reticulum (ER) is a large continuous membranous organelle that plays a central role as the hub of protein and lipid synthesis while the mitochondria is the principal location for energy production. T cells are an immune subset exhibiting robust dependence on ER and mitochondrial function based on the need for protein synthesis and secretion and metabolic dexterity associated with foreign antigen recognition and cytotoxic effector response. Intimate connections exist at mitochondrial-ER contact sites (MERCs) that serve as the structural and biochemical platforms for cellular metabolic homeostasis through regulation of fission and fusion as well as glucose, Ca2+, and lipid exchange. Work in the tumor immunotherapy field indicates that the complex interplay of nutrient deprivation and tumor antigen stimulation in the tumor microenvironment places stress on the ER and mitochondria, causing dysfunction in organellar structure and loss of metabolic homeostasis. Here, we assess prior literature that establishes how the structural interface of these two organelles is impacted by the stress of solid tumors along with recent advances in the manipulation of organelle homeostasis at MERCs in T cells. These findings provide strong evidence for increased tumor immunity using unique therapeutic avenues that recharge cellular metabolic homeostasis in T cells.
Collapse
Affiliation(s)
- Elizabeth G. Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Alex M. Andrews
- Hollings Cancer Center, Charleston, SC, United States,Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Jessica E. Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States,*Correspondence: Jessica E. Thaxton,
| |
Collapse
|
37
|
Yu CL, Lee HL, Yang SF, Wang SW, Lin CP, Hsieh YH, Chiou HL. Protodioscin Induces Mitochondrial Apoptosis of Human Hepatocellular Carcinoma Cells Through Eliciting ER Stress-Mediated IP3R Targeting Mfn1/Bak Expression. J Hepatocell Carcinoma 2022; 9:327-341. [PMID: 35496076 PMCID: PMC9049873 DOI: 10.2147/jhc.s355027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Protodioscin (PD), a steroidal saponin, has a diverse pharmacological activity including neuroprotection, male fertility improvement, and cytotoxicity against various cancers cell lines of different origins. However, the effect of PD on hepatocellular carcinoma (HCC) is still unclear. Methods Cell viability, colony formation and flow cytometry analysis for apoptosis profile, mitochondrial membrane potential endoplasmic reticulum (ER) expansion were employed to determine the effect of PD against HCC cells. Transient transfection of siRNA, immunofluorescent imaging and immunoprecipitation were used to elucidate the anti-cancer mechanism of PD. The in vivo toxicity and efficacy of PD were assessed by a xenograft mouse model. Results PD induced apoptosis, loss of mitochondrial membrane potential and ER expansion in HCC cells. Either downregulation of Mfn1 or Bak reversed PD-induced apoptosis and loss of mitochondrial membrane potential. Further analysis revealed that Mfn1 and Bak will form a complex with IP3R to facilitate the transfer of Ca2+ from ER to mitochondria and apoptosis. In addition, our tumour xenograft model further verifies the in vivo anti-tumour effect of PD. Conclusion Our study sheds light on the understanding of the anti-HCC effects of PD and may open new aspects for the development of novel treatment for human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Biomedical Science, Mackay Medical College, New Taipei City, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Pin Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Hepatology and Gastroenterology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Correspondence: Yi-Hsien Hsieh; Hui-Ling Chiou, Tel +886-4-2473-0022, Fax +886-4- 2472-3229, Email ;
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharmacol 2022; 199:115011. [PMID: 35314166 DOI: 10.1016/j.bcp.2022.115011] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic membrane coupling regions formed by the coupling of the mitochondrial outer membrane and endoplasmic reticulum (ER). MAMs are involved in the mitochondrial dynamics, mitophagy, Ca2+ exchange, and ER stress. A large number of studies indicate that many proteins are involved in the formation of MAMs, including dynamic-related protein 1 (Drp1), DJ-1, PTEN-induced putative kinase 1 (PINK), α-synuclein (α-syn), sigma-1 receptor (S1R), mitofusin-2 (Mfn2), presenilin-1 (PS1), protein kinase R (PKR)-like ER kinase (PERK), Parkin, Cyclophilin D (CypD), glucose-related protein 75 (Grp75), FUN14 domain containing 1 (Fundc1), vesicle-associated membrane-protein-associated protein B (VAPB), phosphofurin acidic cluster sorting protein 2 (PACS-2), ER oxidoreductin 1 (Ero1), and receptor expression-enhancing protein 1 (REEP1). These proteins play an important role in the structure and functions of the MAMs. Abnormalities in these MAM proteins further contribute to the occurrence and development of related diseases, such as neurodegenerative diseases, non-alcoholicfattyliverdisease (NALFD), type 2 diabetes mellitus (T2DM), and diabetic kidney (DN). In this review, we introduce important proteins involved in the structure and the functions of the MAMs. Furthermore, we effectively summarize major insights about these proteins that are involved in the physiopathology of several diseases through the effect on MAMs.
Collapse
|
39
|
Zhao S, Heng N, Wang H, Wang H, Zhang H, Gong J, Hu Z, Zhu H. Mitofusins: from mitochondria to fertility. Cell Mol Life Sci 2022; 79:370. [PMID: 35725948 PMCID: PMC9209398 DOI: 10.1007/s00018-022-04386-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023]
Abstract
Germ cell formation and embryonic development require ATP synthesized by mitochondria. The dynamic system of the mitochondria, and in particular, the fusion of mitochondria, are essential for the generation of energy. Mitofusin1 and mitofusin2, the homologues of Fuzzy onions in yeast and Drosophila, are critical regulators of mitochondrial fusion in mammalian cells. Since their discovery mitofusins (Mfns) have been the source of significant interest as key influencers of mitochondrial dynamics, including membrane fusion, mitochondrial distribution, and the interaction with other organelles. Emerging evidence has revealed significant insight into the role of Mfns in germ cell formation and embryonic development, as well as the high incidence of reproductive diseases such as asthenospermia, polycystic ovary syndrome, and gestational diabetes mellitus. Here, we describe the key mechanisms of Mfns in mitochondrial dynamics, focusing particularly on the role of Mfns in the regulation of mammalian fertility, including spermatogenesis, oocyte maturation, and embryonic development. We also highlight the role of Mfns in certain diseases associated with the reproductive system and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Nuo Heng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haoyu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haobo Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jianfei Gong
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zhihui Hu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
40
|
Perez-Leanos CA, Romero-Campos HE, Dupont G, Gonzalez-Velez V. Reduction of ER-Mitochondria Distance: a Key Feature in Alzheimer's and Parkinson's Disease, and During Cancer Treatment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4412-4415. [PMID: 34892198 DOI: 10.1109/embc46164.2021.9631090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
One remarkable dynamic cell structure is the region between the endoplasmic reticulum (ER) and the mitochondria, termed the mitochondria-associated membranes (MAM). MAMs carry out different cellular functions such as Ca2+ homeostasis and lipid synthesis, which depend on an adequate distance separating the ER and mitochondria. A decreased distance has been observed in Alzheimer's disease, Parkinson's disease, and during cancer treatment. It is unclear how dysregulation of the spatial characteristics of MAMs can cause abnormal Ca2+ dynamics which could end in cell death. In this work, a computational model was proposed to study the relationship between a decreased ER-mitochondria distance and mitochondria-induced cell death. Our results point towards the mitochondrial permeability transition pore (mPTP) as a key cell death signaling mechanism indirectly regulated by the spatial characteristics of MAMs.Clinical Relevance- The endoplasmic reticulum-mitochondria crosstalk plays an important role in the mPTP-induced apoptosis. This process could be behind neurodegeneration in Alzheimer's and Parkinson's diseases, as well as behind the induced cell death during cancer treatment.
Collapse
|