1
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Bangay G, Brauning FZ, Kowalczyk T, Merecz-Sadowska A, Synowiec E, Śliwiński T, Candeias N, Estevão MS, Afonso CAM, André V, Sitarek P, Rijo P. Halimane Derivatives from Plectranthus ornatus Codd. as Novel Anti-cancer Agents. Biomed Pharmacother 2024; 174:116516. [PMID: 38583339 DOI: 10.1016/j.biopha.2024.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
The Plectranthus genus is often cited for its medicinal properties. Plectranthus ornatus Codd. is traditionally used in Africa for the treatment of gastric and liver diseases and their leaves are used for their antibiotic action. The main constituent of P. ornatus is the halimane compound, 11 R∗-acetoxyhalima-5,13E-dien-15-oic acid (Hal), described for its antimicrobial and anticancer properties. The objective of this work was to improve the activity of the halimane lead molecule. Further physiochemical characterisation was performed on Hal. To the best of our knowledge, this work constitutes the first published data of the absolute configurations by SCXRD and thermal stability of Hal. Using Hal, reactions with different amines were carried out to afford novel semi-synthetic derivatives and their structural elucidation was completed. The cytotoxicity of the derivatives was assessed against three leukaemia cancer cell lines (CCRF-CEM, K562 and HL-60). The antioxidant activity was investigated using H2O2-induced HGF-1 cells and their anti-inflammatory activity was studied using RT-PCR and ELISA. Our data showed that amide derivatives of Hal presented moderate cytotoxicity and more potent activity when compared to the parent molecule, giving insight into the SAR of Hal. The derivatives also displayed protection against oxidative damage to DNA. Finally, the derivatives possessed anti-inflammatory properties at the level of gene and protein expression for the cytokines IL-1β, TNF-α and IL-6, induced by LPS in normal HGF-1 cells. Overall, our study provides useful insight into the enhanced biological activities of semi-synthetic Hal derivatives, as a starting point for novel drug formulations in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Universidade Lusofona's Research Center for Biosciences and Health Technologies (CBIOS), Campo Grande 376, Lisbon 1749-024, Portugal; Universidad de Alcala de Henares. Facultad de Farmacia, Departamento de Ciencias Biomedicas (Area de Farmacologıa, Nuevos agentes antitumorales, Accion toxica sobre celulas leucemicas. Ctra. Madrid-Barcelona km. 33,600 28805 Alcala de Henares, Madrid, Spain
| | - Florencia Z Brauning
- Universidade Lusofona's Research Center for Biosciences and Health Technologies (CBIOS), Campo Grande 376, Lisbon 1749-024, Portugal
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, Lodz 90-214, Poland; Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Lodz 90-725, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz Pomorska 141/143, Lodz 90-236, Poland
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz Lodz 92-215, Poland
| | - Nuno Candeias
- LAQV-REQUIMTE Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Monica S Estevão
- Instituto de Investigacao do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Carlos A M Afonso
- Instituto de Investigacao do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Vânia André
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal; Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Avenida António José de Almeida, 12, Lisbon 1000-043, Portugal
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, ul. Muszynskiego 1, Lodz 90-151, Poland.
| | - Patrícia Rijo
- Universidade Lusofona's Research Center for Biosciences and Health Technologies (CBIOS), Campo Grande 376, Lisbon 1749-024, Portugal; Instituto de Investigacao do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| |
Collapse
|
3
|
Kısa D, Ceylan Y, İmamoğlu R. Accumulation of phenolic compounds and expression of phenylpropanoid biosynthesis-related genes in leaves of basil transformed with A. rhizogenes strains. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:629-640. [PMID: 37363423 PMCID: PMC10284738 DOI: 10.1007/s12298-023-01320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Biotic factors affect the content of secondary metabolites by interfering with molecular and biochemical pathways. In the current study, A. rhizogenes strains were inoculated into basil (Ocimum basilicum) to examine the effect of plant-microbe interaction on the accumulation of monomeric phenolic metabolites and the transcript levels of selected genes involved in the biochemical synthesis of secondary compounds. Initially, the integration of the rolB gene was validated by performing PCR analysis on genomic DNA samples from the basil plant inoculated with A. rhizogenes strains. We have detected that the accumulation of mRNA transcripts linked to the biosynthesis pathway of phenolic compounds has higher transcript expression levels in the leaves of transformed basil in proportion to uninoculated plants. Basil plants inoculated with A. rhizogenes 39207 strain had higher transcript levels of CAD, C4H, TAT, FLS, EGS, HPPR, PAL, and RAS genes than other experimental groups. We have identified eleven phenolic components, and the level of rosmarinic acid, eugenol, chicoric acid, and rutin increased in the inoculated basil leaves. However, the inoculation of A. rhizogenes did not cause a change in the compounds of chlorogenic acid, methyl chavicol, cinnamic acid, quercetin, vanillic acid, and caffeic acid. In conclusion, the increase in basic secondary metabolites could be achieved by the A. rhizogenes-mediated transformation of basil plants, and especially ATCC 43057 strain may be one of the A. rhizogenes strains. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01320-w.
Collapse
Affiliation(s)
- Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Yusuf Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Rizvan İmamoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| |
Collapse
|
4
|
Malarz J, Yudina YV, Stojakowska A. Hairy Root Cultures as a Source of Phenolic Antioxidants: Simple Phenolics, Phenolic Acids, Phenylethanoids, and Hydroxycinnamates. Int J Mol Sci 2023; 24:ijms24086920. [PMID: 37108084 PMCID: PMC10138958 DOI: 10.3390/ijms24086920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived antioxidants are intrinsic components of human diet and factors implicated in tolerance mechanisms against environmental stresses in both plants and humans. They are being used as food preservatives and additives or ingredients of cosmetics. For nearly forty years, Rhizobium rhizogenes-transformed roots (hairy roots) have been studied in respect to their usability as producers of plant specialized metabolites of different, primarily medical applications. Moreover, the hairy root cultures have proven their value as a tool in crop plant improvement and in plant secondary metabolism investigations. Though cultivated plants remain a major source of plant polyphenolics of economic importance, the decline in biodiversity caused by climate changes and overexploitation of natural resources may increase the interest in hairy roots as a productive and renewable source of biologically active compounds. The present review examines hairy roots as efficient producers of simple phenolics, phenylethanoids, and hydroxycinnamates of plant origin and summarizes efforts to maximize the product yield. Attempts to use Rhizobium rhizogenes-mediated genetic transformation for inducing enhanced production of the plant phenolics/polyphenolics in crop plants are also mentioned.
Collapse
Affiliation(s)
- Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Yulia V Yudina
- Educational and Scientific Medical Institute, National Technical University "Kharkiv Polytechnic Institute", Kyrpychova Street 2, 61002 Kharkiv, Ukraine
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
5
|
Induction, Flavonoids Contents, and Bioactivities Analysis of Hairy Roots and True Roots of Tetrastigma hemsleyanum Diels et Gilg. Molecules 2023; 28:molecules28062686. [PMID: 36985658 PMCID: PMC10053805 DOI: 10.3390/molecules28062686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The flavonoids in Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) have high medicinal value. However, because of slow growth and harsh ecological environments, T. hemsleyanum is currently an endangered species. In light of this, we present a detailed hairy root induction procedure as a promising alternative to true roots with medicinal value. The percentage of explants induced by Agrobacterium rhizogenes (A. rhizogenes) to produce hairy roots out of the total number of explants infected (induction rate 1) was 95.83 ± 7.22%, and the proportion of hairy roots that contained Rol B fragments among all the hairy roots with or without Rol B fragments (positive rate) was 96.57 ± 1.72%. The transformation was further confirmed by the expression of the GUS protein. A high-productive hairy root line was screened for the comparative profiling of six flavonoids with true roots using high-performance liquid chromatography (HPLC). The contents of (+)-catechin, (−)-epicatechin, neochlorogenic acid, luteolin-6-C-glucoside, and orientin were 692.63 ± 127.24, 163.34 ± 31.86, 45.95 ± 3.46, 209.68 ± 6.03, and 56.82 ± 4.75 μg/g dry weight (DW) of 30-day-old hairy roots, respectively, which were higher than those of 3-year-old true roots. Hairy roots have stronger antioxidant activity than true roots. Overall, the hairy roots of T. hemsleyanum could serve as promising alternative sources for the production of flavonoids with medicinal uses.
Collapse
|
6
|
Sitarek P, Kowalczyk T, Śliwiński T, Hatziantoniou S, Soulintzi N, Pawliczak R, Wieczfinska J. Leonotis nepetifolia Transformed Root Extract Reduces Pro-Inflammatory Cytokines and Promotes Tissue Repair In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4706. [PMID: 36981614 PMCID: PMC10048264 DOI: 10.3390/ijerph20064706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Inflammation is closely related to asthma and its defining feature: airway remodeling. The aim of this study was to determine the effects of extracts of normal (NR) and transformed (TR) Leonotis nepetifolia roots on respiratory cells and against the gingival epithelium. Extracts from NR and TR roots were added to lung fibroblast, bronchial epithelial and gingival fibroblast cell lines, in the presence of HRV-16 infection, to determine their impact on inflammation. The expression of inflammatory cytokines (IL-6, IL-1β, GM-CSF and MCAF) as well as total thiol contents were assessed. The TR extract inhibited rhinovirus-induced IL-6 and IL-1β expression in all tested airway cells (p < 0.05). Additionally, the extract decreased GM-CSF expression in bronchial epithelial cells. The tested extracts had positive effects on total thiol content in all tested cell lines. The TR root extract demonstrated wound healing potential. While both tested extracts exhibited anti-inflammatory and antioxidative effects, they were stronger for the TR extract, possibly due to higher concentrations of beneficial metabolites such as phenols and flavonoids. Additionally, wound healing activity was demonstrated for the TR root extract. These results suggest that TR root extract may become a promising therapeutic agent in the future.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Nikolitsa Soulintzi
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Zeligowskiego 7/9, Bldg 2, Rm 177, 90-752 Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Zeligowskiego 7/9, Bldg 2, Rm 177, 90-752 Lodz, Poland
| |
Collapse
|
7
|
Phytochemical Analysis, GC-MS Profiling, and In Vitro Evaluation of Biological Applications of Different Solvent Extracts of Leonotis nepetifolia (L.) R.Br. Flower Buds. Appl Biochem Biotechnol 2023; 195:1197-1215. [PMID: 36342622 DOI: 10.1007/s12010-022-04201-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Leonotis nepetifolia (L.) R.Br. is a medicinally important herb belonging to the family Lamiaceae. The plant is typically found in tropical regions, and its leaf and root extracts are renowned for their ethno-botanical and therapeutic applications. This study was designed to determine the presence of various bioactive components, and to evaluate antibacterial, antifungal, antioxidant, and anti-proliferative activities. The preliminary phytochemical screening and gas chromatography-mass spectrometry (GC-MS) analysis of different solvent extracts revealed the presence of various bioactive compounds, of which methanol extract showed 24 compounds, petroleum ether extract revealed 26 compounds, and 24 compounds in hexane extracts. The major bioactive components including λ-sitosterol (16.20 %) in methanol extract, 1-nonadecanol (15.48 %) in petroleum extract, and eicosane (13.22 %) in hexane extract have been reported with various bio-therapeutic applications. In addition, the flower bud methanolic extract of L. nepetifolia exhibited inhibitory potential against all tested bacterial and fungal pathogens. The DPPH radical scavenging assay revealed that methanolic extract possessed the highest antioxidant activity. The scavenging activity increased in a concentration-dependent manner, as indicated by a 74 % inhibition rate at 1000 µg/ml. Furthermore, the in vitro cytotoxic effects of the methanolic extract on the HepG2 cell line were evaluated. The IC50 value of methanolic extract against HepG2 cells was determined to be 83.28 µg/ml. The findings reveal that different solvent extracts of L. nepetifolia flower buds contain a significant amount of various bioactive phytochemicals with antioxidant and anticancer activities; and thus, the plant could serve as a potential source of pharmacological applications.
Collapse
|
8
|
Sitarek P, Kowalczyk T, Synowiec E, Merecz-Sadowska A, Bangay G, Princiotto S, Śliwiński T, Rijo P. An Evaluation of the Novel Biological Properties of Diterpenes Isolated from Plectranthus ornatus Codd. In Vitro and In Silico. Cells 2022; 11:cells11203243. [PMID: 36291112 PMCID: PMC9600095 DOI: 10.3390/cells11203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II—Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
- Correspondence: (P.S.); (P.R.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Salvatore Princiotto
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Patricia Rijo
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (P.S.); (P.R.)
| |
Collapse
|
9
|
Zhao J, Xu L, Jin D, Xin Y, Tian L, Wang T, Zhao D, Wang Z, Wang J. Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer. Biomolecules 2022; 12:biom12101410. [PMID: 36291619 PMCID: PMC9599057 DOI: 10.3390/biom12101410] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer constitutes a severe threat to human health and quality of life and is one of the most significant causes of morbidity and mortality worldwide. Natural dietary products have drawn substantial attention in cancer treatment and prevention due to their availability and absence of toxicity. Rosmarinic acid (RA) is known for its excellent antioxidant properties and is safe and effective in preventing and inhibiting tumors. This review summarizes recent publications on culture techniques, extraction processes, and anti-tumor applications of RA-enriched dietary supplements. We discuss techniques to improve RA bioavailability and provide a mechanistic discussion of RA regarding tumor prevention, treatment, and adjuvant therapy. RA exhibits anticancer activity by regulating oxidative stress, chronic inflammation, cell cycle, apoptosis, and metastasis. These data suggest that daily use of RA-enriched dietary supplements can contribute to tumor prevention and treatment. RA has the potential for application in anti-tumor drug development.
Collapse
Affiliation(s)
- Jiachao Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liwei Xu
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Xin
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lin Tian
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Tan Wang
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Z.W.); (J.W.)
| | - Jing Wang
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Z.W.); (J.W.)
| |
Collapse
|
10
|
Anticancer Properties of Plectranthus ornatus-Derived Phytochemicals Inducing Apoptosis via Mitochondrial Pathway. Int J Mol Sci 2022; 23:ijms231911653. [PMID: 36232954 PMCID: PMC9569850 DOI: 10.3390/ijms231911653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Since cancer treatment by radio- and chemotherapy has been linked to safety concerns, there is a need for new and alternative anticancer drugs; as such, compounds isolated from plants represent promising candidates. The current study investigates the anticancer features of halimane (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and the labdane diterpenes 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from Plectranthus ornatus in MCF7 and FaDu cancer cell lines. Cytotoxicity was assessed by MTT assay, ROS production by Di-chloro-dihydro-fluorescein diacetate assay (DCFH) or Red Mitochondrial Superoxide Indicator (MitoSOX) and Mitochondrial Membrane Potential (MMP) by fluorescent probe JC-1 (5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide). In addition, the relative amounts of mitochondrial DNA (mtDNA) were determined using quantitative Real-Time-PCR (qRT-PCR) and damage to mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) by semi-long run quantitative Real-Time-PCR (SLR-qRT-PCR). Gene expression was determined using Reverse-Transcription-qPCR. Caspase-3/7 activity by fluorescence was assessed. Assessment of General In Vivo Toxicity has been determined by Brine Shrimp Lethality Bioassay. The studied HAL and PLEC were found to have a cytotoxic effect in MCF7 with IC50 = 13.61 µg/mL and IC50 = 17.49 µg/mL and in FaDu with IC50 = 15.12 µg/mL and IC50 = 32.66 µg/mL cancer cell lines. In the two tested cancer cell lines, the phytochemicals increased ROS production and mitochondrial damage in the ND1 and ND5 gene regions and reduced MMP (ΔΨm) and mitochondrial copy numbers. They also changed the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1). Studies demonstrated increase in caspase 3/7 activity in tested cancer cell lines. In addition, we showed no toxic effect in in vivo test for the compounds tested. The potential mechanism of action may have been associated with the induction of apoptosis in MCF7 and FaDu cancer cells via the mitochondrial pathway; however, further in vivo research is needed to understand the mechanisms of action and potential of these compounds.
Collapse
|
11
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
12
|
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel K, Malinowska K, Zielińska-Bliźniewska H, Kucharska E, Zajdel R. In Vitro and In Silico Studies on Leonotis nepetifolia (L.) R. Br. Root
Extract against Cancer Cells. Curr Pharm Biotechnol 2022; 23:1383-1395. [DOI: 10.2174/1389201023666220304095225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
Background:
Leonotis nepetifolia (L.) R. Br. (Lamiaceae) is a shrub traditionally used
to alleviate inflammatory conditions.
Objective:
The present study aimed at investigating the biological activity of methanolic nontransformed and transformed Rhizobium rhizogenes root extracts from L. nepetifolia against human
melanoma cells.
Methods:
Cytotoxicity and genotoxicity properties, the impact on topoisomerase I activity, and
proapoptotic activity were evaluated by the MTT test, comet assay, topoisomerase I assay, and
fluorescence-activated cell sorting analysis. Moreover, the expressions of p53 were examined by
qPCR and Western blot analysis. Docking studies were conducted to assess the potential interactions of the identified phytochemicals with the p53 binding protein Mdm-2, and computational
analyses exhibited their antioxidant potential.
Results:
Both extracts showed cytotoxic potential against human melanoma cells, but generally the
activity was more potent for transformed roots than untransformed (IC50 760 μg/mL and 980
μg/mL, respectively). A similar effect was revealed during the evaluation of genotoxic and
proapoptotic properties. Moreover, the expression of p53 was also found to be increased after extract treatment. The most dominant identified compounds in both extracts were as follows: (+)-
catechin, p-coumaric acid, m-coumaric acid, and (+)-rosmarinic acid. Docking studies and computational analysis showed that (+)-rosmarinic acid possesses the highest binding affinity to the p53
binding protein, Mdm-2, and exhibits the best antioxidant property from the most commonly identified phytochemicals.
Conclusion:
Our findings revealed the potential of L. nepetifolia transformed root extract as a
source of bioactive compounds with cytotoxic, genotoxic, and proapoptotic activity against human
melanoma cells as well as antioxidant properties.
Collapse
Affiliation(s)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical
Botany, Medical University of Lodz, Lodz, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz, Poland
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Malinowska
- Department of Allergology and
Respiratory Rehabilitation, Medical University of Lodz, Lodz, Poland
| | | | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the
Faculty of Pedagogy, Ignatianum Academy in Cracow, Cracow, Poland
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Methyl Jasmonate Effect on Betulinic Acid Content and Biological Properties of Extract from Senna obtusifolia Transgenic Hairy Roots. Molecules 2021; 26:molecules26206208. [PMID: 34684788 PMCID: PMC8540613 DOI: 10.3390/molecules26206208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that Senna obtusifolia has been used in medicine since ancient times due to the content of many valuable compounds with a pro-health effect. One of them is betulinic acid, which is a pentacyclic triterpene with antimalarial, antiviral, anti-inflammatory and anticancer properties. In this work, a continuation of our previous research, an attempt was made to increase the level of betulinic acid accumulation by the cultivation of transgenic hairy roots that overexpress the squalene synthase gene in a 10 L sprinkle bioreactor with methyl jasmonate elicitation. We present that the applied strategy allowed us to increase the content of betulinic acid in hairy root cultures to the level of 48 mg/g dry weight. The obtained plant extracts showed a stronger cytotoxic effect on the U87MG glioblastoma cell line than the roots grown without elicitors. Additionally, the induction of apoptosis, reduction of mitochondrial membrane potential, chromosomal DNA fragmentation and activation of caspase cascades are demonstrated. Moreover, the tested extract showed inhibition of topoisomerase I activity.
Collapse
|