1
|
D'Arrigo D, Salerno M, De Marziani L, Boffa A, Filardo G. A call for standardization for secretome and extracellular vesicles in osteoarthritis: results show disease-modifying potential, but protocols are too heterogeneous-a systematic review. Hum Cell 2024; 37:1243-1275. [PMID: 38909330 DOI: 10.1007/s13577-024-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024]
Abstract
The currently available osteoarthritis (OA) treatments offer symptoms' relief without disease-modifying effects. Increasing evidence supports the role of human mesenchymal stem cells (MSCs) to drive beneficial effects provided by their secretome and extracellular vesicles (EVs), which includes trophic and biologically active factors. Aim of this study was to evaluate the in vitro literature to understand the potential of human secretome and EVs for OA treatment and identify trends, gaps, and potential translational challenges. A systematic review was performed on PubMed, Embase, and Web-of-Science, identifying 58 studies. The effects of secretome and EVs were analysed on osteoarthritic cells regarding anabolic, anti-apoptotic/anti-inflammatory and catabolic/pro-inflammatory/degenerative activity, chondroinduction, and immunomodulation. The results showed that MSC-derived EVs elicit an increase in proliferation and migration, reduction of cell death and inflammation, downregulation of catabolic pathways, regulation of immunomodulation, and promotion of anabolic processes in arthritic cells. However, a high heterogeneity in several technical or more applicative aspects emerged. In conclusion, the use of human secretome and EVs as strategy to address OA processes has overall positive effects and disease-modifying potential. However, it is crucial to reduce protocol variability and strive toward a higher standardization, which will be essential for the translation of this promising OA treatment from the in vitro research setting to the clinical practice.
Collapse
Affiliation(s)
- Daniele D'Arrigo
- Regenerative Medicine Technologies Laboratory, EOC, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
- Abbelight, Cachan, 191 Av. Aristide Briand, 94230, Cachan, France
| | - Manuela Salerno
- Applied and Translational Research center, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Luca De Marziani
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research center, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Via Tesserete 46, 6900, Lugano, Switzerland
- Università Della Svizzera Italiana, Faculty of Biomedical Sciences, Via Buffi 13, 6900, Lugano, Switzerland
| |
Collapse
|
2
|
Chen YH, Hung YP, Chen CY, Chen YT, Tsai TC, Yang JJ, Wu CC. ELIXCYTE ®, an Allogenic Adipose-Derived Stem Cell Product, Mitigates Osteoarthritis by Reducing Inflammation and Preventing Cartilage Degradation In Vitro. Curr Issues Mol Biol 2024; 46:8395-8406. [PMID: 39194712 DOI: 10.3390/cimb46080495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) comprise a promising therapy for osteoarthritis (OA). The therapeutic potential of ELIXCYTE®, an allogeneic human ADSC (hADSC) product, was demonstrated in a phase I/II OA clinical trial. However, the exact mechanism underlying such effects is not clear. Moreover, studies suggest that interleukin-11 (IL-11) has anti-inflammatory, tissue-regenerative, and immune-regulatory functions. Our aim was to unravel the mechanism associated with the therapeutic effects of ELIXCYTE® on OA and its relationship with IL-11. We cocultured ELIXCYTE® with normal human articular chondrocytes (NHACs) in synovial fluid obtained from individuals with OA (OA-SF) to investigate its effect on chondrocyte matrix synthesis and degradation and inflammation by assessing gene expression and cytokine levels. NHACs exposed to OA-SF exhibited increased MMP13 expression. However, coculturing ELIXCYTE® with chondrocytes in OA-SF reduced MMP13 expression in chondrocytes and downregulated PTGS2 and FGF2 expression in ELIXCYTE®. ELIXCYTE® treatment elevated anti-inflammatory cytokine (IL-1RA, IL-10, and IL-13) levels, and the reduction in MMP13 was positively correlated with IL-11 concentrations in OA-SF. These findings indicate that IL-11 in OA-SF might serve as a predictive biomarker for the ELIXCYTE® treatment response in OA, emphasizing the therapeutic potential of ELIXCYTE® to mitigate OA progression and provide insights into its immunomodulatory effects.
Collapse
Affiliation(s)
- Yu-Hsiu Chen
- Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Yi-Pei Hung
- UnicoCell Biomed Co., Ltd., Taipei 11494, Taiwan
| | | | - Yi-Ting Chen
- UnicoCell Biomed Co., Ltd., Taipei 11494, Taiwan
| | | | - Jui-Jung Yang
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Chia-Chun Wu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| |
Collapse
|
3
|
Visconte C, Taiana MM, Colombini A, De Luca P, Ragni E, de Girolamo L. Donor Sites and Harvesting Techniques Affect miRNA Cargos of Extracellular Vesicles Released by Human Adipose-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:6450. [PMID: 38928156 PMCID: PMC11203784 DOI: 10.3390/ijms25126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disorder characterized by the progressive deterioration of articular cartilage driven and sustained by catabolic and inflammatory processes that lead to pain and functional impairment. Adipose-derived stem cells (ASCs) have emerged as a promising therapeutic strategy for OA due to their regenerative potential, which mainly relies on the adaptive release of paracrine molecules that are soluble or encapsulated in extracellular vesicles (EVs). The biological effects of EVs specifically depend on their cargo; in particular, microRNAs (miRNAs) can specifically modulate target cell function through gene expression regulation. This study aimed to investigate the impact of collection site (abdominal vs. peri-trochanteric adipose tissue) and collection method (surgical excision vs. lipoaspiration) on the miRNAs profile in ASC-derived EVs and their potential implications for OA therapy. EV-miRNA cargo profiles from ASCs of different origins were compared. An extensive bioinformatics search through experimentally validated and OA-related targets, pathways, and tissues was conducted. Several miRNAs involved in the restoration of cartilage homeostasis and in immunomodulation were identified in all ASC types. However, EV-miRNA expression profiles were affected by both the tissue-harvesting site and procedure, leading to peculiar characteristics for each type. Our results suggest that adipose-tissue-harvesting techniques and the anatomical site of origin influence the therapeutic efficacy of ASC-EVs for tissue-specific regenerative therapies in OA, which warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Via R Galeazzi 4, 20161 Milano, Italy; (C.V.); (M.M.T.); (A.C.); (P.D.L.); (L.d.G.)
| | | |
Collapse
|
4
|
Klingenberg M, Dineva A, Hoyer A, Kaltschmidt B, Leimkühler P, Vordemvenne T, Elsner A, Wähnert D. Injection of Autologous Adipose Stromal Vascular Fraction in Combination with Autologous Conditioned Plasma for the Treatment of Advanced Knee Osteoarthritis Significantly Improves Clinical Symptoms. J Clin Med 2024; 13:3031. [PMID: 38892743 PMCID: PMC11172752 DOI: 10.3390/jcm13113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) is the most common joint disease in the world. It is chronic, systemic, progressive and disabling. Orthobiologics have the potential to positively alter the course of this disease. Therefore, the aim of this study is to evaluate the efficacy of SVF/ACP in the treatment of advanced osteoarthritis of the knee in an unfiltered patient population. We hypothesize that this therapy can improve the symptoms associated with osteoarthritis of the knee. We also hypothesize that there are patient-related factors that influence the efficacy of therapy. (2) Methods: Two hundred and thirteen patients with moderate to severe OA of the knee and SVF/ACP injection were recruited for this study. Patients were excluded if they did not provide informed consent or were not receiving SVF/ACP therapy. Pain, function, symptoms and quality of life were assessed using standardized scores (KOOS, WOMAC) before and after treatment. (3) Results: The VAS pain score was significantly reduced by at least 30% (p < 0.001). Knee function, as measured by the KOOS daily activity and sport scores, showed significant increases of 21% and 45%, respectively, at 6 months (p < 0.04). (4) Conclusions: Treatment of knee OA with SVF/ACP injection positively modifies the disease by significantly reducing pain and improving function.
Collapse
Affiliation(s)
| | - Antoniya Dineva
- Biostatistics and Medical Biometry, Medical School OWL, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (A.D.); (A.H.)
| | - Annika Hoyer
- Biostatistics and Medical Biometry, Medical School OWL, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (A.D.); (A.H.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany;
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Philipp Leimkühler
- Department of Trauma and Orthopaedic Surgery, Medical School and University Medical Center OWL, Protestant Hospital of the Bethel Foundation, Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany; (P.L.); (T.V.); (D.W.)
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
| | - Thomas Vordemvenne
- Department of Trauma and Orthopaedic Surgery, Medical School and University Medical Center OWL, Protestant Hospital of the Bethel Foundation, Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany; (P.L.); (T.V.); (D.W.)
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
| | - Andreas Elsner
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
- Orthopedic Joint Practice at Bültmannshof, Kurt-Schumacher-Straße 17, 33615 Bielefeld, Germany
| | - Dirk Wähnert
- Department of Trauma and Orthopaedic Surgery, Medical School and University Medical Center OWL, Protestant Hospital of the Bethel Foundation, Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany; (P.L.); (T.V.); (D.W.)
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
| |
Collapse
|
5
|
Chen B, Sun Y, Xu G, Jiang J, Zhang W, Wu C, Xue P, Cui Z. Role of crosstalk between synovial cells and chondrocytes in osteoarthritis (Review). Exp Ther Med 2024; 27:201. [PMID: 38590580 PMCID: PMC11000048 DOI: 10.3892/etm.2024.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoarthritis (OA) is a low-grade, nonspecific inflammatory disease that affects the entire joint. This condition is characterized by synovitis, cartilage erosion, subchondral bone defects, and subpatellar fat pad damage. There is mounting evidence demonstrating the significance of crosstalk between synovitis and cartilage destruction in the development of OA. To comprehensively explore the phenotypic alterations of synovitis and cartilage destruction, it is important to elucidate the crosstalk mechanisms between chondrocytes and synovial cells. Furthermore, the updated iteration of single-cell sequencing technology reveals the interaction between chondrocyte and synovial cells. In the present review, the histological and pathological alterations between cartilage and synovium during OA progression are described, and the mode of interaction and molecular mechanisms between synovial cells and chondrocytes in OA, both of which affect the OA process mainly by altering the inflammatory environment and cellular state, are elucidated. Finally, the current OA therapeutic approaches are summarized and emerging therapeutic targets are reviewed in an attempt to provide potential insights into OA treatment.
Collapse
Affiliation(s)
- Baisen Chen
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Orthopedics, Nantong Third People's Hospital, Nantong, Jiangsu 226003, P.R. China
| | - Guanhua Xu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiawei Jiang
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenhao Zhang
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunshuai Wu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Pengfei Xue
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
6
|
Epanomeritakis IE, Khan WS. Adipose-derived regenerative therapies for the treatment of knee osteoarthritis. World J Stem Cells 2024; 16:324-333. [PMID: 38690511 PMCID: PMC11056639 DOI: 10.4252/wjsc.v16.i4.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024] Open
Abstract
Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy. Definitive treatment ultimately requires joint replacement. Therapies capable of regenerating cartilage could significantly reduce financial and clinical costs. The regenerative potential of mesenchymal stromal cells (MSCs) has been extensively studied in the context of knee osteoarthritis. This has yielded promising results in human studies, and is likely a product of immunomodulatory and chondroprotective biomolecules produced by MSCs in response to inflammation. Adipose-derived MSCs (ASCs) are becoming increasingly popular owing to their relative ease of isolation and high proliferative capacity. Stromal vascular fraction (SVF) and micro-fragmented adipose tissue (MFAT) are produced by the enzymatic and mechanical disruption of adipose tissue, respectively. This avoids expansion of isolated ASCs ex vivo and their composition of heterogeneous cell populations, including immune cells, may potentiate the reparative function of ASCs. In this editorial, we comment on a multicenter randomized trial regarding the efficacy of MFAT in treating knee osteoarthritis. We discuss the study's findings in the context of emerging evidence regarding adipose-derived regenerative therapies. An underlying mechanism of action of ASCs is proposed while drawing important distinctions between the properties of isolated ASCs, SVF, and MFAT.
Collapse
Affiliation(s)
- Ilias E Epanomeritakis
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
7
|
Ragni E, Piccolo S, Taiana M, Visconte C, Grieco G, de Girolamo L. Inflammation and Starvation Affect Housekeeping Gene Stability in Adipose Mesenchymal Stromal Cells. Curr Issues Mol Biol 2024; 46:842-855. [PMID: 38275668 PMCID: PMC10814131 DOI: 10.3390/cimb46010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Due to the scientific success of in vitro and in vivo model studies, the interest in using mesenchymal stromal cells (MSCs) for the treatment of orthopaedic conditions is growing. In the context of osteoarthritis (OA), MSCs, and, in particular, those derived from adipose tissues (ASCs), have found broader access to clinical use as active components of minimally manipulated orthobiologics, as well as clinically expanded cell preparations, or to collect their released factors (secretome) for cell-free approaches. In this regard, while both inflammatory priming and starvation are common strategies used to empower cell potency or collect the secretome, respectively, little is known about the possible influence of these approaches on the stability of housekeeping genes (HKGs) for molecular studies able to fingerprint cell phenotype or potency. In this report, the reliability of five commonly used HKGs (ACTB, B2M, GAPDH, HPRT1 and RPLP0) was tested in ASCs cultured under standard protocol after inflammatory priming or starvation. Gene expression data were computed with four different applets able to rank genes depending on their stability in either single or combined conditions. The obtained final ranking suggests that for each treatment, a specific HKG is needed, and that starvation is the condition with the stronger effect on HKGs' stability and, therefore, reliability. The normalization effect of proper HKGs' use was then validated on three genes involved in OA and whose product is released by ASCs. Overall, data presented herein confirm that the choice of the best HKG has to be carefully considered and that each specific condition has to be tested to identify the most reliable candidate.
Collapse
Affiliation(s)
| | | | | | - Caterina Visconte
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157 Milano, Italy; (E.R.); (S.P.); (M.T.); (G.G.); (L.d.G.)
| | | | | |
Collapse
|
8
|
Dalir SA, Meimandi Parizi A, Tanideh N, Kian M, Nowzari F, Iraji A, Ghaemmagham P, Azarpira N, Zare S. Evaluation of the therapeutic potential of infrapatellar fat pad adipose-derived stem cells and their secretome for regenerating knee articular cartilage in a rat model of osteoarthritis. IRANIAN JOURNAL OF VETERINARY RESEARCH 2024; 25:33-40. [PMID: 39156795 PMCID: PMC11327642 DOI: 10.22099/ijvr.2024.47870.6959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 08/20/2024]
Abstract
Background Mesenchymal stem cell (MSC) therapy has ameliorative effects for treating knee osteoarthritis (KOA) disease. Moreover, there is a growing interest in using MSCs-derived secretome (Sec) containing trophic factors secreted by MSCs for KOA treatment. Recently, some studies have suggested that the combination of MSCs and Sec has the potential to treat the diseases. Aims This study aimed to evaluate the ameliorative effects of combined administration of infrapatellar fat pad (IPFP)-derived MSCs, a type of adipose-derived stem cells (ASCs), for treating degenerated cartilage in a rat model of KOA. Methods IPFP-ASCs were isolated from the IPFP of male rats. Sec was obtained from IPFP-ASCs in the fourth passage. Eight weeks after the induction of KOA by collagenase II, the rats were divided into 5 groups (n=5), including a control group with no treatment, and four experimental groups that received sodium hyaluronate (Hyalgan®, Hya), ASCs, Sec, and IPFP-ASCs+Sec, respectively by an infrapatellar injection. To perform the pathological and radiological evaluations, the animals were sacrificed 8 weeks later. Results Our findings indicated that combined administration of the IPFP-ASCs and Sec statistically (P<0.05) improved scores of medial tibial and femoral condyles and medial fabella osteophytes. Also, it statistically (P<0.05) enhances the cartilage surface, matrix, cell distribution and population viability, and subchondral bone indices. No statistical difference was observed between IPFP-ASCs+Sec and IPFP-ASCs. Conclusion Administration of IPFP-ASCs+Sec has a therapeutic potential to treat KOA in rats. However, there is no difference in the combined administration of IPFP-ASCs and Sec with IPFP-ASCs alone.
Collapse
Affiliation(s)
- S. A. Dalir
- Ph.D. Student in Veterinary Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A. Meimandi Parizi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - N. Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Kian
- Ph.D. Student in Comparative Biomedical Sciences, Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F. Nowzari
- Ph.D. Student in Veterinary Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A. Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - P. Ghaemmagham
- Department of Biostatistics, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N. Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sh. Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
10
|
Natali S, Screpis D, Patania E, De Berardinis L, Benoni A, Piovan G, Iacono V, Magnan B, Gigante AP, Zorzi C. Efficacy and Long-Term Outcomes of Intra-Articular Autologous Micro-Fragmented Adipose Tissue in Individuals with Glenohumeral Osteoarthritis: A 36-Month Follow-Up Study. J Pers Med 2023; 13:1309. [PMID: 37763077 PMCID: PMC10532945 DOI: 10.3390/jpm13091309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Glenohumeral osteoarthritis (GOA) is associated with disabling shoulder pain that affects everyday life. Its management comprises various treatment approaches, both conservative and surgical. Regenerative medicine has gained a major role in the conservative treatment of osteoarthritis. Intra-articular injection of adipose-derived mesenchymal stem cells (ADMSCs) is a widely used regenerative medicine approach. The aim of this retrospective study was to report the safety and clinical outcomes of intra-articular injection of ADMSCs in patients with GOA over 36-months. METHODS This retrospective observational study involved patients with chronic shoulder pain resistant to standard conservative treatment and a diagnosis of concentric GOA, who received an intra-articular injection of autologous micro-fragmented adipose tissue (μFAT). The values of the Constant-Murley score (CMS), the visual analog scale (VAS), and the simple shoulder test (SST), collected at baseline and at 12, 24, and 36 months, were analyzed to assess treatment efficacy. The single assessment numeric evaluation (SANE) was used to rate patient satisfaction. The Friedman test was used to compare observations of CMS, VAS, and SST values repeated on the same subjects. The significance threshold was set at 0.05. RESULTS The participants were 65 patients with a mean age of 54.19 years and a nearly equal gender distribution. Most had mild concentric GOA classified as Samilson-Prieto grade 1. The mean follow-up duration was 44.25 months. The postoperative clinical scores showed significant improvement. At 36 months, the CMS was 84.60, the VAS score was 3.34, and the SST score was 10.15 (all p < 0.0001). The SANE score at 36 months indicated that 54 patients (83.08%) were completely satisfied with the treatment. CONCLUSION ADMSC treatment exerted favorable effects on the clinical outcomes of patients with GOA, providing pain relief and improving shoulder function. Our data support its use as a conservative treatment option for osteoarthritis.
Collapse
Affiliation(s)
- Simone Natali
- Department of Orthopaedics, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar, Italy; (S.N.); (D.S.); (G.P.); (V.I.); (C.Z.)
| | - Daniele Screpis
- Department of Orthopaedics, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar, Italy; (S.N.); (D.S.); (G.P.); (V.I.); (C.Z.)
| | - Edoardo Patania
- Department of Orthopaedics and Trauma Surgery, University of Verona, Piazzale A. Stefani 1, 37136 Verona, Italy; (E.P.); (A.B.); (B.M.)
| | - Luca De Berardinis
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy;
| | - Andrea Benoni
- Department of Orthopaedics and Trauma Surgery, University of Verona, Piazzale A. Stefani 1, 37136 Verona, Italy; (E.P.); (A.B.); (B.M.)
| | - Gianluca Piovan
- Department of Orthopaedics, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar, Italy; (S.N.); (D.S.); (G.P.); (V.I.); (C.Z.)
| | - Venanzio Iacono
- Department of Orthopaedics, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar, Italy; (S.N.); (D.S.); (G.P.); (V.I.); (C.Z.)
| | - Bruno Magnan
- Department of Orthopaedics and Trauma Surgery, University of Verona, Piazzale A. Stefani 1, 37136 Verona, Italy; (E.P.); (A.B.); (B.M.)
| | - Antonio Pompilio Gigante
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy;
| | - Claudio Zorzi
- Department of Orthopaedics, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar, Italy; (S.N.); (D.S.); (G.P.); (V.I.); (C.Z.)
| |
Collapse
|
11
|
Inflammatory Treatment Used to Mimic Osteoarthritis and Patients' Synovial Fluid Have Divergent Molecular Impact on Chondrocytes In Vitro. Int J Mol Sci 2023; 24:ijms24032625. [PMID: 36768948 PMCID: PMC9916904 DOI: 10.3390/ijms24032625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is a chronic disease characterized by joint tissue disruption and inflammation with a paucity of therapeutic options. Chondrocyte in vitro models are commonly used as the first step in evaluating new approaches and rely on the stimulation of an OA-like phenotype with inflammation often the method of choice. Inflammatory priming is frequently based on cytokines used at concentrations very far from the reality in the patients' synovial fluid (SF). The aim of this work was to compare the transcriptional response of chondrocytes to different inflammatory conditions: the high levels of IL1β that are used for standardized inflammation protocols, OA-SF, IL1β, IL6 and IFNγ at SF-like concentrations both individually and simultaneously to mimic a simplified "in vitro" SF. Both high IL1β and OA-SF strongly influenced chondrocytes, while SF-like concentrations of cytokines gave weak (IL1β alone or in combination) or no (IL6 and IFNγ alone) outcomes. Chondrocytes under the two most powerful polarizing conditions had a clearly distinct fingerprint, with only a shared albeit molecularly divergent effect on ECM stability, with IL1β mainly acting on ECM degrading enzymes and OA-SF accounting for a higher turnover in favor of fibrous collagens. Moreover, OA-SF did not induce the inflammatory response observed with IL1β. In conclusion, although partially similar in the endpoint phenotype, this work intends to encourage reflection on the robustness of inflammation-based in vitro OA models for molecular studies on chondrocytes.
Collapse
|
12
|
Ma M, Cui G, Liu Y, Tang Y, Lu X, Yue C, Zhang X. Mesenchymal stem cell-derived extracellular vesicles, osteoimmunology and orthopedic diseases. PeerJ 2023; 11:e14677. [PMID: 36710868 PMCID: PMC9881470 DOI: 10.7717/peerj.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue healing and regenerative medicine due to their self-renewal and multi-directional differentiation properties. MSCs exert their therapeutic effects mainly via the paracrine pathway, which involves the secretion of extracellular vesicles (EVs). EVs have a high drug loading capacity and can transport various molecules, such as proteins, nucleic acids, and lipids, that can modify the course of diverse diseases. Due to their ability to maintain the therapeutic effects of their parent cells, MSC-derived EVs have emerged as a promising, safe cell-free treatment approach for tissue regeneration. With advances in inflammation research and emergence of the field of osteoimmunology, evidence has accumulated pointing to the role of inflammatory and osteoimmunological processes in the occurrence and progression of orthopedic diseases. Several studies have shown that MSC-derived EVs participate in bone regeneration and the pathophysiology of orthopedic diseases by regulating the inflammatory environment, enhancing angiogenesis, and promoting the differentiation and proliferation of osteoblasts and osteoclasts. In this review, we summarize recent advances in the application and functions of MSC-derived EVs as potential therapies against orthopedic diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Guofeng Cui
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Youwen Liu
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Yanfeng Tang
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Xiaoshuai Lu
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Chen Yue
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Xue Zhang
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| |
Collapse
|
13
|
Perucca Orfei C, Boffa A, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, Filardo G, de Girolamo L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 1: adipose tissue-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023; 31:641-655. [PMID: 36104484 PMCID: PMC9898370 DOI: 10.1007/s00167-022-07063-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this systematic review was to determine if adipose tissue-derived cell-based injectable therapies can induce disease-modifying effects in joints affected by osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical studies comparing injectable adipose-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Seventy-one studies were included (2,086 animals) with an increasing publication trend over time. Expanded cells were used in 65 studies, 3 studies applied point of care products, and 3 studies investigated both approaches. Overall, 48 out of 51 studies (94%) reported better results with adipose-derived products compared to OA controls, with positive findings in 17 out of 20 studies (85%) in macroscopic, in 37 out of 40 studies (93%) in histological, and in 22 out of 23 studies (96%) in immunohistochemical evaluations. Clinical and biomarker evaluations showed positive results in 14 studies out of 18 (78%) and 12 studies out of 14 (86%), while only 9 studies out of 17 (53%) of the imaging evaluations were able to detect differences versus controls. The risk of bias was low in 38% of items, unclear in 51%, and high in (11%). CONCLUSION The current preclinical models document consistent evidence of disease-modifying effects of adipose-derived cell-based therapies for the treatment of OA. The high heterogeneity of the published studies highlights the need for further targeted research to provide recommendations on the optimal methodologies for a more effective application of these injective therapies for the treatment of OA in clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Yosef Sourugeon
- grid.413731.30000 0000 9950 8111Rambam Health Care Campus, Haifa, Israel
| | - Lior Laver
- grid.414084.d0000 0004 0470 6828Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel ,Arthrosport Clinic, Tel-Aviv, Israel ,grid.6451.60000000121102151Technion University Hospital (Israel Institute of Technology) - Rappaport Faculty of Medicine, Haifa, Israel
| | - Jérémy Magalon
- grid.414336.70000 0001 0407 1584Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France ,grid.5399.60000 0001 2176 4817INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France ,SAS Remedex, Marseille, France
| | - Mikel Sánchez
- grid.473696.9Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain ,Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- grid.10493.3f0000000121858338Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- grid.419038.70000 0001 2154 6641Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy ,grid.469433.f0000 0004 0514 7845Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Laura de Girolamo
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| |
Collapse
|
14
|
Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci 2022; 24:ijms24010171. [PMID: 36613615 PMCID: PMC9820477 DOI: 10.3390/ijms24010171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.
Collapse
|
15
|
Ragni E, Perucca Orfei C, de Girolamo L. Secreted Factors and Extracellular Vesicles Account for the Immunomodulatory and Tissue Regenerative Properties of Bone-Marrow-Derived Mesenchymal Stromal Cells for Osteoarthritis. Cells 2022; 11:3501. [PMID: 36359897 PMCID: PMC9658264 DOI: 10.3390/cells11213501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/28/2023] Open
Abstract
Bone-marrow-derived mesenchymal stromal cells (BMSCs) showed therapeutic potential in the treatment of musculoskeletal diseases, including osteoarthritis (OA). Their soluble mediators and extracellular vesicles (EVs), which make up the secretome, suppress immune response, attenuate inflammation and promote cartilage repair. EVs, as well as the whole secretome, have been investigated as cell free approaches for OA although, to date, a disease-tailored molecular fingerprint is missing. In this study, soluble mediators and miRNAs were sifted in the BMSCs' secretome and EVs, respectively, and analyzed in the frame of cell types and factors involved in OA. The majority of identified molecules repress the activation of immune cells and the production of OA-related inflammatory mediators, as well as promote cartilage protection by acting on both chondrocytes homeostasis and extracellular matrix-degrading enzymes. These data provide the molecular ground for the therapeutic potential of BMSCs for regenerative applications for OA and support the use of secretome or EVs as cell-free applications in joint diseases.
Collapse
|
16
|
Colombini A, Libonati F, Cangelosi D, Lopa S, De Luca P, Coviello DA, Moretti M, de Girolamo L. Inflammatory priming with IL-1β promotes the immunomodulatory behavior of adipose derived stem cells. Front Bioeng Biotechnol 2022; 10:1000879. [PMID: 36338130 PMCID: PMC9632288 DOI: 10.3389/fbioe.2022.1000879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2023] Open
Abstract
Inflammatory processes contribute to osteoarthritis (OA) severity and progression. Mesenchymal stem cells, particularly those derived from adipose tissue (ASCs), are able to sense and control the inflammatory environment. This immunomodulatory potential can be boosted by different priming strategies based on inflammatory stimulation. The aim of the present study is to investigate the transcriptional modulation of a huge panel of genes and functionally verify the predicted immunomodulatory ability of ASCs after interleukin one beta (IL-1β) priming. ASCs were isolated from adipose tissue obtained from three donors and expanded. After stimulation with 1 ng/ml of IL-1β for 48 h, cells were collected for gene array and functional tests. Pooled cells from three donors were used for RNA extraction and gene array analysis. Gene Ontology (GO) enrichment analysis and Gene Set Enrichment Analysis (GSEA) were performed to assess the involvement of the modulated genes after priming in specific biological processes and pathways. Functional co-culture tests of ASCs with T cells and macrophages were performed to assess the ability of primed ASCs to modulate immune cell phenotype. Among the overall genes analyzed in the gene array, about the 18% were up- or down-regulated in ASCs after IL-1β priming. GO enrichment analysis of up- or down-regulated genes in ASCs after IL-1β priming allowed identifying specific pathways involved in the modulation of inflammation and extracellular matrix remodeling. The main processes enriched according to the GSEA are related to the inflammatory response and cell proliferative processes. Functional tests on immune cells showed that primed and non-primed ASCs induced a decrease in the CD3+ T lymphocytes survival rate and an anti-inflammatory macrophage polarization. In conclusion, IL-1β priming represents a tailored strategy to enhance the ability of ASCs to direct macrophages towards an anti-inflammatory phenotype and, consequently, improve the efficacy of ASCs in counteracting the OA inflammatory component.
Collapse
Affiliation(s)
| | - Francesca Libonati
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Davide Cangelosi
- Unità di Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Paola De Luca
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Laboratories for Translational Research (LRT), Bellinzona, Switzerland
- Department of Surgery, Ente Ospedaliero Cantonale, Service of Orthopaedics and Traumatology, Lugano, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Lugano, Switzerland
| | - Laura de Girolamo
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
17
|
Bone marrow aspirate concentrate quality is affected by age and harvest site. Knee Surg Sports Traumatol Arthrosc 2022; 31:2140-2151. [PMID: 36156111 PMCID: PMC10183435 DOI: 10.1007/s00167-022-07153-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To compare the number and properties of bone marrow stromal cells (BMSCs) collected from bone marrow aspirate concentrate (BMAC) obtained from different harvest sites and from patients of different ages. METHODS BMAC was obtained from two groups of patients based on age (n = 10 per group): 19.0 ± 2.7 years for the younger and 56.8 ± 12.5 for the older group. In the latter, BMAC was obtained from both iliac crest and proximal tibia for a donor-matched analysis. Mononucleated cell count and CFU-F assay were performed, together with phenotype characterization of BMSCs from iliac crest and proximal tibia, the study of chondrogenic and osteogenic differentiation capacity, histological staining and spectrophotometric quantification, and the analysis of mRNAs expression. RESULTS Cells derived from iliac crest and proximal tibia showed the same phenotypic pattern at flow cytometry, as well as similar chondrogenic and osteogenic potential. However, a significantly higher number of mononuclear cells per ml was observed in younger patients (3.8 ± 1.8 × 107) compared to older patients (1.2 ± 0.8 × 107) (p < 0.0005). The latter yield, obtained from the iliac crest, was significantly higher than resulting from the BMAC harvested from the proximal tibia in the same group of patients (0.3 ± 0.2 × 107, p < 0.0005). This result was confirmed by the CFU-F analysis at day 10 (15.9 ± 19.4 vs 0.6 ± 1.0, p = 0.001) and day-20 (21.7 ± 23.0 vs 2.9 ± 4.2, p = 0.006). CONCLUSION Harvest site and age can affect the quality of BMAC. BMSCs obtained from iliac crest and proximal tibia present comparable mesenchymal markers expression as well as osteogenic and chondrogenic differentiation potential, but iliac crest BMAC presents a four times higher number of mononucleated cells with significantly higher clonogenic capacity compared to the tibia. BMAC of younger patients also had a three-time higher number of mononucleated cells. The identification of BMAC characteristics could help to optimize its preparation and to identify the most suitable indications for this orthobiologic treatment in the clinical practice.
Collapse
|
18
|
Jeyaraman M, Muthu S, Shehabaz S, Jeyaraman N, Rajendran RL, Hong CM, Nallakumarasamy A, Packkyarathinam RP, Sharma S, Ranjan R, Khanna M, Ahn BC, Gangadaran P. Current understanding of MSC-derived exosomes in the management of knee osteoarthritis. Exp Cell Res 2022; 418:113274. [PMID: 35810774 DOI: 10.1016/j.yexcr.2022.113274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been utilized as medicinal agents or as delivery vehicles in cartilage injuries and cartilage-based diseases. Given the ongoing emergence of evidence on the effector mechanisms and methods of the utility of the MSC-Exos in knee osteoarthritis, a comprehensive review of the current evidence is the need of the hour. Hence, in this article, we review the current understanding of the role of MSC-Exos in the management of knee osteoarthritis in view of their classification, characterization, biogenesis, mechanism of action, pathways involved in their therapeutic action, in-vitro evidence on cartilage regeneration, in-vivo evidence in OA knee models and recent advances in using MSC-Exos to better streamline future research from bench to bedside for OA knee.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine - Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600095, Tamil Nadu, India; Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, Government Medical College and Hospital, Dindigul, 624304, Tamil Nadu, India
| | - Syed Shehabaz
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India; Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, 620002, Tamil Nadu, India.
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odissa, India
| | | | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow, 226401, Uttar Pradesh, India
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
19
|
Small Extracellular Vesicles from Inflamed Adipose Derived Stromal Cells Enhance the NF-κB-Dependent Inflammatory/Catabolic Environment of Osteoarthritis. Stem Cells Int 2022; 2022:9376338. [PMID: 35898656 PMCID: PMC9314187 DOI: 10.1155/2022/9376338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
The last decade has seen exponentially growing efforts to exploit the effects of adipose derived stromal cells (ADSC) in the treatment of a wide range of chronic degenerative diseases, including osteoarthritis (OA), the most prevalent joint disorder. In the perspective of developing a cell-free advanced therapy medicinal product, a focus has been recently addressed to the ADSC secretome that lends itself to an allogeneic use and can be further dissected for the selective purification of small extracellular vesicles (sEVs). sEVs can act as “biological drug carriers” to transfer information that mirror the pathophysiology of the providing cells. This is important in the clinical perspective where many OA patients are also affected by the metabolic syndrome (MetS). ADSC from MetS OA patients are dysfunctional and “inflammatory” primed within the adipose tissue. To mimic this condition, we exposed ADSC to IL-1β, and then we investigated the effects of the isolated sEVs on chondrocytes and synoviocytes, either cultured separately or in co-culture, to tease out the effects of these “IL-1β primed sEVs” on gene and protein expression of major inflammatory and catabolic OA markers. In comparison with sEVs isolated from unstimulated ADSC, the IL-1β primed sEVs were able to propagate NF-κB activation in bystander joint cells. The effects were more prominent on synoviocytes, possibly because of a higher expression of binding molecules such as CD44. These findings call upon a careful characterization of the “inflammatory fingerprint” of ADSC to avoid the transfer of an unwanted message as well as the development of in vitro “preconditioning” strategies able to rescue the antiinflammatory/anticatabolic potential of ADSC-derived sEVs.
Collapse
|
20
|
Joint Tissue Protective and Immune-Modulating miRNA Landscape of Mesenchymal Stromal Cell-Derived Extracellular Vesicles under Different Osteoarthritis-Mimicking Conditions. Pharmaceutics 2022; 14:pharmaceutics14071400. [PMID: 35890296 PMCID: PMC9321932 DOI: 10.3390/pharmaceutics14071400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
In regenerative medicine related to orthopedic conditions, mesenchymal stromal cells (MSCs) and their extracellular vesicles (EVs) have been proposed as innovative clinical options. The definition of EV-shuttled signals and their modulation under orthopedic settings, such as osteoarthritis (OA), is crucial for MSC-related research, both for basic science and for use in clinical settings, either as therapeutics or as producers of cell-free products such as EVs or secretome. The objective of this work is to compare the literature available on high-throughput EV-miRNA data obtained from adipose-derived MSCs (ASCs) in standard conditions or cultured in high levels of IFNγ, low-level inflammatory conditions mimicking OA synovial fluid (SF), and OA-SF. The first result was that both IFNγ and low-level inflammatory treatment led to an increase, whereas SF led to a reduction in EV release. Second, more than 200 EV-miRNAs were found to be shared across the different conditions. After a bioinformatics search through experimentally validated and OA-related targets, pathways and tissues, several miRNAs resulted in the restoration of cartilage and synovium stability and the homeostasis of inflammatory cells, including macrophages, promoting their switch towards an M2 anti-inflammatory phenotype. Third, IFNγ and especially SF culturing were able to modulate the overall EV-miRNA fingerprint, although the main molecular messages related to OA resulted conserved between treatments with the majority of modulations within 2-fold range. In conclusion, ASC EV-miRNAs may be modulated in their overall landscape by OA-related culturing conditions albeit resulted largely stable in their specific OA-protective signals allowing for a faster clinical translation of these new cell-free therapies for joint diseases.
Collapse
|
21
|
Ragni E, Viganò M, Torretta E, Perucca Orfei C, Colombini A, Tremolada C, Gelfi C, de Girolamo L. Characterization of Microfragmented Adipose Tissue Architecture, Mesenchymal Stromal Cell Content and Release of Paracrine Mediators. J Clin Med 2022; 11:2231. [PMID: 35456324 PMCID: PMC9026471 DOI: 10.3390/jcm11082231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
The use of microfragmented adipose tissue (µFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis (OA), is gaining popularity, following positive results reported in recent case series and clinical trials. Although these outcomes were postulated to rely on paracrine signals, to date, a thorough fingerprint of released molecules is largely missing. The purpose of this study was to first characterize both structure and cell content of unprocessed lipoaspirate (LA) and µFAT, and further identify and frame the array of signaling factors in the context of OA disease, by means of high throughput qRT-PCR for extracellular-vesicle (EV) embedded miRNAs and proteomics for tissue and secreted factors. Cell count showed reduction of blood cells in µFAT, confirmed by histological and flow cytometry analyses, that also showed a conserved presence of structural, endothelial and stromal components and pericytes. In the secretome, 376 and 381 EV-miRNAs in LA and µFAT, respectively, were identified. In particular, most abundant and µFAT upregulated EV-miRNAs were mainly recapitulating those already reported as ASC-EVs-specific, with crucial roles in cartilage protection and M2 macrophage polarization, while only a scarce presence of those related to blood cells emerged. Furthermore, secretome proteomic analysis revealed reduction in µFAT of acute phase factors driving OA progression. Taken together, these results suggest that processing of LA into µFAT allows for removal of blood elements and maintenance of tissue structure and stromal cell populations, and possibly the increase of OA-protective molecular features. Thus, microfragmentation represents a safe and efficient method for the application of adipose tissue properties in the frame of musculoskeletal disorders.
Collapse
Affiliation(s)
- Enrico Ragni
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milano, Italy
| | - Marco Viganò
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milano, Italy
| | - Enrica Torretta
- Laboratorio di Proteomica e Scienze Separative, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milano, Italy
| | - Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milano, Italy
| | - Carlo Tremolada
- Image Regenerative Clinic, Via Mascagni 14, I-20122 Milan, Italy
| | - Cecilia Gelfi
- Laboratorio di Proteomica e Scienze Separative, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Fratelli Cervi 93, I-20054 Segrate, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milano, Italy
| |
Collapse
|
22
|
Shang X, Fang Y, Xin W, You H. The Application of Extracellular Vesicles Mediated miRNAs in Osteoarthritis: Current Knowledge and Perspective. J Inflamm Res 2022; 15:2583-2599. [PMID: 35479833 PMCID: PMC9037713 DOI: 10.2147/jir.s359887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a whole joint disease characterized by synovitis, cartilage destruction, and subchondral bone sclerosis and cyst. Despite decades’ study, effective treatment is rare for this chronic disease. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptosis bodies, are nano-sized vesicles with a cargo containing biologically active agents, such as nucleic acids, lipids, and proteins. As a group of short non-coding RNAs, microRNAs (miRNAs) can be delivered by parental cells secreted EVs. Negatively regulate the target mRNAs at the posttranscriptional level and regulate gene expression in recipient cells without modifying gene sequence. Recently, most studies focused on the function of EVs mediated miRNAs in the pathophysiological process of OA. However, all kinds of EVs specific and OA specific factors might influence the administration of EVs-miRNAs, especially the precise quantitative management. As a result, the flourishing of current research about EVs in the laboratory might not promote the relevant clinical transformation in OA treatment. In this review, we reviewed the present application of EVs-miRNAs in the therapeutic of OA and further analyzed the potential factors that might influence its application. Further progress in the quantitative management of EVs-miRNAs would accelerate the clinical transformation of miRNAs enriched EVs in the OA field.
Collapse
Affiliation(s)
- Xiaobin Shang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yan Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 352000, People’s Republic of China
| | - Hongbo You
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Correspondence: Hongbo You, Email
| |
Collapse
|
23
|
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, Ning C, Li H, Gao C, Fu L, Jiang S, Chen M, Sui X, Liu S, Chen Z, Guo Q. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140:23-42. [PMID: 34896634 DOI: 10.1016/j.actbio.2021.12.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.
Collapse
|
24
|
Ragni E, Perucca Orfei C, Viganò M, Valli F, de Girolamo L. Endogenous Controls for the Evaluation of Osteoarthritis-Related miRNAs in Extracellular Vesicles from Bone-Marrow-Derived Mesenchymal Stromal Cells and the Impact of Osteoarthritis Synovial Fluid. Biomolecules 2022; 12:biom12020316. [PMID: 35204816 PMCID: PMC8869367 DOI: 10.3390/biom12020316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Bone-marrow-derived stromal cells (BMSCs) have emerged as promising therapeutic option for the treatment of osteoarthritis (OA) due to their tissue regenerative and anti-inflammatory features. BMSCs’ clinical potential is mainly ascribed to their released factors and extracellular vesicles (EVs), whose therapeutic portfolio may be modulated by the environment in vivo or specific priming in vitro. Within the array of molecules shaping EVs’ power, miRNAs are considered privileged players. In this frame, a correct EV-miRNA detection and quantification is mandatory to understand and possibly boost BMSCs potential, either when envisioned as cell therapeutics or when proposed as producer of cell-free and clinical grade EVs. The aim of this study is to identify reliable reference genes (RGs) to study miRNAs in BMSC-EVs cultivated under standard or OA synovial fluid (OA-SF). miR-23a-3p and miR-221-3p emerged as the best candidates, respectively. Moreover, when both conditions were analyzed together, miR-24-3p resulted the most stable RGs, allowing for a sharper comparison of EVs content, further validated on the OA-related miRNA-193b-5p. The different RG stability ranking depending on the culturing conditions, as well as its divergence with respect to adipose (ASCs) and amniotic (hAMSCs) MSCs, confirm that miRNA RG selection in EVs is a mandatory step and that the identification of the most reliable candidate is greatly depending on the cell type and culturing/environmental conditions.
Collapse
Affiliation(s)
- Enrico Ragni
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
| | - Marco Viganò
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
| | - Federico Valli
- Chirurgia Articolare Sostitutiva e Chirurgia Ortopedica (CASCO), IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy;
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
- Correspondence: ; Tel.: +39-02-66214059
| |
Collapse
|
25
|
Evaluation of the Usefulness of Human Adipose-Derived Stem Cell Spheroids Formed Using SphereRing® and the Lethal Damage Sensitivity to Synovial Fluid In Vitro. Cells 2022; 11:cells11030337. [PMID: 35159147 PMCID: PMC8834569 DOI: 10.3390/cells11030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is an irreversible degenerative condition causing bone deformation in the joints and articular cartilage degeneration with chronic pain and impaired movement. Adipose-derived stem cell (ADSC) or crushed adipose tissue injection into the joint cavity reportedly improve knee function and symptoms, including pain. Stem cell spheroids may be promising treatment options due to their anti-inflammatory and enhanced tissue regeneration/repair effects. Herein, to form human ADSC spheroids, we used first SphereRing® (Fukoku Co., Ltd., Ageo, Japan), a newly developed rotating donut-shaped tube and determined their characteristics by DNA microarray of mRNA analysis. The variable gene expression cluster was then identified and validated by RT-PCR. Gene expression fluctuations were observed, such as COL15A1 and ANGPTL2, related to vascular endothelial cells and angiogenesis, and TNC, involved in tissue formation. In addition, multiplex cytokine analysis in the medium revealed significant cytokines and growth factors production increase of IL-6, IL-10, etc. However, ADSC administration into the joint cavity involves their contact with the synovial fluid (SF). Therefore, we examined how SF collected from OA patient joint cavities affect 2D-culture ADSCs and ADSC spheroids and observed SF induced cell death. ADSC spheroids could become promising OA treatment options, although studying the administration methods and consider their interaction with SF is essential.
Collapse
|
26
|
Anil U, Markus DH, Hurley ET, Manjunath AK, Alaia MJ, Campbell KA, Jazrawi LM, Strauss EJ. The efficacy of intra-articular injections in the treatment of knee osteoarthritis: A network meta-analysis of randomized controlled trials. Knee 2021; 32:173-182. [PMID: 34500430 DOI: 10.1016/j.knee.2021.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Osteoarthritis (OA) is a debilitating joint disease characterized by progressive loss of articular cartilage. Intra-articular injections are a mainstay of nonoperative treatment, however, there is controversy as to the optimal injectable for these patients. The purpose of the current study is to perform a network meta-analysis of the randomized control trials in the literature to ascertain whether there is a superior injectable nonoperative treatment for knee OA. METHODS The literature search was conducted based on the PRISMA guidelines. Randomized control trials (RCTs) evaluating intra-articular injectables in osteoarthritic knees were included. Data was extracted and Visual Analogue Scale (VAS) scores and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, where available were analyzed at 1, 3, 6 and 12 months. Clinical outcomes were compared using a frequentist approach to network meta-analysis, with statistical analysis performed using R. The treatment options were ranked using the P-Score. RESULTS Seventy-nine RCTs with 8761 patients were included in this review. Intra-articular injectables evaluated included autologous conditioned serum (ACS), bone marrow aspirate concentrate (BMAC), botulinum toxin, corticosteroids (CS), hyaluronic acid (HA), mesenchymal stem cells (MSC), ozone, saline placebo, platelet-rich plasma (PRP), plasma rich in growth factor (PRGF), and stromal vascular fraction (SVF). At 4-6 weeks and 3 months of follow-up, the treatment with the highest P-Score for WOMAC score was high molecular weight (HMW) HA + CS [P-Score = 0.9500 and 8503, respectively]. At 6-months follow-up, the treatment with the highest P-Score for WOMAC score was PRP [P-Score = 0.7676]. At all post-injection time points, the treatment with the highest P-Score for VAS score [P-Score Range = 0.8631-9927] and Womac score at 12 Months [P-Score = 0.9044] was SVF. CONCLUSIONS The current evidence shows that SVF injections result in the greatest improvement in pain and functional outcomes in patients with knee OA at up to 1 year of follow-up.
Collapse
Affiliation(s)
- Utkarsh Anil
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States
| | - Danielle H Markus
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States.
| | - Eoghan T Hurley
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States
| | - Amit K Manjunath
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States
| | - Michael J Alaia
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States
| | - Kirk A Campbell
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States
| | - Laith M Jazrawi
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States
| | - Eric J Strauss
- NYU Langone Orthopedic Hospital, Division of Sports Medicine, 333 E 38th Street, New York, NY 10016, United States
| |
Collapse
|
27
|
Ragni E, Perucca Orfei C, Papait A, de Girolamo L. Comparison of miRNA cargo in human adipose-tissue vs. amniotic-membrane derived mesenchymal stromal cells extracellular vesicles for osteoarthritis treatment. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:202-221. [PMID: 39697592 PMCID: PMC11648501 DOI: 10.20517/evcna.2021.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2024]
Abstract
Aim Mesenchymal stromal cells (MSCs) emerged as a promising therapeutic option for osteoarthritis (OA) management, in particular those isolated from adipose tissue (hASCs) and amniotic membrane (hAMSCs). The cartilage protective and immunomodulatory features of hASCs and hAMSCs are ascribed to secreted factors, including extracellular vesicles (EVs) and embedded miRNAs. The purpose of this study was to compare EVs and shuttled miRNAs from both MSC types and discuss them in the frame of OA pathological tissues. Methods Human hASCs and hAMSCs were analyzed by flow cytometry. EVs were analyzed by flow cytometry, nanoparticle tracking analysis, and electron microscopy. High-throughput qRT-PCR miRNA data available in the literature were compared. Abundant miRNAs and their experimentally validated targets were associated with those reported to drive OA pathology at cartilage, synovia, and macrophage levels. Four tools (Genorm, Normfinder, BestKeeper, and Delta Ct) were used to identify EVs stable reference genes. Results EVs did not show phenotypical or dimensional differences between the two sources, with hAMSCs releasing more particles. In total, 307 EV miRNAs were identified, with 306 shared. Several of the most abundant miRNAs target OA-driving factors and are involved in cartilage and synovia protective mechanisms, with hAMSC-EVs' preponderance for M2 anti-inflammatory macrophage commitment. miR-34a-5p emerged as the most stable reference gene. Conclusion Both hASCs and hAMSCs release EVs enriched in joint-protective and anti-inflammatory miRNAs, supporting their use for treatment of joint diseases. Future comparative clinical studies would be needed to test whether hAMSCs' higher EV secretion and enhanced M2 macrophage polarizing miRNA cargo allow for potentially increased OA therapeutic features.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’ Ortopedia, Milan I-20161, Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’ Ortopedia, Milan I-20161, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia I-25124, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome I-00168, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’ Ortopedia, Milan I-20161, Italy
| |
Collapse
|