1
|
Jarczak J, Bujko K, Ratajczak MZ, Kucia M. scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes. Sci Rep 2024; 14:29264. [PMID: 39587190 PMCID: PMC11589151 DOI: 10.1038/s41598-024-79810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
A population of CD133+lin-CD45- and CD34+lin-CD45- very small embryonic-like stem cells (VSELs) has been identified in postnatal human tissues, including bone marrow (BM), mobilized peripheral blood (mPB) and umbilical cord blood (UCB). Under appropriate conditions, VSELs in vitro and in vivo differentiate into tissue-committed stem cells for all three germ layers. Molecular analysis of adult murine BM-purified VSELs revealed that these rare cells deposited during development in adult tissues (i) express a similar transcriptome as embryonic stem cells, (ii) share several markers characteristic for epiblast and migratory primordial germ cells (PGCs), (iii) highly express a polycomb group protein enhancer of zeste drosophila homolog 2 (Ezh2) and finally (iv) display a unique pattern of imprinting at crucial paternally inherited genes that promotes their quiescence. Here, by employing single-cell RNA sequencing we demonstrate for the first time that purified from UCB human VSELs defined by expression of CD34 or CD133 antigens and lack of lineage markers, including CD45 antigen express similar molecular signature as murine BM-derived VSELs. Specifically, unsupervised clustering revealed numerous subpopulations of VSELs including ones i) annotated to germline compartments, ii) regulated by parental imprinting, iii) responding to early developmental fate decisions, iv) transcription factors involved in differentiation and development, including homeobox family of genes, and v) expressing innate immunity and purinergic signaling genes.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland.
| |
Collapse
|
2
|
Montenegro F, Giannuzzi F, Picerno A, Cicirelli A, Stea ED, Di Leo V, Sallustio F. How Stem and Progenitor Cells Can Affect Renal Diseases. Cells 2024; 13:1460. [PMID: 39273032 PMCID: PMC11393889 DOI: 10.3390/cells13171460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Stem and progenitor cells have been observed to contribute to regenerative processes in acute renal failure and chronic kidney disease. Recent research has delved into the intricate mechanisms by which stem and progenitor cells exert their influence on kidney diseases. Understanding how these cells integrate with the existing renal architecture and their response to injury could pave the way for innovative treatment strategies aimed at promoting kidney repair and regeneration. Overall, the role of stem and progenitor cells in kidney diseases is multifaceted, with their ability to contribute to tissue regeneration, immune modulation, and the maintenance of renal homeostasis. Here, we review the studies that we have available today about the involvement of stem and progenitor cells both in regenerative therapies and in the causes of renal diseases, as well as in natural healing mechanisms, taking into account the main kidney disorders, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, C3 glomerulopathy, focal segmental glomerulosclerosis, idiopathic membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and ANCA-associated crescentic glomerulonephritis. Moreover, based on the comprehensive data available in the framework of the specific kidney diseases on stem cells and renal progenitors, we hypothesize a possible role of adult renal progenitors in exacerbating or recovering the illness.
Collapse
Affiliation(s)
- Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Vincenzo Di Leo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
3
|
Bujko K, Brzezniakiewicz-Janus K, Jarczak J, Kucia M, Ratajczak MZ. Murine and Human-Purified very Small Embryonic-like Stem Cells (VSELs) Express Purinergic Receptors and Migrate to Extracellular ATP Gradient. Stem Cell Rev Rep 2024; 20:1357-1366. [PMID: 38635127 PMCID: PMC11222280 DOI: 10.1007/s12015-024-10716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Purinergic signaling is an ancient primordial signaling system regulating tissue development and specification of various types of stem cells. Thus, functional purinergic receptors are present in several types of cells in the body, including multiple populations of stem cells. However, one stem cell type that has not been evaluated for expression of purinergic receptors is very small embryonic stem cells (VSELs) isolated from postnatal tissues. Herein, we report that human umbilical cord blood (UCB) and murine bone marrow (BM) purified VSELs express mRNA for P1 and P2 purinergic receptors and CD39 and CD73 ectonucleotidases converting extracellular ATP (eATP) into its signaling metabolite extracellular adenosine (eAdo), that antagonizes eATP effects. More importantly, we demonstrate that human and murine VSELs respond by chemotaxis to eATP, and eAdo inhibits this migration. These responses to eATP are mediated by activation of Nlrp3 inflammasome, and exposure of VSELs to its specific inhibitor MCC950 abolished the chemotactic response to ATP. We conclude that purinergic signaling plays an essential, underappreciated role in the biology of these cells and their potential role in response to tissue/organ injuries.
Collapse
Affiliation(s)
- Kamila Bujko
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland
| | | | - Justyna Jarczak
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland
| | - Magdalena Kucia
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland.
| | - Mariusz Z Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland.
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
5
|
Jain KG, Xi NM, Zhao R, Ahmad W, Ali G, Ji HL. Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines 2023; 11:3034. [PMID: 38002035 PMCID: PMC10669847 DOI: 10.3390/biomedicines11113034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lung diseases rank third in terms of mortality and represent a significant economic burden globally. Scientists have been conducting research to better understand respiratory diseases and find treatments for them. An ideal in vitro model must mimic the in vivo organ structure, physiology, and pathology. Organoids are self-organizing, three-dimensional (3D) structures originating from adult stem cells, embryonic lung bud progenitors, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). These 3D organoid cultures may provide a platform for exploring tissue development, the regulatory mechanisms related to the repair of lung epithelia, pathophysiological and immunomodulatory responses to different respiratory conditions, and screening compounds for new drugs. To create 3D lung organoids in vitro, both co-culture and feeder-free methods have been used. However, there exists substantial heterogeneity in the organoid culture methods, including the sources of AT2 cells, media composition, and feeder cell origins. This article highlights the currently available methods for growing AT2 organoids and prospective improvements to improve the available culture techniques/conditions. Further, we discuss various applications, particularly those aimed at modeling human distal lung diseases and cell therapy.
Collapse
Affiliation(s)
- Krishan Gopal Jain
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Runzhen Zhao
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Waqas Ahmad
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gibran Ali
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Hong-Long Ji
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
6
|
Bujko K, Ciechanowicz AK, Kucia M, Ratajczak MZ. Molecular analysis and comparison of CD34 + and CD133 + very small embryonic-like stem cells purified from umbilical cord blood. Cytometry A 2023; 103:703-711. [PMID: 37246957 DOI: 10.1002/cyto.a.24767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Very small embryonic like stem cells (VSELs) are a dormant population of stem cells that, as proposed, are deposited during embryogenesis in various tissues, including bone marrow (BM). These cells are released under steady state conditions from their tissue locations and circulate at a low level in peripheral blood (PB). Their number increases in response to stressors as well as tissue/organ damage. This increase is evident during neonatal delivery, as delivery stress prompts enrichment of umbilical cord blood (UCB) with VSELs. These cells could be purified from BM, PB, and UCB by multiparameter sorting as a population of very small CXCR4+ Lin- CD45- cells that express the CD34 or CD133 antigen. In this report, we evaluated a number of CD34+ Lin- CD45- and CD133+ Lin- CD45- UCB-derived VSELs. We also performed initial molecular characterization of both cell populations for expression of selected pluripotency markers and compared these cells at the proteomic level. We noticed that CD133+ Lin- CD45- population is more rare and express, at a higher level, mRNA for pluripotency markers Oct-4 and Nanog as well as the stromal-derived factor-1 (SDF-1) CXCR4 receptor that regulates trafficking of these cells, however both cells population did not significantly differ in the expression of proteins assigned to main biological processes.
Collapse
Affiliation(s)
- Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Kamil G, Karolina S, Aleksandra S, Filip B, Marta P, Artur B, Marcin M. Alterations in Stem Cell Populations in IGF-1 Deficient Pediatric Patients Subjected to Mecasermin (Increlex) Treatment. Stem Cell Rev Rep 2023; 19:392-405. [PMID: 36269524 PMCID: PMC9902328 DOI: 10.1007/s12015-022-10457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Pathway involving insulin-like growth factor 1 (IGF-1) plays significant role in growth and development. Crucial role of IGF-1 was discovered inter alia through studies involving deficient patients with short stature, including Laron syndrome individuals. Noteworthy, despite disturbances in proper growth, elevated values for selected stem cell populations were found in IGF-1 deficient patients. Therefore, here we focused on investigating role of these cells-very small embryonic-like (VSEL) and hematopoietic stem cells (HSC), in the pathology. For the first time we performed long-term observation of these populations in response to rhIGF-1 (mecasermin) therapy. Enrolled pediatric subjects with IGF-1 deficiency syndrome were monitored for 4-5 years of rhIGF-1 treatment. Selected stem cells were analyzed in peripheral blood flow cytometrically, together with chemoattractant SDF-1 using immunoenzymatic method. Patients' data were collected for correlation of experimental results with clinical outcome. IGF-1 deficient patients were found to demonstrate initially higher levels of VSEL and HSC compared to healthy controls, with their gradual decrease in response to therapy. These changes were significantly associated with SDF-1 plasma levels. Correlations of VSEL and HSC were also reported in reference to growth-related parameters, and IGF-1 and IGFBP3 values. Noteworthy, rhIGF-1 was shown to efficiently induce development of Laron patients achieving at least proper rate of growth (compared to healthy group) in 80% of subjects. In conclusion, here we provided novel insight into stem cells participation in IGF-1 deficiency in patients. Thus, we demonstrated basis for future studies in context of stem cells and IGF-1 role in growth disturbances.
Collapse
Affiliation(s)
- Grubczak Kamil
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Jerzego Waszyngtona 13, 15-269, Bialystok, Poland.
| | - Stożek Karolina
- Department of Pediatrics, Endocrinology and Diabetes With a Cardiology Unit, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-275, Bialystok, Poland
| | - Starosz Aleksandra
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Jerzego Waszyngtona 13, 15-269, Bialystok, Poland
| | - Bossowski Filip
- Department of Pediatrics, Endocrinology and Diabetes With a Cardiology Unit, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-275, Bialystok, Poland
| | - Pasławska Marta
- Department of Pediatrics, Endocrinology and Diabetes With a Cardiology Unit, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-275, Bialystok, Poland
| | - Bossowski Artur
- Department of Pediatrics, Endocrinology and Diabetes With a Cardiology Unit, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-275, Bialystok, Poland.
| | - Moniuszko Marcin
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Jerzego Waszyngtona 13, 15-269, Bialystok, Poland.,Department of Allergology and Internal Medicine, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| |
Collapse
|
8
|
Lee YJ, Wang JK, Pai YM, Frost A, Viprakasit V, Ekwattanakit S, Chin HC, Liu JY. Culture of leukocyte-derived cells from human peripheral blood: Increased expression of pluripotent genes OCT4, NANOG, SOX2, self-renewal gene TERT and plasticity. Medicine (Baltimore) 2023; 102:e32746. [PMID: 36701726 PMCID: PMC9857475 DOI: 10.1097/md.0000000000032746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There are few stem cells in human peripheral blood (PB). Increasing the population and plasticity of stem cells in PB and applying it to regenerative medicine require suitable culture methods. In this study, leukocyte populations 250 mL of PB were collected using a blood separator before that were cultured in optimal cell culture medium for 4 to 7 days. After culturing, stemness characteristics were analyzed, and red blood cells were removed from the cultured cells. In our results, stemness markers of the leukocyte populations Sca-1+ CD45+, CD117+ CD45+, and very small embryonic-like stem cells CD34+ Lin- CD45- and CXCR4+ Lin- CD45- were significantly increased. Furthermore, the expression of stem cell genes OCT4 (POU5F1), NANOG, SOX2, and the self-renewal gene TERT was analyzed by quantitative real-time polymerase chain reaction in these cells, and it showed a significant increase. These cells could be candidates for multi-potential cells and were further induced using trans-differentiation culture methods. These cells showed multiple differentiation potentials for osteocytes, nerve cells, cardiomyocytes, and hepatocytes. These results indicate that appropriate culture methods can be applied to increase expression of pluripotent genes and plasticity. Leukocytes of human PB can be induced to trans-differentiate into pluripotent potential cells, which will be an important breakthrough in regenerative medicine.
Collapse
Affiliation(s)
- Yi-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ming Pai
- Autologous Stem Cell Technology Pty Ltd, Brisbane, Australia
| | - Alan Frost
- School of Veterinary Science, University of Queensland, Australia
| | - Vip Viprakasit
- Department of Pediatrics and Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supachai Ekwattanakit
- Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Hui-Chieh Chin
- Autologous Stem Cell Technology Pty Ltd, Brisbane, Australia
| | - Jah-Yao Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * Correspondence: Jah-Yao Liu, Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, 325, Section 2, Cheng-Kong Road, Taipei 11490, Taiwan (ROC) (e-mail: )
| |
Collapse
|
9
|
Bhartiya D, Jha N, Tripathi A, Tripathi A. Very small embryonic-like stem cells have the potential to win the three-front war on tissue damage, cancer, and aging. Front Cell Dev Biol 2023; 10:1061022. [PMID: 36684436 PMCID: PMC9846763 DOI: 10.3389/fcell.2022.1061022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
The concept of dedifferentiation and reprogramming of mature somatic cells holds much promise for the three-front "war" against tissue damage, cancer, and aging. It was hoped that reprogramming human somatic cells into the induced pluripotent state, along with the use of embryonic stem cells, would transform regenerative medicine. However, despite global efforts, clinical applications remain a distant dream, due to associated factors such as genomic instability, tumorigenicity, immunogenicity, and heterogeneity. Meanwhile, the expression of embryonic (pluripotent) markers in multiple cancers has baffled the scientific community, and it has been suggested that somatic cells dedifferentiate and "reprogram" into the pluripotent state in vivo to initiate cancer. It has also been suggested that aging can be reversed by partial reprogramming in vivo. However, better methods are needed; using vectors or Yamanaka factors in vivo, for example, is dangerous, and many potential anti-aging therapies carry the same risks as those using induced pluripotent cells, as described above. The present perspective examines the potential of endogenous, pluripotent very small embryonic-like stem cells (VSELs). These cells are naturally present in multiple tissues; they routinely replace diseased tissue and ensure regeneration to maintain life-long homeostasis, and they have the ability to differentiate into adult counterparts. Recent evidence suggests that cancers initiate due to the selective expansion of epigenetically altered VSELs and their blocked differentiation. Furthermore, VSEL numbers have been directly linked to lifespan in studies of long- and short-lived transgenic mice, and VSEL dysfunction has been found in the ovaries of aged mice. To conclude, a greater interest in VSELs, with their potential to address all three fronts of this war, could be the "light at the end of the tunnel."
Collapse
|
10
|
Proteomic Analysis of Murine Bone Marrow Very Small Embryonic-like Stem Cells at Steady-State Conditions and after In Vivo Stimulation by Nicotinamide and Follicle-Stimulating Factor Reflects their Germ-Lineage Origin and Multi Germ Layer Differentiation Potential. Stem Cell Rev Rep 2023; 19:120-132. [PMID: 35986128 PMCID: PMC9823037 DOI: 10.1007/s12015-022-10445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are a dormant population of development early stem cells deposited in adult tissues that as demonstrated contribute to tissue/organ repair and regeneration. We postulated developmental relationship of these cells to migrating primordial germ cells (PGCs) and explained the quiescent state of these cells by the erasure of differently methylated regions (DMRs) at some of the paternally imprinted genes involved in embryogenesis. Recently, we reported that VSELs began to proliferate and expand in vivo in murine bone marrow (BM) after exposure to nicotinamide (NAM) and selected pituitary and gonadal sex hormones. In the current report, we performed proteomic analysis of VSELs purified from murine bone marrow (BM) after repeated injections of NAM + Follicle-Stimulating Hormone (FSH) that in our previous studies turned out to be an effective combination to expand these cells. By employing the Gene Ontology (GO) resources, we have performed a combination of standard GO annotations (GO-CAM) to produce a network between BM steady-state conditions VSELs (SSC-VSELS) and FSH + NAM expanded VSELs (FSH + NAM VSELs). We have identified several GO biological processes regulating development, organogenesis, gene expression, signal transduction, Wnt signaling, insulin signaling, cytoskeleton organization, cell adhesion, inhibiting apoptosis, responses to extra- and intracellular stimuli, protein transport and stabilization, protein phosphorylation and ubiquitination, DNA repair, immune response, and regulation of circadian rhythm. We report that VSELs express a unique panel of proteins that only partially overlapped with the proteome of BM - derived hematopoietic stem cells (HSCs) and hematopoietic mononuclear cells (MNCs) and respond to FSH + NAM stimulation by expressing proteins involved in the development of all three germ layers. Thus, our current data supports further germ-lineage origin and multi germ layer differentiation potential of these cells.
Collapse
|
11
|
Hénon P, Kowalczyk M, Aries A, Vignon C, Trébuchet G, Lahlil R. Industrialized GMP Production of CD34 + Cells (ProtheraCytes®) at Clinical Scale for Treatment of Ischemic Cardiac Diseases Is Feasible and Safe. Stem Cell Rev Rep 2022; 18:1614-1626. [PMID: 35420389 PMCID: PMC9209364 DOI: 10.1007/s12015-022-10373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/08/2023]
Abstract
Regenerative medicine now needs to pass a crucial turning point, from academic research to the market. Several sources/types of cells have been experimented with, more or less successfully. CD34+ cells have demonstrated multipotent or even pluripotent capacities, making them good candidates for regenerative medicine, particularly for treating heart diseases. Strongly encouraged by the results we achieved in a pilot study using CD34+ stem cells in patients with poor-prognosis acute myocardial infarcts (AMIs), we soon began the development of an industrialized platform making use of a closed automated device (StemXpand®) and a disposable kit (StemPack®) for the large-scale expansion of CD34+ cells with reproducible good manufacturing practice (GMP). This scalable platform can produce expanded CD34+ cells (ProtheraCytes®) of sufficient quality that, interestingly, express early markers of the cardiac and endothelial pathways and early cardiac-mesoderm markers. They also contain CD34+ pluripotent cells characterized as very small embryonic-like stem cells (VSELs), capable of differentiating under appropriate stimuli into different tissue lineages, including endothelial and cardiomyocytic ones.
Collapse
Affiliation(s)
| | | | - Anne Aries
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | | | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| |
Collapse
|
12
|
Bhartiya D, Mohammad SA, Singh P, Sharma D, Kaushik A. GFP Tagged VSELs Help Delineate Novel Stem Cells Biology in Multiple Adult Tissues. Stem Cell Rev Rep 2022; 18:1603-1613. [PMID: 35641711 DOI: 10.1007/s12015-022-10401-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
Various types of stem cells are being researched upon to exploit their potential for regenerative medicine including pluripotent human embryonic stem (hES) cells derived from spare human embryos, induced pluripotent stem (iPS) cells by reprogramming somatic cells to a pluripotent state and multipotent mesenchymal stem/stromal cells (MSCs) obtained in vitro from multiple tissues. More than 50 independent groups have reported another novel population of pluripotent stem cells in adult tissues termed very small embryonic-like stem cells (VSELs). VSELs are developmentally linked to primordial germ cells, which rather than giving rise to the germ cells and later ceasing to exist, survive throughout life in multiple organs along with tissue-specific adult stem cells better described as lineage-restricted, tissue-committed progenitors with limited plasticity. VSELs survive total body irradiation in bone marrow, oncotherapy in the gonads, bilateral ovariectomy in the uterus and partial pancreatectomy in the pancreas of mice and participate in the regeneration of multiple organs under normal physiological conditions. VSELs and tissue-specific progenitor cells work together in a subtle manner, maintain life-long tissue homeostasis and their dysfunction leads to various pathologies including cancer. However, due to their quiescent state, VSELs have invariably eluded lineage-tracing studies reported so far. Present article reviews novel insights into VSELs biology and how VSELs enriched from GFP (green fluorescent protein) mice have enabled to delineate their role in various biological processes in vivo. VSELs biology needs to be understood in-depth as this alone will help evolve the field of regenerative medicine and win the war against cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400013, India.
| | - Subhan Ali Mohammad
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| |
Collapse
|
13
|
Bhartiya D, Singh P, Sharma D, Kaushik A. Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Rev Rep 2021; 18:1718-1727. [PMID: 34410593 DOI: 10.1007/s12015-021-10243-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Compared to embryonic and induced pluripotent stem cells, mesenchymal stem/stromal cells (MSCs) have made their presence felt with good therapeutic promise and safety profile. Transplanting MSCs has successfully helped to reverse infertility and resulted in live births in animal models and also in humans. But the underlying mechanism for their therapeutic potential is not yet clear. MSCs are not pluripotent and hence lack plasticity to differentiate into multiple adult cell types. They rather act as 'paracrine providers' to the tissue-resident stem cells since similar beneficial effects are also observed when their secretome (microvesicles or exosomes) is transplanted. Cytokines, growth factors, signaling lipids, mRNAs, and miRNAs secreted by MSCs enables tissue-resident stem cells to undergo differentiation into specific cell types. Tissue-resident stem cells include pluripotent, very small embryonic-like stem cells (VSELs) and progenitors [spermatogonial (SSCs), ovarian (OSCs) and endometrial (EnSCs) stem cells in testes, ovary and uterus respectively] which function in a subtle manner to maintain life-long tissue homeostasis and regenerate damaged (non-functional) reproductive tissues by differentiating into sperm, oocytes and endometrial epithelial cells respectively. Similar to restoring spermatogenesis, primordial follicles numbers are increased upon transplanting MSCs. Published literature suggests that MSCs do not differentiate into epithelial cells in the endometrium. Nuclear OCT-4 positive VSELs and cytoplasmic OCT-4, AXIN2 and KERATIN-19 positive epithelial progenitors have a greater role during endometrial regeneration. We propose, transplantation of MSCs simply provides growth factors/cytokines essential for the tissue-resident stem/progenitor cells to undergo differentiation into sperm, eggs and endometrial epithelial cells in the reproductive tissues.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| |
Collapse
|