1
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Liu X, Chen Q, Jiang S, Shan H, Yu T. MicroRNA-26a in respiratory diseases: mechanisms and therapeutic potential. Mol Biol Rep 2024; 51:627. [PMID: 38717532 DOI: 10.1007/s11033-024-09576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/30/2024]
Abstract
MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.
Collapse
Affiliation(s)
- Xiaoshan Liu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Qian Chen
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Shuxia Jiang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China.
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
4
|
Qian Y, Yu Q, Zhang J, Han Y, Xie X, Zhu D. Identification of transient receptor potential channel genes from the swimming crab, Portunus Trituberculatus, and their expression profiles under acute temperature stress. BMC Genomics 2024; 25:72. [PMID: 38233779 PMCID: PMC10795286 DOI: 10.1186/s12864-024-09973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Temperature is an important environment factor that is critical to the survival and growth of crustaceans. However, the mechanisms by which crustaceans detect changes in temperature are still unclear. The transient receptor potential (TRP) channels are non-selective cation channels well known for properties in temperature sensation. However, comprehensive understandings on TRP channels as well as their temperature sensing functions are still lacking in crustaceans. RESULTS In this study, a total of 26 TRP genes were identified in the swimming crab, Portunus trituberculatus, which can be classified into TRPA, TRPC, TRPP, TRPM, TRPML, TRPN and TRPV. Tissue expression analysis revealed a wide distribution of these TRP genes in P. trituberculatus, and antennules, neural tissues, and ovaries were the most commonly expressed tissues. To investigate the responsiveness of TRP genes to the temperature change, 18 TRPs were selected to detect their expression after high and low temperature stress. The results showed that 12 TRPs showed induced gene expression in both high and low temperature groups, while 3 were down-regulated in the low temperature group, and 3 showed no change in expression in either group. CONCLUSIONS This study characterized the TRP family genes in P. trituberculatus, and explored their involvement in response to temperature stress. Our results will enhance overall understanding of crustacean TRP channels and their possible functions.
Collapse
Affiliation(s)
- Yichen Qian
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoling Yu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaoyao Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xi Xie
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| | - Dongfa Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Liang L, Zhang J, Duan H, Li X, Xie S, Wang C. Effects of spray cryotherapy on cough receptors and airway microenvironment in a canine model of chronic bronchitis. Cryobiology 2023; 113:104569. [PMID: 37597598 DOI: 10.1016/j.cryobiol.2023.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The aim of this study was to explore the effects of spray cryotherapy (SCT) on cough receptors and airway microenvironment in a canine model of chronic bronchitis. We examined the expression of transient receptor potential vanilloid 1/4 (TRPV1/4) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) at the gene and protein levels before and after SCT. In addition, we explored whether TRPV1/4 could regulate inflammatory factors via mediator adenosine triphosphate (ATP). The levels of ATP and cytokines in alveolar lavage fluid and cell supernatant were measured using ELISA. SCT effectively downregulated the expression of TRPV1/4 and SP/CGRP in canine airway tissues with chronic bronchitis and reduced the levels of inflammatory mediators and cytokines that affect cough receptor sensitivity, achieving cough relief. TRPV1/4 - ATP - inflammatory cytokines axis has been demonstrated at the cellular level, which in turn modulate the milieu of the airways and promote the formation of a cough feedback loop. Our study has fully revealed the specific mechanism of SCT in treating cough in a canine model of chronic bronchitis, providing a solid theoretical basis for future clinical treatment.
Collapse
Affiliation(s)
- Long Liang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongxia Duan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Xuan Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
6
|
Chihade DB, Smith P, Swift DA, Otani S, Zhang W, Chen CW, Jeffers LA, Liang Z, Shimazui T, Burd EM, Farris AB, Staitieh BS, Guidot DM, Ford ML, Koval M, Coopersmith CM. MYOSIN LIGHT CHAIN KINASE DELETION WORSENS LUNG PERMEABILITY AND INCREASES MORTALITY IN PNEUMONIA-INDUCED SEPSIS. Shock 2023; 59:612-620. [PMID: 36640152 PMCID: PMC10065930 DOI: 10.1097/shk.0000000000002081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT Increased epithelial permeability in sepsis is mediated via disruptions in tight junctions, which are closely associated with the perijunctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses sepsis-induced intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine the generalizability of these findings, this study measured the impact of MLCK deletion on survival and potential associated mechanisms following pneumonia-induced sepsis. MLCK -/- and wild-type mice underwent intratracheal injection of Pseudomonas aeruginosa . Unexpectedly, survival was significantly worse in MLCK -/- mice than wild-type mice. This was associated with increased permeability to Evans blue dye in bronchoalveolar lavage fluid but not in tissue homogenate, suggesting increased alveolar epithelial leak. In addition, bacterial burden was increased in bronchoalveolar lavage fluid. Cytokine array using whole-lung homogenate demonstrated increases in multiple proinflammatory and anti-inflammatory cytokines in knockout mice. These local pulmonary changes were associated with systemic inflammation with increased serum levels of IL-6 and IL-10 and a marked increase in bacteremia in MLCK -/- mice. Increased numbers of both bulk and memory CD4 + T cells were identified in the spleens of knockout mice, with increased early and late activation. These results demonstrate that genetic deletion of MLCK unexpectedly increases mortality in pulmonary sepsis, associated with worsened alveolar epithelial leak and both local and systemic inflammation. This suggests that caution is required in targeting MLCK for therapeutic gain in sepsis.
Collapse
Affiliation(s)
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | - Lauren A Jeffers
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | | | | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | |
Collapse
|
7
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
8
|
Qian Z, Wang Q, Qiu Z, Li D, Zhang C, Xiong X, Zheng Z, Ruan Q, Guo Y, Guo J. Protein nanoparticle-induced osmotic pressure gradients modify pulmonary edema through hyperpermeability in acute respiratory distress syndrome. J Nanobiotechnology 2022; 20:314. [PMID: 35794575 PMCID: PMC9257569 DOI: 10.1186/s12951-022-01519-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
AbstractAcute respiratory distress syndrome (ARDS), caused by noncardiogenic pulmonary edema (PE), contributes significantly to Coronavirus 2019 (COVID-19)-associated morbidity and mortality. We explored the effect of transmembrane osmotic pressure (OP) gradients in PE using a fluorescence resonance energy transfer-based Intermediate filament (IF) tension optical probe. Angiotensin-II- and bradykinin-induced increases in intracellular protein nanoparticle (PN)-OP were associated with inflammasome production and cytoskeletal depolymerization. Intracellular protein nanoparticle production also resulted in cytomembrane hyperpolarization and L-VGCC-induced calcium signals, which differed from diacylglycerol-induced calcium increment via TRPC6 activation. Both pathways involve voltage-dependent cation influx and OP upregulation via SUR1-TRPM4 channels. Meanwhile, intra/extracellular PN-induced OP gradients across membranes upregulated pulmonary endothelial and alveolar barrier permeability. Attenuation of intracellular PN, calcium signals, and cation influx by drug combinations effectively relieved intracellular OP and pulmonary endothelial nonselective permeability, and improved epithelial fluid absorption and PE. Thus, PN-OP is pivotal in pulmonary edema in ARDS and COVID-19, and transmembrane OP recovery could be used to treat pulmonary edema and develop new drug targets in pulmonary injury.
Graphical Abstract
Collapse
|
9
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Jo AO, Lakk M, Rudzitis CN, Križaj D. TRPV4 and TRPC1 channels mediate the response to tensile strain in mouse Müller cells. Cell Calcium 2022; 104:102588. [PMID: 35398674 PMCID: PMC9119919 DOI: 10.1016/j.ceca.2022.102588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Müller glia, a pillar of metabolic, volume regulatory and immune/inflammatory signaling in the mammalian retina, are among the earliest responders to mechanical stressors in the eye. Ocular trauma, edema, detachment and glaucoma evoke early inflammatory activation of Müller cells yet the identity of their mechanotransducers and signaling mechanisms downstream remains unknown. Here, we investigate expression of genes that encode putative stretch-activated calcium channels (SACs) in mouse Müller cells and study their responses to dynamical tensile loading in cells loaded with a calcium indicator dye. Transcript levels in purified glia were Trpc1>Piezo1>Trpv2>Trpv4>>Trpv1>Trpa1. Cyclic radial deformation of matrix-coated substrates produced dose-dependent increases in [Ca2+]i that were suppressed by the TRPV4 channel antagonist HC-067047 and by ablation of the Trpv4 gene. Stretch-evoked calcium responses were also reduced by knockdown and pharmacological inhibition of TRPC1 channels whereas the TRPV2 inhibitor tranilast had no effect. These data demonstrate that Müller cells are intrinsically mechanosensitive, with the response to tensile loading mediated through synergistic activation of TRPV4 and TRPC1 channels. Coupling between mechanical stress and Müller Ca2+ homeostasis has treatment implications, since many neuronal injury paradigms in the retina involve calcium dysregulation associated with inflammatory and immune signaling.
Collapse
Affiliation(s)
- Andrew O Jo
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132; Interdepartmental Program in Neuroscience
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132; Interdepartmental Program in Neuroscience; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112.
| |
Collapse
|
11
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
12
|
Zhu X, Tian C, Zhou Y, Shi J, Yuan G, Zhang L, Jiang Y, Xue W, Du Y, Hu Y. Transient Receptor Potential channels: A Global Bibliometric analysis From 2012 to 2021. Channels (Austin) 2021; 15:624-634. [PMID: 34779356 PMCID: PMC8667877 DOI: 10.1080/19336950.2021.1983100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xueping Zhu
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanxi Tian
- Clinical Graduate Department, Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Traditional Chinese Medicine for Pulmonary Diseases,China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhou
- Clinical Graduate Department, Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Zhang
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Jiang
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Clinical Graduate Department, Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|