1
|
Zhang L, Liu G, Peng Y, Gao J, Tian M. Role of Neural Circuits in Cognitive Impairment. Neurochem Res 2024; 50:49. [PMID: 39644416 DOI: 10.1007/s11064-024-04309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Cognitive impairment refers to abnormalities in learning, memory and cognitive judgment, mainly manifested as symptoms such as decreased memory, impaired orientation and reduced computational ability. As the fundamental unit of information processing in the brain, neural circuits have recently attracted great attention due to their functions in regulating pain, emotion and behavior. Furthermore, a growing number of studies have suggested that neural circuits play an important role in cognitive impairment. Neural circuits can affect perception, attention and decision-making, they can also regulate language skill, thinking and memory. Pathological conditions crucially affecting the integrity and preservation of neural circuits and their connectivity will heavily impact cognitive abilities. Nowadays, technological developments have led to many novel methods for studying neural circuits, such as brain imaging, optogenetic techniques, and chemical genetics approaches. Therefore, neural circuits show great promise as a potential target in mitigating cognitive impairment. In this review we discuss the pathogenesis of cognitive impairment and the regulation and detection of neural circuits, thus highlighting the role of neural circuits in cognitive impairment. Hence, therapeutic agents against cognitive impairment may be developed that target neural circuits important in cognition.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Guodong Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Jinqi Gao
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, the School of Medicine, Southeast University, Nanjing, Jiangsu Province, PR China
| | - Mi Tian
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, the School of Medicine, Southeast University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
3
|
Zhao Q. Thermodynamic model for memory. Biosystems 2024; 242:105247. [PMID: 38866100 DOI: 10.1016/j.biosystems.2024.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
A thermodynamic model for memory formation is proposed. Key points include: 1) Any thought or consciousness corresponds to a thermodynamic system of nerve cells. 2) The system concept of nerve cells can only be described by thermodynamics of condensed matter. 3) The memory structure is logically associated with the system structure or the normal structure of biology. 4) The development of our thoughts is processed irreversibly, and numerous states or thoughts can be generated. 5) Memory formation results from the reorganization and change of cellular structures (or memory structures), which are related to nerve cell skeleton and membrane. Their alteration can change the excitability of nerve cells and the pathway of neural impulse conduction. 6) Amnesia results from the loss of thermodynamic stability of the memory structure, which can be achieved by different ways. Some related phenomena and facts are discussed. The analysis shows that thermodynamics can account for the basic properties of memory.
Collapse
Affiliation(s)
- Qinyi Zhao
- Medical Institute, CRRC, Beijing, China.
| |
Collapse
|
4
|
Kasuba KC, Buccino AP, Bartram J, Gaub BM, Fauser FJ, Ronchi S, Kumar SS, Geissler S, Nava MM, Hierlemann A, Müller DJ. Mechanical stimulation and electrophysiological monitoring at subcellular resolution reveals differential mechanosensation of neurons within networks. NATURE NANOTECHNOLOGY 2024; 19:825-833. [PMID: 38378885 PMCID: PMC11186759 DOI: 10.1038/s41565-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
A growing consensus that the brain is a mechanosensitive organ is driving the need for tools that mechanically stimulate and simultaneously record the electrophysiological response of neurons within neuronal networks. Here we introduce a synchronized combination of atomic force microscopy, high-density microelectrode array and fluorescence microscopy to monitor neuronal networks and to mechanically characterize and stimulate individual neurons at piconewton force sensitivity and nanometre precision while monitoring their electrophysiological activity at subcellular spatial and millisecond temporal resolution. No correlation is found between mechanical stiffness and electrophysiological activity of neuronal compartments. Furthermore, spontaneously active neurons show exceptional functional resilience to static mechanical compression of their soma. However, application of fast transient (∼500 ms) mechanical stimuli to the neuronal soma can evoke action potentials, which depend on the anchoring of neuronal membrane and actin cytoskeleton. Neurons show higher responsivity, including bursts of action potentials, to slower transient mechanical stimuli (∼60 s). Moreover, transient and repetitive application of the same compression modulates the neuronal firing rate. Seemingly, neuronal networks can differentiate and respond to specific characteristics of mechanical stimulation. Ultimately, the developed multiparametric tool opens the door to explore manifold nanomechanobiological responses of neuronal systems and new ways of mechanical control.
Collapse
Affiliation(s)
| | | | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Benjamin M Gaub
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Felix J Fauser
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Sydney Geissler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Michele M Nava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
5
|
Jakimovski D, Dorn RP, Regno MD, Bartnik A, Bergsland N, Ramanathan M, Dwyer MG, Benedict RHB, Zivadinov R, Szigeti K. Human restricted CHRFAM7A gene increases brain efficiency. Front Neurosci 2024; 18:1359028. [PMID: 38711941 PMCID: PMC11070550 DOI: 10.3389/fnins.2024.1359028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction CHRFAM7A, a uniquely human fusion gene, has been associated with neuropsychiatric disorders including Alzheimer's disease, schizophrenia, anxiety, and attention deficit disorder. Understanding the physiological function of CHRFAM7A in the human brain is the first step to uncovering its role in disease. CHRFAM7A was identified as a potent modulator of intracellular calcium and an upstream regulator of Rac1 leading to actin cytoskeleton reorganization and a switch from filopodia to lamellipodia implicating a more efficient neuronal structure. We performed a neurocognitive-MRI correlation exploratory study on 46 normal human subjects to explore the effect of CHRFAM7A on human brain. Methods Dual locus specific genotyping of CHRFAM7A was performed on genomic DNA to determine copy number (TaqMan assay) and orientation (capillary sequencing) of the CHRFAM7A alleles. As only the direct allele is expressed at the protein level and affects α7 nAChR function, direct allele carriers and non-carriers are compared for neuropsychological and MRI measures. Subjects underwent neuropsychological testing to measure motor (Timed 25-foot walk test, 9-hole peg test), cognitive processing speed (Symbol Digit Modalities Test), Learning and memory (California Verbal Learning Test immediate and delayed recall, Brief Visuospatial Memory Test-Revised immediate and delayed recall) and Beck Depression Inventory-Fast Screen, Fatigue Severity Scale. All subjects underwent MRI scanning on the same 3 T GE scanner using the same protocol. Global and tissue-specific volumes were determined using validated cross-sectional algorithms including FSL's Structural Image Evaluation, using Normalization, of Atrophy (SIENAX) and FSL's Integrated Registration and Segmentation Tool (FIRST) on lesion-inpainted images. The cognitive tests were age and years of education-adjusted using analysis of covariance (ANCOVA). Age-adjusted analysis of covariance (ANCOVA) was performed on the MRI data. Results CHRFAM7A direct allele carrier and non-carrier groups included 33 and 13 individuals, respectively. Demographic variables (age and years of education) were comparable. CHRFAM7A direct allele carriers demonstrated an upward shift in cognitive performance including cognitive processing speed, learning and memory, reaching statistical significance in visual immediate recall (FDR corrected p = 0.018). The shift in cognitive performance was associated with smaller whole brain volume (uncorrected p = 0.046) and lower connectivity by resting state functional MRI in the visual network (FDR corrected p = 0.027) accentuating the cognitive findings. Conclusion These data suggest that direct allele carriers harbor a more efficient brain consistent with the cellular biology of actin cytoskeleton and synaptic gain of function. Further larger human studies of cognitive measures correlated with MRI and functional imaging are needed to decipher the impact of CHRFAM7A on brain function.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ryu P. Dorn
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Megan Del Regno
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Alexander Bartnik
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Michael G. Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ralph H. B. Benedict
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kinga Szigeti
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
6
|
Lee H, Kang H, Moon C, Youn B. PAK3 downregulation induces cognitive impairment following cranial irradiation. eLife 2023; 12:RP89221. [PMID: 38131292 PMCID: PMC10746143 DOI: 10.7554/elife.89221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Cranial irradiation is used for prophylactic brain radiotherapy as well as the treatment of primary brain tumors. Despite its high efficiency, it often induces unexpected side effects, including cognitive dysfunction. Herein, we observed that mice exposed to cranial irradiation exhibited cognitive dysfunction, including altered spontaneous behavior, decreased spatial memory, and reduced novel object recognition. Analysis of the actin cytoskeleton revealed that ionizing radiation (IR) disrupted the filamentous/globular actin (F/G-actin) ratio and downregulated the actin turnover signaling pathway p21-activated kinase 3 (PAK3)-LIM kinase 1 (LIMK1)-cofilin. Furthermore, we found that IR could upregulate microRNA-206-3 p (miR-206-3 p) targeting PAK3. As the inhibition of miR-206-3 p through antagonist (antagomiR), IR-induced disruption of PAK3 signaling is restored. In addition, intranasal administration of antagomiR-206-3 p recovered IR-induced cognitive impairment in mice. Our results suggest that cranial irradiation-induced cognitive impairment could be ameliorated by regulating PAK3 through antagomiR-206-3 p, thereby affording a promising strategy for protecting cognitive function during cranial irradiation, and promoting quality of life in patients with radiation therapy.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National UniversityGwangjuRepublic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
- Department of Biological Sciences, Pusan National UniversityBusanRepublic of Korea
- Nuclear Science Research Institute, Pusan National UniversityBusanRepublic of Korea
| |
Collapse
|
7
|
Wasnik K, Gupta PS, Mukherjee S, Oviya A, Prakash R, Pareek D, Patra S, Maity S, Rai V, Singh M, Singh G, Yadav DD, Das S, Maiti P, Paik P. Poly( N-acryloylglycine-acrylamide) Hydrogel Mimics the Cellular Microenvironment and Promotes Neurite Growth with Protection from Oxidative Stress. ACS APPLIED BIO MATERIALS 2023; 6:5644-5661. [PMID: 37993284 DOI: 10.1021/acsabm.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In this work, the glycine-based acryloyl monomer is polymerized to obtain a neurogenic polymeric hydrogel for regenerative applications. The synthesized poly(N-acryloylglycine-acrylamide) [poly(NAG-b-A)] nanohydrogel exhibits high swelling (∼1500%) and is mechanically very stable, biocompatible, and proliferative in nature. The poly(NAG-b-A) nanohydrogel provides a stable 3D extracellular mimetic environment and promotes healthy neurite growth for primary cortical neurons by facilitating cellular adhesion, proliferation, actin filament stabilization, and neuronal differentiation. Furthermore, the protective role of the poly(NAG-b-A) hydrogel for the neurons in oxidative stress conditions is revealed and it is found that it is a clinically relevant material for neuronal regenerative applications, such as for promoting nerve regeneration via GSK3β inhibition. This hydrogel additionally plays an important role in modulating the biological microenvironment, either as an agonist and antagonist or as an antioxidant. Furthermore, it favors the physiological responses and eases the neurite growth efficiency. Additionally, we found out that the conversion of glycine-based acryloyl monomers into their corresponding polymer modulates the mechanical performance, mimics the cellular microenvironment, and accelerates the self-healing capability due to the responsive behavior towards reactive oxygen species (ROS). Thus, the p(NAG-b-A) hydrogel could be a potential candidate to induce neuronal regeneration since it provides a physical cue and significantly boosts neurite outgrowth and also maintains the microtubule integrity in neuronal cells.
Collapse
Affiliation(s)
- Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Alagu Oviya
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Ravi Prakash
- School of Material Science, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Somedutta Maity
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, Telangana State 500 046, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Monika Singh
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Santanu Das
- Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Pralay Maiti
- School of Material Science, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| |
Collapse
|
8
|
Li H, Li J, Wang P, Yuan F, Zhang S. Improvement of actin dynamics and cognitive impairment in diabetes through troxerutin-mediated downregulation of TRPM7/CaN/cofilin. Neuropeptides 2023; 102:102381. [PMID: 37837806 DOI: 10.1016/j.npep.2023.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/16/2023]
Abstract
Diabetic cognitive impairment is a central nervous complication of diabetes mellitus. Its specific pathogenesis is unknown, and no effective treatment strategy is currently available. An imbalance in actin dynamics is an important mechanism underlying cognitive impairment. Transient receptor potential channel 7 (TRPM7) mediates actin dynamics imbalance through calcineurin (CaN) and cofilin cascades involved in various neurodegenerative diseases. We previously demonstrated that TRPM7 expression is increased in diabetic cognitive impairment, and troxerutin has been shown to ameliorate diabetic cognitive impairment. However, the relationship between troxerutin and TRPM7 remains unclear. In this study, we hypothesize that troxerutin may improve diabetic cognitive impairment by enhancing actin dynamics through downregulation of the TRPM7/CaN/cofilin pathway. To test this hypothesis, we divided db/m and db/db mice into the following groups: normal control group (NC), normal + troxerutin group (NT), diabetic group (DM), diabetic + troxerutin group (DT) and diabetic + troxerutin + bradykinin group (DTB). The results showed that diabetic mice exhibited cognitive impairment at 17 weeks of age, TRPM7, CaN, cofilin and G-actin were highly expressed in the CA1 region of hippocampus, while p-cofilin and F-actin expression decreased. Furthermore, hippocampal neuronal cellsshowed varying degrees of damage. The length of synaptic active zone, the width of synaptic cleft, and the number of synapses per high-power field were decreased. Troxerutin intervention alleviated these manifestations in the DT group; however, the effect of troxerutin was weakened in the DTB group. In conclusion, our findings suggest that diabetes leads to cognitive impairment, activation of the TRPM7/CaN/cofilin pathway, actin dynamics imbalance, and destruction of hippocampal neuronal cells and synapses. Troxerutin can downregulate TRPM7/CaN/cofilin, improve actin dynamics imbalance, and ameliorate cognitive impairment in diabetic mice. This study provides a new avenue for exploring and treating cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Department of Endocrinology, Shijiazhuang people's hospital, Shijiazhuang, Hebei, China
| | - Jie Li
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Pin Wang
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Songyun Zhang
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
9
|
Ahn H, Durang X, Shim JY, Park G, Jeon J, Park HY. Statistical modeling of mRNP transport in dendrites: A comparative analysis of β-actin and Arc mRNP dynamics. Traffic 2023; 24:522-532. [PMID: 37545033 PMCID: PMC10946522 DOI: 10.1111/tra.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Localization of messenger RNA (mRNA) in dendrites is crucial for regulating gene expression during long-term memory formation. mRNA binds to RNA-binding proteins (RBPs) to form messenger ribonucleoprotein (mRNP) complexes that are transported by motor proteins along microtubules to their target synapses. However, the dynamics by which mRNPs find their target locations in the dendrite have not been well understood. Here, we investigated the motion of endogenous β-actin and Arc mRNPs in dissociated mouse hippocampal neurons using the MS2 and PP7 stem-loop systems, respectively. By evaluating the statistical properties of mRNP movement, we found that the aging Lévy walk model effectively describes both β-actin and Arc mRNP transport in proximal dendrites. A critical difference between β-actin and Arc mRNPs was the aging time, the time lag between transport initiation and measurement initiation. The longer mean aging time of β-actin mRNP (~100 s) compared with that of Arc mRNP (~30 s) reflects the longer half-life of constitutively expressed β-actin mRNP. Furthermore, our model also permitted us to estimate the ratio of newly generated and pre-existing β-actin mRNPs in the dendrites. This study offers a robust theoretical framework for mRNP transport, which provides insight into how mRNPs locate their targets in neurons.
Collapse
Affiliation(s)
- Hyerim Ahn
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinneapolisUSA
| | - Xavier Durang
- Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
| | - Jae Youn Shim
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Gaeun Park
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Jae‐Hyung Jeon
- Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
- Asia Pacific Center for Theoretical PhysicsPohangRepublic of Korea
| | - Hye Yoon Park
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinneapolisUSA
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
- Institute of Applied PhysicsSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
10
|
Xin Y, Lin G, Hua T, Liang J, Sun T, Wu X. The altered expression of cytoskeletal and synaptic remodeling proteins during epilepsy. Open Life Sci 2023; 18:20220595. [PMID: 37070078 PMCID: PMC10105555 DOI: 10.1515/biol-2022-0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 04/19/2023] Open
Abstract
The cytoskeleton plays an important role in epilepsy; however, the mechanism is unknown. Therefore, this study aimed to reveal the mechanism of cytoskeletal proteins in epilepsy by investigating the expression of cytoskeletal proteins and synaptophysin (SYP) in mice at 0, 3, 6, and 24 h, 3 days, and 7 days in a kainic acid (KA)-induced epileptic model. Our results demonstrated that the expression of F-actin decreased significantly between 3 and 6 h, 6 and 24 h, and 24 h and 3 days (P < 0.05). Meanwhile, the expression of the neurofilament light chain, neurofilament medium chain, and neurofilament heavy chain subunits was significantly decreased (P < 0.001) at 3 h after the KA injection compared to the KA 0 h group, followed by an elevation at 6 h and a further decrease at 24 h compared to at 6 h. SYP expression was significantly decreased between 0 and 3 h as well as between 3 and 6 h (P < 0.05). At 24 h, the level was increased compared to at 6 h and continued to increase at 3 days after the KA injection. Thus, we propose that cytoskeletal proteins may be involved in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Tianbao Hua
- The First Hospital and International Center of Future Science, Jilin University, Changchun 130015, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130000, Jilin Province, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun 130021, China
- The First Hospital and International Center of Future Science, Jilin University, Changchun 130015, China
| | - Xuemei Wu
- Department of Pediatric Neurology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130000, Jilin Province, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun 130021, China
| |
Collapse
|
11
|
Myers KR, Fan Y, McConnell P, Cooper JA, Zheng JQ. Actin capping protein regulates postsynaptic spine development through CPI-motif interactions. Front Mol Neurosci 2022; 15:1020949. [PMID: 36245917 PMCID: PMC9557104 DOI: 10.3389/fnmol.2022.1020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear. Capping protein (CP) is a major actin regulating protein that caps the barbed ends of actin filaments, and promotes the formation of dense branched actin networks. Knockdown of CP impairs the formation of mature spines, leading to an increase in the number of filopodia-like protrusions and defects in synaptic transmission. Here, we show that CP promotes the stabilization of dendritic protrusions, leading to the formation of stable mature spines. However, the localization and function of CP in dendritic spines requires interactions with proteins containing a capping protein interaction (CPI) motif. We found that the CPI motif-containing protein Twinfilin-1 (Twf1) also localizes to spines where it plays a role in CP spine enrichment. The knockdown of Twf1 leads to an increase in the density of filopodia-like protrusions and a decrease in the stability of dendritic protrusions, similar to CP knockdown. Finally, we show that CP directly interacts with Shank and regulates its spine accumulation. These results suggest that spatiotemporal regulation of CP in spines not only controls the actin dynamics underlying the formation of stable postsynaptic spine structures, but also plays an important role in the assembly of the postsynaptic apparatus underlying synaptic function.
Collapse
Affiliation(s)
- Kenneth R. Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yanjie Fan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Wurz AI, Schulz AM, O’Bryant CT, Sharp JF, Hughes RM. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front Cell Neurosci 2022; 16:982074. [PMID: 36212686 PMCID: PMC9535683 DOI: 10.3389/fncel.2022.982074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Anna M. Schulz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Collin T. O’Bryant
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Josephine F. Sharp
- Department of Chemistry, Notre Dame College, South Euclid, OH, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- *Correspondence: Robert M. Hughes,
| |
Collapse
|
13
|
Xu Z, Li Y, Li P, Sun Y, Lv S, Wang Y, He X, Xu J, Xu Z, Li L, Li Y. Soft substrates promote direct chemical reprogramming of fibroblasts into neurons. Acta Biomater 2022; 152:255-272. [PMID: 36041647 DOI: 10.1016/j.actbio.2022.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
Fibroblasts can be directly reprogrammed via a combination of small molecules to generate induced neurons (iNs), bypassing intermediate stages. This method holds great promise for regenerative medicine; however, it remains inefficient. Recently, studies have suggested that physical cues may improve the direct reprogramming of fibroblasts into neurons, but the underlying mechanisms remain to be further explored, and the physical factors reported to date do not exhibit the full properties of the extracellular matrix (ECM). Previous in vitro studies mainly used rigid polystyrene dishes, while one of the characteristics of the native in-vivo environment of neurons is the soft nature of brain ECM. The reported stiffness of brain tissue is very soft ranging between 100 Pa and 3 kPa, and the effect of substrate stiffness on direct neuronal reprogramming has not been explored. Here, we show for the first time that soft substrates substantially improved the production efficiency and quality of iNs, without needing to co-culture with glial cells during reprogramming, producing more glutamatergic neurons with electrophysiological functions in a shorter time. Transcriptome sequencing indicated that soft substrates might promote glutamatergic neuron reprogramming through integrins, actin cytoskeleton, Hippo signalling pathway, and regulation of mesenchymal-to-epithelial transition, and competing endogenous RNA network analysis provided new targets for neuronal reprogramming. We demonstrated that soft substrates may promote neuronal reprogramming by inhibiting microRNA-615-3p-targeting integrin subunit beta 4. Our findings can aid the development of regenerative therapies and help improve our understanding of neuronal reprogramming. STATEMENT OF SIGNIFICANCE: : First, we have shown that low stiffness promotes direct reprogramming on the basis of small molecule combinations. To the best of our knowledge, this is the first report on this type of method, which may greatly promote the progress of neural reprogramming. Second, we found that miR-615-3p may interact with ITGB4, and the soft substrates may promote neural reprogramming by inhibiting microRNA (miR)-615-3p targeting integrin subunit beta 4 (ITGB4). We are the first to report on this mechanism. Our findings will provide more functional neurons for subsequent basic and clinical research in neurological regenerative medicine, and will help to improve the overall understanding of neural reprogramming. This work also provides new ideas for the design of medical biomaterials for nerve regeneration.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Pengdong Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Stomatology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xia He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Pathology, Shanxi Bethune Hospital, Taiyuan 030032, China.
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Burns Surgery, The First Hospital of Jilin University, Changchun 130000, China.
| | - Zhixiang Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Post-Synapses in the Brain: Role of Dendritic and Spine Structures. Biomedicines 2022; 10:biomedicines10081859. [PMID: 36009405 PMCID: PMC9405724 DOI: 10.3390/biomedicines10081859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023] Open
Abstract
Brain synapses are neuronal structures of the greatest interest. For a long time, however, the knowledge about them was variable, and interest was mostly focused on their pre-synaptic portions, especially neurotransmitter release from axon terminals. In the present review interest is focused on post-synapses, the structures receiving and converting pre-synaptic messages. Upon further modulation, such messages are transferred to dendritic fibers. Dendrites are profoundly different from axons; they are shorter and of variable thickness. Their post-synapses are of two types. Those called flat/intended/aspines, integrated into dendritic fibers, are very frequent in inhibitory neurons. The spines, small and stemming protrusions, connected to dendritic fibers by their necks, are present in almost all excitatory neurons. Several structures and functions including the post-synaptic densities and associated proteins, the nanoscale mechanisms of compartmentalization, the cytoskeletons of actin and microtubules, are analogous in the two post-synaptic forms. However other properties, such as plasticity and its functions of learning and memory, are largely distinct. Several properties of spines, including emersion from dendritic fibers, growth, change in shape and decreases in size up to disappearance, are specific. Spinal heads correspond to largely independent signaling compartments. They are motile, their local signaling is fast, however transport through their thin necks is slow. When single spines are activated separately, their dendritic effects are often lacking; when multiple spines are activated concomitantly, their effects take place. Defects of post-synaptic responses, especially those of spines, take place in various brain diseases. Here alterations affecting symptoms and future therapy are shown to occur in neurodegenerative diseases and autism spectrum disorders.
Collapse
|
15
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
16
|
Ribba AS, Fraboulet S, Sadoul K, Lafanechère L. The Role of LIM Kinases during Development: A Lens to Get a Glimpse of Their Implication in Pathologies. Cells 2022; 11:cells11030403. [PMID: 35159213 PMCID: PMC8834001 DOI: 10.3390/cells11030403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
The organization of cell populations within animal tissues is essential for the morphogenesis of organs during development. Cells recognize three-dimensional positions with respect to the whole organism and regulate their cell shape, motility, migration, polarization, growth, differentiation, gene expression and cell death according to extracellular signals. Remodeling of the actin filaments is essential to achieve these cell morphological changes. Cofilin is an important binding protein for these filaments; it increases their elasticity in terms of flexion and torsion and also severs them. The activity of cofilin is spatiotemporally inhibited via phosphorylation by the LIM domain kinases 1 and 2 (LIMK1 and LIMK2). Phylogenetic analysis indicates that the phospho-regulation of cofilin has evolved as a mechanism controlling the reorganization of the actin cytoskeleton during complex multicellular processes, such as those that occur during embryogenesis. In this context, the main objective of this review is to provide an update of the respective role of each of the LIM kinases during embryonic development.
Collapse
|