1
|
Carmona-Carmona CA, Zini P, Velasco-Sampedro EA, Cózar-Castellano I, Perdomo G, Caloca MJ. β2-Chimaerin, a GTPase-Activating Protein for Rac1, Is a Novel Regulator of Hepatic Insulin Signaling and Glucose Metabolism. Molecules 2024; 29:5301. [PMID: 39598690 PMCID: PMC11597029 DOI: 10.3390/molecules29225301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Glucose homeostasis is a complex process regulated by multiple organs and hormones, with insulin playing a central role. Recent evidence underscores the role of small GTP-binding proteins, particularly Rac1, in regulating insulin secretion and glucose uptake. However, the role of Rac1-regulatory proteins in these processes remains largely unexplored. In this study, we investigated the role of β2-chimaerin, a Rac1-specific GTPase-activating protein (GAP), in glucose homeostasis using whole-body β2-chimaerin knockout mice. Our data revealed that β2-chimaerin deficiency results in improved glucose tolerance and enhanced insulin sensitivity in mice. These metabolic effects were associated with increased insulin-induced AKT phosphorylation in the liver and activation of downstream pathways that regulate gluconeogenesis and glycogen synthesis. We show that insulin activates Rac1 in the liver. However, β2-chimaerin deletion did not significantly alter Rac1 activation in this organ, suggesting that β2-chimaerin regulates insulin signaling via a Rac1-independent mechanism. These findings expand our understanding of Rac1 regulation in glucose metabolism, and identify β2-chimaerin as a novel modulator of hepatic insulin signaling, with potential implications for the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Cristian Andrés Carmona-Carmona
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Pablo Zini
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Eladio A. Velasco-Sampedro
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Germán Perdomo
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - María J. Caloca
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| |
Collapse
|
2
|
Llevenes P, Chen A, Lawton M, Qiu Y, Seen M, Monti S, Denis GV. Plasma Exosomes in Insulin Resistant Obesity Exacerbate Progression of Triple Negative Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617639. [PMID: 39416125 PMCID: PMC11482917 DOI: 10.1101/2024.10.10.617639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Breast cancer, the most common cancer among women worldwide, continues to pose significant public health challenges. Among the subtypes of breast cancer, triple-negative breast cancer (TNBC) is particularly aggressive and difficult to treat due to the absence of receptors for estrogen, progesterone, or human epidermal growth factor receptor 2, rendering TNBC refractory to conventional targeted therapies. Emerging research underscores the exacerbating role of metabolic disorders, such as type 2 diabetes and obesity, on TNBC aggressiveness. Here, we investigate the critical cellular and molecular factors underlying this link. We explore the pivotal role of circulating plasma exosomes in modulating the tumor microenvironment and enhancing TNBC aggressiveness. We find that plasma exosomes from diet-induced obesity mice induce epithelial- mesenchymal transition features in TNBC cells, leading to increased migration in vitro and enhanced metastasis in vivo . We build on our previous reports demonstrating that plasma exosomes from obese, diabetic patients, and exosomes from insulin-resistant 3T3-L1 adipocytes, upregulate key transcriptional signatures of epithelial- mesenchymal transition in breast cancer. Bioinformatic analysis reveals that TNBC cells exhibit higher expression and activation of proteins related to the Rho-GTPase cascade, particularly the small Ras-related protein Rac1. Our approach suggests novel therapeutic targets and exosomal biomarkers, ultimately to improve prognosis for TNBC patients with co-morbid metabolic disorders.
Collapse
|
3
|
Casey TM, Gouveia KM, Beckett LM, Markworth JF, Boerman JP. Molecular signatures of longissimus dorsi differ between dairy cattle based on prepartum muscle reserves and branched-chain volatile fatty acid supplementation. Physiol Genomics 2024; 56:597-608. [PMID: 38975796 DOI: 10.1152/physiolgenomics.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Dairy cattle with high (HM) versus low muscle (LM) reserves as determined by longissimus dorsi muscle depth (LDD) in late gestation exhibit differential muscle mobilization related to subsequent milk production. Moreover, branched-chain volatile fatty acid (BCVFA) supplementation increased blood glucose levels. We hypothesized that differences in HM and LM reflect distinct muscle metabolism and that BCVFA supplementation altered metabolic pathways. At 42 days before expected calving (BEC), Holstein dairy cows were enrolled in a 2 × 2 factorial study of diet and muscle reserves, by assignment to control (CON)- or BCVFA-supplemented diets and LDD of HM (>4.6 cm) or LM (≤4.6 cm) groups: HM-CON (n = 13), HM-BCVFA (n = 10), LM-CON (n = 9), and LM-BCVFA (n = 9). Longisumus dorsi muscle was biopsied at 21 days BEC, total RNA was isolated, and protein-coding gene expression was measured with RNA sequencing. Between HM and LM, 713 genes were differentially expressed and 481 between BCVFA and CON (P < 0.05). Transcriptional signatures indicated differential distribution of type II fibers between groups, with MYH1 greater in LM cattle and MYH2 greater in HM cattle (P < 0.05). Signatures of LM cattle relative to HM cattle indicated greater activation of autophagy, ubiquitin-proteasome, and Ca2+-calpain pathways. HM cattle displayed greater expression of genes that encode extracellular matrix proteins and factors that regulate their proteolysis and turnover. BCVFA modified transcriptomes by increasing expression of genes that regulate fatty acid degradation and flux of carbons into the tricarboxylic acid cycle as acetyl CoA. Molecular signatures support distinct metabolic strategies between LM and HM cattle and that BCVFA supplementation increased substrates for energy generation.NEW & NOTEWORTHY Muscle biopsies of the longissimus dorsi of prepartum dairy cattle indicate that molecular signatures support distinct metabolic strategies between low- and high-muscle cattle and that branched-chain volatile fatty acid supplementation increased substrates for energy generation.
Collapse
Affiliation(s)
- Theresa M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Kyrstin M Gouveia
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Linda M Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Jacquelyn P Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
4
|
Chen J, Chen Z, Wang W, Wang L, Zheng J, Wu S, Pan Y, Li S, Zhao J, Cai Z. Effects of Commonly used Surfactants, Poloxamer 188 and Tween 80, on the Drug Transport Capacity of Intestinal Glucose Transporters. AAPS PharmSciTech 2024; 25:163. [PMID: 38997614 DOI: 10.1208/s12249-024-02881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Some glycoside drugs can be transported through intestinal glucose transporters (IGTs). The surfactants used in oral drug preparations can affect the function of transporter proteins. This study aimed to investigate the effect of commonly used surfactants, Poloxamer 188 and Tween 80, on the drug transport capacity of IGTs. Previous studies have shown that gastrodin is the optimal drug substrate for IGTs. Gastrodin was used as a probe drug to evaluate the effect of these two surfactants on intestinal absorption in SD rats through pharmacokinetic and in situ single-pass intestinal perfusion. Then, the effects of the two surfactants on the expression of glucose transporters and tight-junction proteins were examined using RT-PCR and western blotting. Additionally, the effect of surfactants on intestinal permeability was evaluated through hematoxylin-eosin staining. The results found that all experimental for Poloxamer 188 (0.5%, 2.0% and 8.0%) and Tween 80 (0.1% and 2.0%) were not significantly different from those of the blank group. However, the AUC(0-∞) of gastrodin increased by approximately 32% when 0.5% Tween 80 was used. The changes in IGT expression correlated with the intestinal absorption of gastrodin. A significant increase in the expression of IGTs was observed at 0.5% Tween 80. In conclusion, Poloxamer 188 had minimal effect on the drug transport capacity of IGTs within the recommended limits of use. However, the expression of IGTs increased in response to 0.5% Tween 80, which significantly enhanced the drug transport capacity of IGTs. However, 0.1% and 2.0% Tween 80 had no significant effect.
Collapse
Affiliation(s)
- Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wentao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liyang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqiong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuru Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
5
|
Ma KY, Song JJ, Li DP, Wu Y, Wang CH, Liu ZL, Li TT, Ma YJ. Genomic structure analysis and construction of DNA fingerprint for four sheep populations. Animal 2024; 18:101116. [PMID: 38484632 DOI: 10.1016/j.animal.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/20/2024] Open
Abstract
The Yongdeng Qishan sheep (QS) is a sheep population found locally in China. To gain in-depth knowledge of its population characteristics, three control groups were chosen, comprising the Lanzhou fat-tailed sheep (LFT), TAN sheep (TAN), and Minxian black fur sheep (MBF), inhabiting the nearby environments. This study genotyped a total of 120 individuals from four sheep populations: QS, LFT, TAN, and MBF. Using Specific-Locus Amplified Fragment Sequencing, we conducted genetic diversity, population structure, and selective sweep analysis, and constructed the fingerprint of each population. In total, there were 782 535 single nucleotide polymorphism (SNP) variations identified, with most being situated within regions that are intergenic or intronic. The genetic diversity analysis revealed that the QS population exhibited lower genetic diversity compared to the other three populations. Consistent results were obtained from the principal component, phylogenetic tree, and population structure analysis, indicating significant genetic differences between QS and the other three populations. However, a certain degree of differentiation was observed within the QS population. The linkage disequilibrium (LD) patterns among the four populations showed clear distinctions, with the QS group demonstrating the most rapid LD decline. Kinship analysis supported the findings of population structure, dividing the 90 QS individuals into two subgroups consisting of 23 and 67 individuals. Selective sweep analysis identified a range of genes associated with reproduction, immunity, and adaptation to high-altitude hypoxia. These genes hold potential as candidate genes for marker-assisted selection breeding. Additionally, a total of 86 523 runs of homozygosity (ROHs) were detected, showing non-uniform distribution across chromosomes, with chromosome 1 having the highest coverage percentage and chromosome 26 the lowest. In the high-frequency ROH islands, 79 candidate genes were associated with biological processes such as reproduction and fat digestion and absorption. Furthermore, a DNA fingerprint was constructed for the four populations using 349 highly polymorphic SNPs. In summary, our research delves into the genetic diversity and population structure of QS population. The construction of DNA fingerprint profiles for each population can provide valuable references for the identification of sheep breeds both domestically and internationally.
Collapse
Affiliation(s)
- Ke-Yan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Juan-Juan Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Deng-Pan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chun-Hui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zi-Long Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Tao-Tao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - You-Ji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China.
| |
Collapse
|
6
|
Peifer-Weiß L, Al-Hasani H, Chadt A. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle. Int J Mol Sci 2024; 25:1910. [PMID: 38339185 PMCID: PMC10855711 DOI: 10.3390/ijms25031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases as well as hypoxia as stimulus that may be involved in the regulation of skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Leon Peifer-Weiß
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Gleason N, Kowluru A. Hyperglycemic Stress Induces Expression, Degradation, and Nuclear Association of Rho GDP Dissociation Inhibitor 2 (RhoGDIβ) in Pancreatic β-Cells. Cells 2024; 13:272. [PMID: 38334664 PMCID: PMC10854874 DOI: 10.3390/cells13030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Small G proteins (e.g., Rac1) play critical regulatory roles in islet β-cell function in health (physiological insulin secretion) and in metabolic stress (cell dysfunction and demise). Multiple regulatory factors for these G proteins, such as GDP dissociation inhibitors (GDIs), have been implicated in the functional regulation of these G proteins. The current set of investigations is aimed at understanding impact of chronic hyperglycemic stress on the expression and subcellular distribution of three known isoforms of RhoGDIs (RhoGDIα, RhoGDIβ, and RhoGDIγ) in insulin-secreting β-cells. The data accrued in these studies revealed that the expression of RhoGDIβ, but not RhoGDIα or RhoGDIγ, is increased in INS-1 832/13 cells, rat islets, and human islets. Hyperglycemic stress also promoted the cleavage of RhoGDIβ, leading to its translocation to the nuclear compartment. We also report that RhoGDIα, but not RhoGDIγ, is associated with the nuclear compartment. However, unlike RhoGDIβ, hyperglycemic conditions exerted no effects on RhoGDIα's association with nuclear fraction. Based on these observations, and our earlier findings of the translocation of Rac1 to the nuclear compartment under the duress of metabolic stress, we conclude that the RhoGDIβ-Rac1 signaling module promotes signals from the cytosolic to the nucleus, culminating in accelerated β-cell dysfunction under metabolic stress.
Collapse
Affiliation(s)
- Noah Gleason
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Anjaneyulu Kowluru
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Cowell E, Jaber H, Kris LP, Fitzgerald MG, Sanders VM, Norbury AJ, Eyre NS, Carr JM. Vav proteins do not influence dengue virus replication but are associated with induction of phospho-ERK, IL-6, and viperin mRNA following DENV infection in vitro. Microbiol Spectr 2024; 12:e0239123. [PMID: 38054722 PMCID: PMC10782993 DOI: 10.1128/spectrum.02391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Dengue disease is characterized by an inflammatory-mediated immunopathology, with elevated levels of circulating factors including TNF-α and IL-6. If the damaging inflammatory pathways could be blocked without loss of antiviral responses or exacerbating viral replication, then this would be of potential therapeutic benefit. The study here has investigated the Vav guanine exchange factors as a potential alternative signaling pathway that may drive dengue virus (DENV)-induced inflammatory responses, with a focus on Vav1 and 2. While Vav proteins were positively associated with mRNA for inflammatory cytokines, blocking Vav signaling didn't affect DENV replication but prevented DENV-induction of p-ERK and enhanced IL-6 (inflammatory) and viperin (antiviral) mRNA. These initial data suggest that Vav proteins could be a target that does not compromise control of viral replication and should be investigated further for broader impact on host inflammatory responses, in settings such as antibody-dependent enhancement of infection and in different cell types.
Collapse
Affiliation(s)
- Evangeline Cowell
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hawraa Jaber
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Luke P. Kris
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Madeleine G. Fitzgerald
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Valeria M. Sanders
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Aidan J. Norbury
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas S. Eyre
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Jillian M. Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Bai B, Gao K, Zhang K, Liu L, Chen X, Zhang Q. Pathological mechanisms of type 1 diabetes in children: investigation of the exosomal protein expression profile. Front Endocrinol (Lausanne) 2023; 14:1271929. [PMID: 37886648 PMCID: PMC10599151 DOI: 10.3389/fendo.2023.1271929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Type 1 diabetes (T1D) is a serious autoimmune disease with high morbidity and mortality. Early diagnosis and treatment remain unsatisfactory. While the potential for development of T1D biomarkers in circulating exosomes has attracted interest, progress has been limited. This study endeavors to explore the molecular dynamics of plasma exosome proteins in pediatric T1D patients and potential mechanisms correlated with T1D progression. Methods Liquid chromatography-tandem mass spectrometry with tandem mass tag (TMT)6 labeling was used to quantify exosomal protein expression profiles in 12 healthy controls and 24 T1D patients stratified by age (≤ 6 years old and > 6 years old) and glycated hemoglobin (HbA1c) levels (> 7% or > 7%). Integrated bioinformatics analysis was employed to decipher the functions of differentially expressed proteins, and Western blotting was used for validation of selected proteins' expression levels. Results We identified 1035 differentially expressed proteins (fold change > 1.3) between the T1D patients and healthy controls: 558 in those ≤ 6-year-old and 588 in those > 6-year-old. In those who reached an HbA1c level < 7% following 3 or more months of insulin therapy, the expression levels of most altered proteins in both T1D age groups returned to levels comparable to those in the healthy control group. Bioinformatics analysis revealed that differentially expressed exosome proteins are primarily related to immune function, hemostasis, cellular stress responses, and matrix organization. Western blotting confirmed the alterations in RAB40A, SEMA6D, COL6A5, and TTR proteins. Discussion This study delivers valuable insights into the fundamental molecular mechanisms contributing to T1D pathology. Moreover, it proposes potential therapeutic targets for improved T1D management.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Kang Gao
- Endocrinology Department, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Kexin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Lingyun Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaobo Chen
- Endocrinology Department, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
10
|
Huang B, Lin Z, Chen Z, Chen J, Shi B, Jia J, Li Y, Pan Y, Liang Y, Cai Z. Strain differences in the drug transport capacity of intestinal glucose transporters in Sprague-Dawley versus Wistar rats, C57BL/6J versus Kunming mice. Int J Pharm 2023; 640:123000. [PMID: 37254285 DOI: 10.1016/j.ijpharm.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Designing oral drug delivery systems using intestinal glucose transporters (IGTs) may be one of the strategies for improving oral bioavailability of drugs. However, little is known about the biological factors affecting the drug transport capacity of IGTs. Gastrodin is a sedative drug with a structure very similar to glucose. It is a highly water-soluble phenolic glucoside. It can hardly enter the intestine through simple diffusion but exhibits good oral bioavailability of over 80%. We confirmed that gastrodin is absorbed via the intestinal glucose transport pathway. It has the highest oral bioavailability among the reported glycosides' active ingredients through this pathway. Thus, gastrodin is the most selective drug substrate of IGTs and can be used to evaluate the drug transport capacity of IGTs. Obviously, strain is one of the main biological factors affecting drug absorption. This study firstly compared the drug transport capacity of IGTs between SD rats and Wistar rats and between C57 mice and KM mice by pharmacokinetic experiments and single-pass intestinal perfusion experiments of gastrodin. Then, the sodium-dependent glucose transporter type 1 (SGLT1) and sodium-independent glucose transporters type 2 (GLUT2) in the duodenum, jejunum, ileum and colon of these animals were quantified using RT-qPCR and Western blot. The results showed that the oral bioavailability of gastrodin in Wistar rats was significantly higher than in SD rats and significantly higher in KM mice than in C57 mice. Gastrodin absorption significantly differed among different intestinal segments in SD rats, C57 mice and KM mice, except Wistar rats. RT-qPCR and Western blot demonstrated that the intestinal expression distribution of SGLT1 and GLUT2 in SD rats and C57 mice was duodenum ≈ jejunum > ileum > colon. SGLT1 expression did not differ among different intestinal segments in KM mice, whereas the intestinal expression distribution of GLUT2 was duodenum ≈ jejunum ≈ ileum > colon. However, the expression of SGLT1 and GLUT2 did not differ among different intestinal segments in Wistar rats. It was reported that the intestinal expression distribution of SGLT1 and GLUT2 in humans is duodenum > jejunum > ileum > colon. Hence, the intestinal expression distribution of SGLT1 and GLUT2 of SD rats and C57 mice was more similar to that in humans. In conclusion, the drug transport capacity of IGTs differs in different strains of rats and mice. SD rats and C57 mice are more suitable for evaluating the pharmacokinetics of glycosides' active ingredients absorbed via the intestinal glucose transport pathway.
Collapse
Affiliation(s)
- Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Birui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Jingjing Jia
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Yuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yueqing Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuntao Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
11
|
GEF-H1 Transduces FcεRI Signaling in Mast Cells to Activate RhoA and Focal Adhesion Formation during Exocytosis. Cells 2023; 12:cells12040537. [PMID: 36831204 PMCID: PMC9954420 DOI: 10.3390/cells12040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
When antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release. Here, we show that the RhoGEF, GEF-H1, acts as a signal transducer of antigen stimulation to activate RhoA and promote mast cell spreading via focal adhesion (FA) formation. Cell spreading, granule movement, and exocytosis were all reduced in antigen-stimulated mast cells when GEF-H1 was depleted by RNA interference. GEF-H1-depleted cells also showed a significant reduction in RhoA activation, resulting in reduced stress fiber formation without altering lamellipodia formation. Ectopic expression of a constitutively active RhoA mutant restored normal morphology in GEF-H1-depleted cells. FA formation during antigen stimulation required GEF-H1, suggesting it is a downstream target of the GEF-H1-RhoA signaling axis. GEF-H1 was activated by phosphorylation in conjunction with antigen stimulation. Syk kinase is linked to the FcεRI signaling pathway and the Syk inhibitor, GS-9973, blocked GEF-H1 activation and also suppressed cell spreading, granule movement, and exocytosis. We concluded that during FcεRI receptor stimulation, GEF-H1 transmits signals to RhoA activation and FA formation to facilitate the exocytosis mechanism.
Collapse
|
12
|
Kumarasinghe L, Garcia-Gimeno MA, Ramirez J, Mayor U, Zugaza JL, Sanz P. P-Rex1 is a novel substrate of the E3 ubiquitin ligase Malin associated with Lafora disease. Neurobiol Dis 2023; 177:105998. [PMID: 36638890 PMCID: PMC10682699 DOI: 10.1016/j.nbd.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Laforin and Malin are two proteins that are encoded by the genes EPM2A and EPM2B, respectively. Laforin is a glucan phosphatase and Malin is an E3-ubiquitin ligase, and these two proteins function as a complex. Mutations occurring at the level of one of the two genes lead to the accumulation of an aberrant form of glycogen meant to cluster in polyglucosans that go under the name of Lafora bodies. Individuals affected by the appearance of these polyglucosans, especially at the cerebral level, experience progressive neurodegeneration and several episodes of epilepsy leading to the manifestation of a fatal form of a rare disease called Lafora disease (LD), for which, to date, no treatment is available. Despite the different dysfunctions described for this disease, many molecular aspects still demand elucidation. An effective way to unknot some of the nodes that prevent the achievement of better knowledge of LD is to focus on the substrates that are ubiquitinated by the E3-ubiquitin ligase Malin. Some substrates have already been provided by previous studies based on protein-protein interaction techniques and have been associated with some alterations that mark the disease. In this work, we have used an unbiased alternative approach based on the activity of Malin as an E3-ubiquitin ligase. We report the discovery of novel bonafide substrates of Malin and have characterized one of them more deeply, namely PIP3-dependent Rac exchanger 1 (P-Rex1). The analysis conducted upon this substrate sets the genesis of the delineation of a molecular pathway that leads to altered glucose uptake, which could be one of the origin of the accumulation of the polyglucosans present in the disease.
Collapse
Affiliation(s)
- L Kumarasinghe
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
| | - M A Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de València, 46022, Valencia, Spain
| | - J Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - U Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain
| | - J L Zugaza
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain; Achucarro Basque Center for Neuroscience, Scientific Park UPV/EHU, 48940 Leioa, Bizkaia, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| | - P Sanz
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
13
|
Caballero-Sánchez N, Winn N, Neto JCR, Nagy L. Editorial: Cross-talk between heterogeneous cell types in skeletal muscle: implications for glucose metabolism. Front Endocrinol (Lausanne) 2023; 14:1185725. [PMID: 37188052 PMCID: PMC10176605 DOI: 10.3389/fendo.2023.1185725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nathan Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jose Cesar Rosa Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Medicine, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- *Correspondence: Laszlo Nagy,
| |
Collapse
|
14
|
At the Research Frontiers of Small GTPases. Cells 2022; 11:cells11233708. [PMID: 36496968 PMCID: PMC9736999 DOI: 10.3390/cells11233708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases act as molecular switches in regulating a myriad of cellular signaling, cytoskeletal dynamics, vesicular trafficking, and membrane/organelle transport processes. Here, I provide an editorial overview of papers collected in this Special Issue on the "Regulation and Function of Small GTPases 2.0".
Collapse
|
15
|
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S. Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 2022; 16:e2100111. [PMID: 35939377 DOI: 10.1002/prca.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ankita Dash
- Miranda House, University of Delhi, University Enclave, New Delhi, Delhi, India
| | - Ishika Gupta
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
16
|
Kazanietz MG, Cooke M, Garcia-Mata R. Nonredundant Rac-GEF control of actin cytoskeleton reorganization. Trends Cell Biol 2022; 32:815-818. [PMID: 35753960 PMCID: PMC9930409 DOI: 10.1016/j.tcb.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023]
Abstract
Rac-GEFs operate in a nonredundant manner as downstream effectors of receptor tyrosine kinases to promote ruffle formation, indicative of unique modes of regulation and targeting. Current research is shedding light on the intricate signaling paradigms shaping spatiotemporal activation of the small GTPase Rac during the generation of actin-rich membrane protrusions.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
17
|
Luo S, Yang M, Zhao H, Han Y, Jiang N, Yang J, Chen W, Li C, Liu Y, Zhao C, Sun L. Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Front Pharmacol 2021; 12:768100. [PMID: 34955837 PMCID: PMC8703113 DOI: 10.3389/fphar.2021.768100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The kidney is an energy-consuming organ, and cellular metabolism plays an indispensable role in kidney-related diseases. Caveolin-1 (Cav-1), a multifunctional membrane protein, is the main component of caveolae on the plasma membrane. Caveolae are represented by tiny invaginations that are abundant on the plasma membrane and that serve as a platform to regulate cellular endocytosis, stress responses, and signal transduction. However, caveolae have received increasing attention as a metabolic platform that mediates the endocytosis of albumin, cholesterol, and glucose, participates in cellular metabolic reprogramming and is involved in the progression of kidney disease. It is worth noting that caveolae mainly depend on Cav-1 to perform the abovementioned cellular functions. Furthermore, the mechanism by which Cav-1 regulates cellular metabolism and participates in the pathophysiology of kidney diseases has not been completely elucidated. In this review, we introduce the structure and function of Cav-1 and its functions in regulating cellular metabolism, autophagy, and oxidative stress, focusing on the relationship between Cav-1 in cellular metabolism and kidney disease; in addition, Cav-1 that serves as a potential therapeutic target for treatment of kidney disease is also described.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
18
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
19
|
Liang C, Kjaerulff L, Hansen PR, Kongstad KT, Staerk D. Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-PDA-HRMS-SPE-NMR Analysis for the Identification of Potentially Antidiabetic Chromene Meroterpenoids from Rhododendron capitatum. JOURNAL OF NATURAL PRODUCTS 2021; 84:2454-2467. [PMID: 34460246 DOI: 10.1021/acs.jnatprod.1c00454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thirteen previously undescribed chromene meroterpenoids, capitachromenic acids A-M (3-6, 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b, and 11b), were identified from an ethyl acetate extract of Rhododendron capitatum, using dual high-resolution α-glucosidase and PTP1B inhibition profiling in combination with HPLC-PDA-HRMS-SPE-NMR. In addition, one known chromene meroterpenoid, daurichromenic acid (15), and its biosynthetic precursor, grifolic acid (12), two C-methylated flavanones, (2S)-5,7,4'-trihydroxy-8-methylflavanone (1) and farrerol (2), and two triterpenoids, oleanolic acid (14a) and ursolic acid (14b), were identified. New structures were elucidated by extensive 1D and 2D NMR analysis, and absolute configurations of new chromene meroterpenoids were assigned by analysis of their ECD spectra on the basis of the empirical chromane helicity rule and from Rh2(OCOCF3)4-induced ECD spectra by applying the bulkiness rule. Compounds 5, 9a, 9b, 12, and 15 showed α-glucosidase inhibitory activity with IC50 values ranging from 8.0 to 93.5 μM, while compounds 3, 5, 8b, 9a, 9b, 10b, 11b, 12, and 15 showed PTP1B inhibitory activity with IC50 values ranging from 2.5 to 68.1 μM.
Collapse
Affiliation(s)
- Chao Liang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
20
|
DeLiberty JM, Robb R, Gates CE, Bryant KL. Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Adv Cancer Res 2021; 153:267-304. [PMID: 35101233 DOI: 10.1016/bs.acr.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS mutations are among the most frequent oncogenic drivers observed in human cancers. With a lack of available treatment options, RAS-mutant cancers account for many of the deadliest cancers in the United States. Recent studies established that altered metabolic requirements are a hallmark of cancer, and many of these alterations are driven by aberrant RAS signaling. Specifically, RAS-driven cancers are characterized by upregulated glycolysis, the differential channeling of glycolytic intermediates, upregulated nutrient scavenging pathways such as autophagy and macropinocytosis, and altered glutamine utilization and mitochondrial function. This unique metabolic landscape promotes tumorigenesis, proliferation, survival in nutrient deficient environments and confers resistance to conventional cytotoxic and targeted therapies. Emerging work demonstrates how these dependencies can be therapeutically exploited in vitro and in vivo with many metabolic inhibitors currently in clinical trials. This review aims to outline the unique metabolic requirements induced by aberrant RAS signaling and how these altered dependencies present opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire E Gates
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|