1
|
Furukawa M, Izumo N, Aoki R, Nagashima D, Ishibashi Y, Matsuzaki H. Behavioural changes in young ovariectomized mice via GPR30-dependent serotonergic nervous system. Eur J Neurosci 2024; 60:5658-5670. [PMID: 39189108 DOI: 10.1111/ejn.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Fluctuations in estradiol levels at each stage of life in women are considered one of the causes of mental diseases through their effects on the central nervous system. During menopause, a decrease in estradiol levels has been reported to affect the serotonin nervous system and induce depression-like and anxiety symptoms. However, the regulation of brain and behaviour during childhood and adolescence is poorly understood. Moreover, the role of oestrogen receptors α and β in the regulation of the serotonergic nervous system has been reported, but little is known about the involvement of G protein-coupled receptor 30. Therefore, in this study, we used an ovariectomized childhood mouse model to analyse behaviour and investigate the effects on the serotonin nervous system. We showed that ovariectomy surgery at 4 weeks of age, which is the weaning period, induced a decrease in spontaneous locomotor activity during the active period and a preference for novel mice over familiar mice in the three-chamber social test at 10 weeks of age. In addition, the administration of G-1, a protein-coupled receptor 30 agonist, to ovariectomized mice suppressed spontaneous locomotor activity and the preference for novel mice. Furthermore, we demonstrated that childhood ovariectomy induces increased tryptophan hydroxylase gene expression in the raphe nucleus and increased serotonin release in the amygdaloid nucleus, and administration of G-1 ameliorated these effects. Our study suggests that G protein-coupled receptor 30-mediated regulation of serotonin synthesis is involved in changes in activity and social-cognitive behaviour due to decreased estradiol levels during childhood.
Collapse
Affiliation(s)
- Megumi Furukawa
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Nobuo Izumo
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama, Japan
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama, Japan
| | - Ryoken Aoki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Daichi Nagashima
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama, Japan
- Laboratory of Clinical Pharmaceutics, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yukiko Ishibashi
- Laboratory of Drug Analysis, Yokohama University of Pharmacy, Yokohama, Japan
| | - Hideo Matsuzaki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| |
Collapse
|
2
|
Pawluk H, Kołodziejska R, Grześk G, Kozakiewicz M, Kosinska A, Pawluk M, Grzechowiak E, Wojtasik J, Kozera G. Expression of Acidic Fibrillar Protein and Neuroglobin in Thrombolytic Patients in Ischemic Stroke. Clin Interv Aging 2024; 19:1529-1543. [PMID: 39290417 PMCID: PMC11405664 DOI: 10.2147/cia.s469624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Glial fibrillary acidic protein (GFAP) and neuroglobin (NGB) are important biomarkers of cerebral hypoxia. For this reason, an attempt was made to assess their concentrations in various time intervals and their impact on the severity of neurological symptoms and functional prognosis of thrombolytic ischemic stroke patients. Patients and Methods The study involved 94 patients reporting to the emergency department of the Collegium Medicum University Hospital in Bydgoszcz within < 4.5 hours of the onset of stroke symptoms. GFAP and neuroglobin levels were measured in plasma at indicated times using a commercial ELISA kit. Results Based on the data gathered, statistically significant differences were found between the concentration of biomarkers in stroke patients and the control group. The concentrations of both biomarkers, GFAP and NGB, were elevated in patients after ischemic stroke and the changes in their concentrations in the subsequent stages of stroke may suggest their prognostic value strictly dependent on time. NGB was determined on the 7th day, and mRS - after a year (0.35). GFAP measured after 24 h and on day 7 could be a promising biomarker of functional outcome after one year (cut-off point ≤ 0.231 ng/mL, sensitivity 75.0%, specificity 61.2%, cut off point ≤ 0.235 ng/mL, sensitivity 75.0%, specificity 73.9%, respectively) and the severity of the patient's neurological condition. At GFAP concentrations above 0.25 ng/mL, measured within 24 hours, a sharp increase in mortality was observed in stroke patients. In the case of NGB, at the time of stroke occurrence (14 ng/mL) and after 24 hours (10-60 ng/mL). Differences in the concentrations of these biomarkers have been demonstrated in different stroke subtypes. Conclusion NGB and GFAP are important biomarkers of ischemic brain injury and may also participate in predicting neurological outcomes.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | | | - Agnieszka Kosinska
- Centre for Languages & International Education, University College London, London, UK
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Elżbieta Grzechowiak
- Department of Neurology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Jakub Wojtasik
- Statistical Analysis Centre, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Grzegorz Kozera
- Centre of Medical Simulations, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Trout AL, McLouth CJ, Westberry JM, Sengoku T, Wilson ME. Estrogen's sex-specific effects on ischemic cell death and estrogen receptor mRNA expression in rat cortical organotypic explants. AGING BRAIN 2024; 5:100117. [PMID: 38650743 PMCID: PMC11033203 DOI: 10.1016/j.nbas.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Estrogens, such as the biologically active 17-β estradiol (E2), regulate not only reproductive behaviors in adults, but also influence neurodevelopment and neuroprotection in both females and males. E2, contingent upon the timing and concentration of the therapy, is neuroprotective in female and male rodent models of stroke. In Vivo studies suggest that E2 may partially mediate this neuroprotection, particularly in the cortex, via ERα. In Vitro studies, utilizing a chemically induced ischemic injury in cortical explants from both sexes, suggest that ERα or ERβ signaling is needed to mediate the E2 protection. Since we know that the timing and concentration of E2 therapy may be sex-specific, we examined if E2 (1 nM) mediates neuroprotection when female and male cortical explants are separately isolated from postnatal day (PND) 3-4 rat. Changes in basal levels ERα, ERβ, and AR mRNA expression are compared across early post-natal development in the intact cortex and the corresponding days in vitro (DIV) for cortical explants. Following ischemic injury at 7 DIV, cell death and ERα, ERβ and AR mRNA expression was compared in female and male cortical explants. We provide evidence that E2-mediated protection is maintained in isolated cortical explants from females, but not male rats. In female cortical explants, the E2-mediated protection at 24 h occurs secondarily to a blunted transient increase in ERα mRNA at 12 h. These results suggest that cortical E2-mediated protection is influenced by sex and supports data to differentially treat females and males following ischemic injury.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher J McLouth
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Jenne M. Westberry
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Tomoko Sengoku
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Melinda E. Wilson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Semenova MA, Bochkova ZV, Smirnova OM, Maksimov GV, Kirpichnikov MP, Dolgikh DA, Brazhe NA, Chertkova RV. Charged Amino Acid Substitutions Affect Conformation of Neuroglobin and Cytochrome c Heme Groups. Curr Issues Mol Biol 2024; 46:3364-3378. [PMID: 38666941 PMCID: PMC11049214 DOI: 10.3390/cimb46040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome c (Cyt c) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt c is accompanied by electron transfer between them and the reduction in Cyt c. Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt c is still unclear. Using Raman spectroscopy, we studied the effect of charged amino acid substitutions in Ngb and Cyt c on the conformation of their hemes. It has been shown that Ngb mutants E60K, K67E, K95E and E60K/E87K demonstrate changed heme conformations with the lower probability of the heme planar conformation compared to wild-type Ngb. Moreover, oxidized Cyt c mutants K25E, K72E and K25E/K72E demonstrate the decrease in the probability of methyl-radicals vibrations, indicating the higher rigidity of the protein microenvironment. It is possible that these changes can affect electron transfer between Ngb and Cyt c.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| | - Zhanna V. Bochkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Olga M. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| | - Georgy V. Maksimov
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia
| | - Nadezda A. Brazhe
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| |
Collapse
|
5
|
Li Z, Chen C, Ying P, Ji-Jun G, Lian-Jie D, Dan H, Xuan-Min Z, Tian-Yue G, Chao Z, Jia-Hu H. Bisphenol A and its analogue bisphenol S exposure reduce estradiol synthesis via the ROS-mediated PERK/ATF4 signaling pathway. Food Chem Toxicol 2023; 182:114179. [PMID: 37944787 DOI: 10.1016/j.fct.2023.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
As a kind of endocrine-disrupting chemicals, BPA may affect the human placenta. Due to consumer unease about BPA, many manufacturers are using alternatives to BPA, such as BPS. However, some reports suggest that BPS may produce similar results to BPA. To understand how BPA/BPS leads to reduced synthesis of placental estradiol (E2), we conducted studies using a human choriocarcinoma cell (JEG-3) model for research. In this study. Elisa assay revealed that both BPA/BPS exposures decreased E2 synthesis in JEG-3 cells. The results of RT-PCR showed that both BPA and BPS could reduce the mRNA expression of CYP19A1, a key enzyme for E2 synthesis in JEG-3 cells. In addition, Western blot assay showed that BPA/BPS-induced ER-stress PERK/eIF2α/ATF4 signaling protein expression was increased. The expression of ROS in cells after exposure to BPA/BPS was detected using the 2,7-dichlorodihydrofluorescein diacetate (DCF-DA) method. The results of this experiment showed that BPA/BPS significantly induced an inhibition of ROS in JEG-3 cells. The present study concluded that, firstly, BPS exposure induced almost the same effect as BPA in reducing E2 synthesis in JEG-3 cells. Second, BPA/BPS exposure may reduce E2 synthesis in JEG-3 cells by increasing ROS levels and thus activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Zhou Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Chen Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Pan Ying
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Gu Ji-Jun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Dou Lian-Jie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Huang Dan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Zou Xuan-Min
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Guan Tian-Yue
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Zhang Chao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China.
| | - Hao Jia-Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China.
| |
Collapse
|
6
|
García-García F, Acosta-Hernández ME, Beltrán-Parrazal L, Rodríguez-Alba JC. The Role of Neuroglobin in the Sleep-Wake Cycle. Sleep Sci 2023; 16:e362-e367. [PMID: 38196764 PMCID: PMC10773511 DOI: 10.1055/s-0043-1772806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2024] Open
Abstract
Neuroglobin (Ngb) is a protein expressed in the central and peripherical nervous systems of the vertebrate. The Ngb has different functions in neurons, including regulating O 2 homeostasis, oxidative stress, and as a neuroprotector after ischemia/hypoxia events. The Ngb is a hemoprotein of the globin family, structurally like myoglobin and hemoglobin. Ngb has higher expression in the cortex, hypothalamus, thalamus, brainstem, and cerebellum in mammals. Interestingly, Ngb immunoreactivity oscillates according to the sleep-wake cycle and decreases after 24 hours of sleep deprivation, suggesting that sleep homeostasis regulates Ngb expression. In addition, Ngb expresses in brain areas related to REM sleep regulation. Therefore, in the present review, we discuss the potential role of the Ngb in the sleep-wake regulation of mammals.
Collapse
Affiliation(s)
- Fabio García-García
- Instituto de Ciencias de la Salud, Departamento de Biomedicina, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Luis Beltrán-Parrazal
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Juan Carlos Rodríguez-Alba
- Instituto de Ciencias de la Salud, Departamento de Biomedicina, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
7
|
Barreto GE, Gonzalez J, Ramírez D. Network pharmacology and topological analysis on tibolone metabolites and their molecular mechanisms in traumatic brain injury. Biomed Pharmacother 2023; 165:115089. [PMID: 37418975 DOI: 10.1016/j.biopha.2023.115089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest. Tibolone is a drug in use for the treatment of symptoms associated with menopause and has been shown to have a broad spectrum of actions by regulating estrogen, androgen and progesterone receptors, whose activation exerts potent anti-inflammatory and antioxidant effects. In the present study, we aimed to investigate the therapeutic potential of the tibolone metabolites 3α-Hydroxytibolone, 3β-Hydroxytibolone, and Δ4-Tibolone as a possible therapy in TBI using network pharmacology and network topology analysis. Our results demonstrate that the estrogenic component mediated by the α and β metabolites can regulate synaptic transmission and cell metabolism, while the Δ metabolite may be involved in modulating the post-TBI inflammatory process. We identified several molecular targets, including KDR, ESR2, AR, NR3C1, PPARD, and PPARA, which are known to play critical roles in the pathogenesis of TBI. Tibolone metabolites were predicted to regulate the expression of key genes involved in oxidative stress, inflammation, and apoptosis. Overall, the repurposing of tibolone as a neuroprotective treatment for TBI holds promise for future clinical trials. However, further studies are needed to confirm its efficacy and safety in TBI patients.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Semenova MA, Chertkova RV, Kirpichnikov MP, Dolgikh DA. Molecular Interactions between Neuroglobin and Cytochrome c: Possible Mechanisms of Antiapoptotic Defense in Neuronal Cells. Biomolecules 2023; 13:1233. [PMID: 37627298 PMCID: PMC10452090 DOI: 10.3390/biom13081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection. Interestingly, neuroglobin and cytochrome c possibly can interact with or without electron transfer both in the cytoplasm and within the mitochondria. This review provides a general picture of molecular interactions between neuroglobin and cytochrome c based on the recent experimental and computational work on neuroglobin and cytochrome c interactions.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| |
Collapse
|
9
|
Barreto GE. Repurposing of Tibolone in Alzheimer's Disease. Biomolecules 2023; 13:1115. [PMID: 37509151 PMCID: PMC10377087 DOI: 10.3390/biom13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
10
|
Ongay KK, Granato D, Barreto GE. Comparison of Antioxidant Capacity and Network Pharmacology of Phloretin and Phlorizin against Neuroinflammation in Traumatic Brain Injury. Molecules 2023; 28:molecules28030919. [PMID: 36770586 PMCID: PMC9919876 DOI: 10.3390/molecules28030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation is a hallmark of traumatic brain injury (TBI)'s acute and chronic phases. Despite the medical and scientific advances in recent years, there is still no effective treatment that mitigates the oxidative and inflammatory damage that affects neurons and glial cells. Therefore, searching for compounds with a broader spectrum of action that can regulate various inflammatory signaling pathways is of clinical interest. In this study, we determined not only the in vitro antioxidant capacity of apple pomace phenolics, namely, phlorizin and its metabolite, phloretin, but we also hypothesize that the use of these bioactive molecules may have potential use in TBI. We explored the antioxidant effects of both compounds in vitro (DPPH, iron-reducing capacity (IRC), and Folin-Ciocalteu reducing capacity (FCRC)), and using network pharmacology, we investigated the proteins involved in their protective effects in TBI. Our results showed that the antioxidant properties of phloretin were superior to those of phlorizin in the DPPH (12.95 vs. 3.52 mg ascorbic acid equivalent (AAE)/L), FCRC (86.73 vs. 73.69 mg gallic acid equivalent (GAE)/L), and iron-reducing capacity (1.15 vs. 0.88 mg GAE/L) assays. Next, we examined the molecular signature of both compounds and found 11 proteins in common to be regulated by them and involved in TBI. Meta-analysis and GO functional enrichment demonstrated their implication in matrix metalloproteinases, p53 signaling, and cell secretion/transport. Using MCODE and Pearson's correlation analysis, a subcluster was generated. We identified ESR1 (estrogen receptor alpha) as a critical cellular hub being regulated by both compounds and with potential therapeutic use in TBI. In conclusion, our study suggests that because of their vast antioxidant effects, probably acting on estrogen receptors, phloretin and phlorizin may be repurposed for TBI treatment due to their ease of obtaining and low cost.
Collapse
Affiliation(s)
| | - Daniel Granato
- Correspondence: (D.G.); (G.E.B.); Tel.: +353-(0)-61-202676 (G.E.B)
| | | |
Collapse
|
11
|
Zhang L, Wang C, Zhao M, Li X, Qu H, Xu J, Li D. Prognostic Values Serum Cav-1 and NGB Levels in Early Neurological Deterioration After Intravenous Thrombolysis in Patients with Acute Ischemic Stroke. Clin Appl Thromb Hemost 2023; 29:10760296231219707. [PMID: 38092682 PMCID: PMC10722930 DOI: 10.1177/10760296231219707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Early neurological deterioration after intravenous thrombolysis (IAT) leads to increased mortality and morbidity in patients with acute ischemic stroke (AIS). This study investigated the correlation between serum Cav-1 and NGB levels and END after IAT and explored their predictive values for poor prognosis of AIS. Totally 210 patients with AIS who underwent IAT within 4.5 h of onset were included and assigned into END group (n = 90) and Non-END group (n = 120). ELISA was used to detect serum Cav-1 and NGB levels before IAT in AIS patients. The prognosis of END patients after 3 months of treatment was evaluated using the modified Rankin Scale. Logistic multifactorial regression was used to analyze independent risk factors for END and poor prognosis after IAT. ROC curve was used to analyze the predictive effect of Cav-1 and NGB on END and poor prognosis after IAT. The area under the ROC curve was analyzed by MedCalc comparison. Compared with the Non-END group, serum Cav-1 was lower and NGB was higher in the END group. Cav-1 and NGB were independent risk factors for END after IAT. Cav-1 + NGB better predicted END after IAT than Cav-1 or NGB alone. Cav-1 and NGB were independent risk factors for END poor prognosis after IAT. Cav-1 combined with NGB better predicted poor prognosis of END after IAT than Cav-1 or NGB alone. Serum Cav-1 combined with NGB may assist in predicting the risk of END occurrence and poor prognosis after IAT in patients with AIS.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurological Intensive Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Cui Wang
- Department of Neurology, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Manhong Zhao
- Department of Neurointervention and Neurological Intensive Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Xuesong Li
- Department of Radiology, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Affiliated Hospital of Dalian Medical University, City, Liaoning Province, China
| | - Jianping Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Di Li
- Department of Neurointervention and Neurological Intensive Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| |
Collapse
|
12
|
McGovern AJ, Arevalo MA, Ciordia S, Garcia-Segura LM, Barreto GE. Respirasome Proteins Are Regulated by Sex-Hormone Interactions in the Brain. Int J Mol Sci 2022; 23:ijms232314754. [PMID: 36499081 PMCID: PMC9741126 DOI: 10.3390/ijms232314754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
The existence of sex differences in disease incidence is attributed, in part, to sex differences in metabolism. Uncovering the precise mechanism driving these differences is an extraordinarily complex process influenced by genetics, endogenous hormones, sex-specific lifetime events, individual differences and external environmental/social factors. In fact, such differences may be subtle, but across a life span, increase susceptibility to a pathology. Whilst research persists in the hope of discovering an elegant biological mechanism to underpin sex differences in disease, here, we show, for the first time, that such a mechanism may be subtle in nature but influenced by multiple sex-specific factors. A proteomic dataset was generated from a gonadectomized mouse model treated with Tibolone, a menopausal hormone therapy. Following functional enrichment analysis, we identified that Alzheimer's disease and the electron transport chain-associated pathways were regulated by sex-hormone interactions. Specifically, we identified that the expression of three respirasome proteins, NDUFA2, NDUFA7 and UQCR10, is significantly altered by compounding factors that contribute to sex differences. These proteins function in bioenergetics and produce reactive oxygen species, which are each dysregulated in many diseases with sex differences in incidence. We show sex-specific reprogrammed responses to Tibolone following gonadectomy, which primarily influence the expression of proteins contributing to metabolic pathways. This further infers that metabolic differences may underpin the observed sex differences in disease, but also that hormone therapy research now has potential in exploring sex-specific interventions to produce an effective method of prevention or treatment.
Collapse
Affiliation(s)
- Andrew J. McGovern
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maria Angeles Arevalo
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - George E. Barreto
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-(0)-61-202676
| |
Collapse
|
13
|
Li XT. The modulation of potassium channels by estrogens facilitates neuroprotection. Front Cell Dev Biol 2022; 10:998009. [PMID: 36393851 PMCID: PMC9643774 DOI: 10.3389/fcell.2022.998009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 08/31/2023] Open
Abstract
Estrogens, the sex hormones, have the potential to govern multiple cellular functions, such as proliferation, apoptosis, differentiation, and homeostasis, and to exert numerous beneficial influences for the cardiovascular system, nervous system, and bones in genomic and/or non-genomic ways. Converging evidence indicates that estrogens serve a crucial role in counteracting neurodegeneration and ischemic injury; they are thereby being considered as a potent neuroprotectant for preventing neurological diseases such as Alzheimer's disease and stroke. The underlying mechanism of neuroprotective effects conferred by estrogens is thought to be complex and multifactorial, and it remains obscure. It is well established that the K+ channels broadly expressed in a variety of neural subtypes determine the essential physiological features of neuronal excitability, and dysfunction of these channels is closely associated with diverse brain deficits, such as ataxia and epilepsy. A growing body of evidence supports a neuroprotective role of K+ channels in malfunctions of nervous tissues, with the channels even being a therapeutic target in clinical trials. As multitarget steroid hormones, estrogens also regulate the activity of distinct K+ channels to generate varying biological actions, and accumulated data delineate that some aspects of estrogen-mediated neuroprotection may arise from the impact on multiple K+ channels, including Kv, BK, KATP, and K2P channels. The response of these K+ channels after acute or chronic exposure to estrogens may oppose pathological abnormality in nervous cells, which serves to extend our understanding of these phenomena.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Guizhou University, Guiyang, China
- Department of Neuroscience, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
14
|
Blanco S, Martínez-Lara E, Siles E, Peinado MÁ. New Strategies for Stroke Therapy: Nanoencapsulated Neuroglobin. Pharmaceutics 2022; 14:pharmaceutics14081737. [PMID: 36015363 PMCID: PMC9412405 DOI: 10.3390/pharmaceutics14081737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Stroke is a global health and socio-economic problem. However, no efficient preventive and/or palliative treatments have yet been found. Neuroglobin (Ngb) is an endogen neuroprotective protein, but it only exerts its beneficial action against stroke after increasing its basal levels. Therefore, its systemic administration appears to be an efficient therapy applicable to stroke and other neurodegenerative pathologies. Unfortunately, Ngb cannot cross the blood-brain barrier (BBB), making its direct pharmacological use unfeasible. Thus, the association of Ngb with a drug delivery system (DDS), such as nanoparticles (NPs), appears to be a good strategy for overcoming this handicap. NPs are a type of DDS which efficiently transport Ngb and increase its bioavailability in the infarcted area. Hence, we previously built hyaluronate NPS linked to Ngb (Ngb-NPs) as a therapeutic tool against stroke. This nanoformulation induced an improvement of the cerebral infarct prognosis. However, this innovative therapy is still in development, and a more in-depth study focusing on its long-lasting neuroprotectant and neuroregenerative capabilities is needed. In short, this review aims to update the state-of-the-art of stroke therapies based on Ngb, paying special attention to the use of nanotechnological drug-delivering tools.
Collapse
|
15
|
Marino M, Misasi R, Ruoppolo M. Editorial for Special Issue: Neuroglobin from Brain Protection to Cancer Progression. Cells 2022; 11:cells11142181. [PMID: 35883624 PMCID: PMC9317416 DOI: 10.3390/cells11142181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
- Correspondence: (M.M.); (R.M.); (M.R.); Tel.: +39-06-5733-6320 (M.M.); +39-6-4453612 (R.M.); +39-0813737850 (M.R.); Fax: +39-06-5733-6321 (M.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, University La Sapienza, 00185 Rome, Italy
- Correspondence: (M.M.); (R.M.); (M.R.); Tel.: +39-06-5733-6320 (M.M.); +39-6-4453612 (R.M.); +39-0813737850 (M.R.); Fax: +39-06-5733-6321 (M.M.)
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (M.M.); (R.M.); (M.R.); Tel.: +39-06-5733-6320 (M.M.); +39-6-4453612 (R.M.); +39-0813737850 (M.R.); Fax: +39-06-5733-6321 (M.M.)
| |
Collapse
|
16
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
17
|
McGovern AJ, González J, Ramírez D, Barreto GE. Identification of HMGCR, PPGARG and prohibitin as potential druggable targets of dihydrotestosterone for treatment against traumatic brain injury using system pharmacology. Int Immunopharmacol 2022; 108:108721. [PMID: 35344815 DOI: 10.1016/j.intimp.2022.108721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) has long-term devastating effects for which there is no accurate and effective treatment for inflammation and chronic oxidative stress. As a disease that affects multiple signalling pathways, the search for a drug with a broader spectrum of pharmacological action is of clinical interest. The fact that endocrine disruption (e.g hypogonadism) has been observed in TBI patients suggests that endogenous therapy with testosterone, or its more androgenic derivative, dihydrotestosterone (DHT), may attenuate, at least in part, the TBI-induced inflammation, but the underlying molecular mechanisms by which this occurs are still not completely clear. AIMS AND METHODS In this study, the main aim was to investigate proteins that may be related to the pathophysiological mechanism of TBI and also be pharmacological targets of DHT in order to explore a possible therapy with this androgen using network pharmacology. RESULTS AND CONCLUSIONS We identified 2.700 proteins related to TBI and 1.567 that are potentially molecular targets of DHT. Functional enrichment analysis showed that steroid (p-value: 2.1-22), lipid metabolism (p-value: 2.8-21) and apoptotic processes (p-value: 5.2-21) are mainly altered in TBI. Furthermore, being mitochondrion an organelle involved on these molecular processes we next identified that out of 32 mitochondrial-related proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), peroxisome proliferator activated receptor gamma (PPGARG) and prohibitin are those found highly regulated in the network and potential targets of DHT in TBI. In conclusion, the identification of these cellular nodes may prove to be essential as targets of DHT for therapy against post-TBI inflammation.
Collapse
Affiliation(s)
- Andrew J McGovern
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
18
|
Peinado MÁ, Ovelleiro D, del Moral ML, Hernández R, Martínez-Lara E, Siles E, Pedrajas JR, García-Martín ML, Caro C, Peralta S, Morales ME, Ruiz MA, Blanco S. Biological Implications of a Stroke Therapy Based in Neuroglobin Hyaluronate Nanoparticles. Neuroprotective Role and Molecular Bases. Int J Mol Sci 2021; 23:247. [PMID: 35008673 PMCID: PMC8745106 DOI: 10.3390/ijms23010247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Exogenous neuroprotective protein neuroglobin (Ngb) cannot cross the blood-brain barrier. To overcome this difficulty, we synthesized hyaluronate nanoparticles (NPs), able to deliver Ngb into the brain in an animal model of stroke (MCAO). These NPs effectively reached neurons, and were microscopically identified after 24 h of reperfusion. Compared to MCAO non-treated animals, those treated with Ngb-NPs showed survival rates up to 50% higher, and better neurological scores. Tissue damage improved with the treatment, but no changes in the infarct volume or in the oxidative/nitrosative values were detected. A proteomics approach (p-value < 0.02; fold change = 0.05) in the infarcted areas showed a total of 219 proteins that significantly changed their expression after stroke and treatment with Ngb-NPs. Of special interest, are proteins such as FBXO7 and NTRK2, which were downexpressed in stroke, but overexpressed after treatment with Ngb-NPs; and ATX2L, which was overexpressed only under the effect of Ngb. Interestingly, the proteins affected by the treatment with Ngb were involved in mitochondrial function and cell death, endocytosis, protein metabolism, cytoskeletal remodeling, or synaptic function, and in regenerative processes, such as dendritogenesis, neuritogenesis, or sinaptogenesis. Consequently, our pharmaceutical preparation may open new therapeutic scopes for stroke and possibly for other neurodegenerative pathologies.
Collapse
Affiliation(s)
- María Ángeles Peinado
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - David Ovelleiro
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - María Luisa del Moral
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - Raquel Hernández
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - Esther Martínez-Lara
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - Eva Siles
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - José Rafael Pedrajas
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - María Luisa García-Martín
- BIONAND-Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590 Malaga, Spain; (M.L.G.-M.); (C.C.)
| | - Carlos Caro
- BIONAND-Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590 Malaga, Spain; (M.L.G.-M.); (C.C.)
| | - Sebastián Peralta
- Department of Pharmacy and Pharmaceutical Technology, Campus de Cartuja s/n, School of Pharmacy, University of Granada, 18071 Granada, Spain; (S.P.); (M.E.M.); (M.A.R.)
| | - María Encarnación Morales
- Department of Pharmacy and Pharmaceutical Technology, Campus de Cartuja s/n, School of Pharmacy, University of Granada, 18071 Granada, Spain; (S.P.); (M.E.M.); (M.A.R.)
| | - María Adolfina Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Campus de Cartuja s/n, School of Pharmacy, University of Granada, 18071 Granada, Spain; (S.P.); (M.E.M.); (M.A.R.)
| | - Santos Blanco
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| |
Collapse
|