1
|
Stem Cells in Kidney Ischemia: From Inflammation and Fibrosis to Renal Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24054631. [PMID: 36902062 PMCID: PMC10002584 DOI: 10.3390/ijms24054631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Ischemic nephropathy consists of progressive renal function loss due to renal hypoxia, inflammation, microvascular rarefaction, and fibrosis. We provide a literature review focused on kidney hypoperfusion-dependent inflammation and its influence on renal tissue's ability to self-regenerate. Moreover, an overview of the advances in regenerative therapy with mesenchymal stem cell (MSC) infusion is provided. Based on our search, we can point out the following conclusions: 1. endovascular reperfusion is the gold-standard therapy for RAS, but its success mostly depends on treatment timeliness and a preserved downstream vascular bed; 2. anti-RAAS drugs, SGLT2 inhibitors, and/or anti-endothelin agents are especially recommended for patients with renal ischemia who are not eligible for endovascular reperfusion for slowing renal damage progression; 3. TGF-β, MCP-1, VEGF, and NGAL assays, along with BOLD MRI, should be extended in clinical practice and applied to a pre- and post-revascularization protocols; 4. MSC infusion appears effective in renal regeneration and could represent a revolutionary treatment for patients with fibrotic evolution of renal ischemia.
Collapse
|
2
|
Farooqui N, Mohan A, Isik B, Goksu BB, Thaler R, Zhu XY, Krier JD, Saadiq IM, Ferguson CM, Jordan KL, Tang H, Textor SC, Hickson LTJ, van Wijnen AJ, Eirin A, Lerman LO, Herrmann SM. Effect of Hypoxia Preconditioning on the Regenerative Capacity of Adipose Tissue Derived Mesenchymal Stem Cells in a Model of Renal Artery Stenosis. Stem Cells 2023; 41:50-63. [PMID: 36250949 PMCID: PMC9887092 DOI: 10.1093/stmcls/sxac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Atherosclerotic renal artery stenosis (ARAS) is associated with irreversible parenchymal renal disease and regenerative stem cell therapies may improve renal outcomes. Hypoxia preconditioning (HPC) may improve the regenerative functions of adipose tissue-derived mesenchymal stem cells (AMSC) by affecting DNA 5-hydroxymethylcytosine (5hmC) marks in angiogenic genes. Here, we investigated using a porcine ARAS model, whether growth of ARAS AMSCs in hypoxia (Hx) versus normoxia (Nx) would enhance renal tissue repair, and comprehensively analyze how HPC modifies DNA hydroxymethylation compared to untreated ARAS and healthy/normal pigs (n=5 each). ARAS pigs exhibited elevated serum cholesterol, serum creatinine and renal artery stenosis, with a concomitant decrease in renal blood flow (RBF) and increased blood pressure (BP) compared to healthy pigs. Renal artery injection of either autologous Nx or Hx AMSCs improved diastolic BP, reduced kidney tissue fibrosis, and inflammation (CD3+ T-cells) in ARAS pigs. In addition, renal medullary hypoxia significantly lowered with Nx but not Hx AMSC treatment. Mechanistically, levels of epigenetic 5hmC marks (which reflect gene activation) estimated using DNA immunoprecipitation technique were elevated in profibrotic and inflammatory genes in ARAS compared with normal AMSCs. HPC significantly reduced 5hmC levels in cholesterol biosynthesis and oxidative stress response pathways in ARAS AMSCs. Thus, autologous AMSCs improve key renovascular parameters and inflammation in ARAS pigs, with HPC mitigating pathological molecular effects on inflammatory and profibrotic genes which may play a role in augmenting regenerative capacity of AMSCs.
Collapse
Affiliation(s)
- Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Arjunmohan Mohan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Busra Isik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Busra B Goksu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Xiang Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - La Tonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Carstens MH, García N, Mandayam S, Workeneh B, Pastora I, Calderón C, Bertram KA, Correa D. Safety of Stromal Vascular Fraction Cell Therapy for Chronic Kidney Disease of Unknown Cause (Mesoamerican Nephropathy). Stem Cells Transl Med 2022; 12:7-16. [PMID: 36545894 PMCID: PMC9887091 DOI: 10.1093/stcltm/szac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease of unknown cause (CKDu), also known as Mesoamerican nephropathy, typically presents as an ischemic nephropathy with chronic tubulointerstitial fibrosis in normotensive patients, rapidly progressing to kidney failure. In this first-in-human, open-label, safety study, we followed 18 patients with CKDu (stages 3-5) for 36 months after receiving a single infusion of angiogenic/anti-fibrotic autologous adipose-derived stromal vascular fraction (SVF) cells into their kidneys bilaterally via renal artery catheterization. SVF therapy was safe and well tolerated. There were no SVF-related serious adverse events and no procedural complications. Color Doppler evaluation at 2 months demonstrated increased perfusion to the interlobar and/or arcuate artery levels in each kidney evaluated (36/36) with a reduction in resistance index at the hilar artery (35/36) kidneys. Beyond 12 months, patients with initial eGFR <30 mL/minute/1.73 m2 deteriorated, whereas those ≥30 mL/minute/1.73 m2 further sustained their renal function, suggesting a possible renal protective effect in that group.
Collapse
Affiliation(s)
- Michael H Carstens
- Corresponding author: Michael H. Carstens, MD, FACS, Wake Forest Institute of Regenerative Medicine, 971 Technology Way, Winston-Salem, NC 27101, USA. Tel: +1 571 228 9940;
| | - Nelson García
- Department of Medicine, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua,Nephrology section, Ministerio de Salud, República de Nicaragua
| | - Sreedhar Mandayam
- Department of Nephrology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Biruh Workeneh
- Department of Nephrology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Indiana Pastora
- Department of Medicine, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Carlos Calderón
- Department of Cardiology, Hospital San Juan de Dios, San José, Costa Rica
| | - Kenneth A Bertram
- Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
4
|
Lin C, Chen W, Han Y, Sun Y, Zhao X, Yue Y, Li B, Fan W, Zhang T, Xiao L. PTEN-induced kinase 1 enhances the reparative effects of bone marrow mesenchymal stromal cells on mice with renal ischaemia/reperfusion-induced acute kidney injury. Hum Cell 2022; 35:1650-1670. [PMID: 35962179 PMCID: PMC9515057 DOI: 10.1007/s13577-022-00756-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) is a common severe acute syndrome caused by multiple factors and is characterized by a rapid decline in renal function during a short period. Bone marrow mesenchymal stromal cells (BMSCs) are effective in treating AKI. However, the mechanism of their beneficial effects remains unclear. PTEN-induced kinase 1 (PINK1) may play an important role in kidney tissue repair. In this study, we explored the effect of PINK1 overexpression on enhancing BMSC-mediated repair of AKI. In this study, ischaemia/reperfusion-induced AKI (IRI-AKI) in mice and a hypoxia-reoxygenation model in cells were established, and the indices were examined by pathology and immunology experiments. After ischaemia/reperfusion, PINK1 overexpression reduced apoptosis in injured kidney tissue cell, decreased T lymphocyte infiltration, increased macrophage infiltration, and alleviated the inflammatory response. PINK1 relieved the stress response of BMSCs and renal tubular epithelial cells (RTECs), reduced apoptosis, altered the release of inflammatory factors, and reduced the proliferation of peripheral blood mononuclear cells (PBMCs). In conclusion, BMSCs and RTECs undergo stress responses in response to hypoxia, inflammation and other conditions, and overexpressing PINK1 in BMSCs could enhance their ability to resist these stress reactions. Furthermore, PINK1 overexpression can regulate the distribution of immune cells and improve the inflammatory response. The regulation of mitochondrial autophagy during IRI-AKI maintains mitochondrial homeostasis and protects renal function. The results of this study provide new strategies and experimental evidence for BMSC-mediated repair of IRI-AKI.
Collapse
Affiliation(s)
- Chenyu Lin
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Wen Chen
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Yong Han
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Yujie Sun
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Xiaoqiong Zhao
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China.,Jiamusi University, Jiamusi, China
| | - Yuan Yue
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China.,Jiamusi University, Jiamusi, China
| | - Binyu Li
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Wenmei Fan
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | | | - Li Xiao
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China.
| |
Collapse
|
5
|
Lerman LO. Cell-based regenerative medicine for renovascular disease. Trends Mol Med 2021; 27:882-894. [PMID: 34183258 PMCID: PMC8403163 DOI: 10.1016/j.molmed.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Renal artery stenosis (RAS) elicits the development of hypertension and post-stenotic kidney damage, which may become irresponsive to restoration of arterial patency. Rather than mere losses of blood flow or oxygen supply, irreversible intrarenal microvascular rarefaction, tubular injury, and interstitial fibrosis are now attributed to intrinsic pathways activated within the kidney, focusing attention on the kidney parenchyma as a therapeutic target. Several regenerative approaches involving the delivery of reparative cells or products have achieved kidney repair in experimental models of RAS and the delivery of mesenchymal stem/stromal cells (MSCs) has already been translated to human subjects with RAS with promising results. The ongoing development of innovative approaches in kidney disease awaits application, validation, and acceptance as routine clinical treatment to avert kidney damage in RAS.
Collapse
Affiliation(s)
- Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Stem Cells to the Rescue: Development and Application of Cell-Based Therapy for Microvascular Repair. Cells 2021; 10:cells10082144. [PMID: 34440914 PMCID: PMC8393633 DOI: 10.3390/cells10082144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
|