1
|
Ma Z, Tan S, Lu R, Chen P, Hu Y, Yang T, Wu H, Zhu Z, Guo J, Chen X, Yang J, Zhang W, Ye Y. Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance. J Biol Chem 2025; 301:108140. [PMID: 39730061 PMCID: PMC11791114 DOI: 10.1016/j.jbc.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from preimplantation and postimplantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BRG1/BRM-associated factor (BAF) chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear. This study demonstrates that the LIF/STAT3 and Wnt signaling pathways, in conjunction with canonical BAF (cBAF) and polycomb repressive complex two complexes, inhibit EpiSC gene expression, thereby preventing ESCs from converting to EpiSCs. Upon removal of LIF, the reduced LIF/STAT3 signaling lifts this inhibition, increasing TGF/nodal pathway activity. Subsequently, the cBAF complex facilitates ESC to EpiSC conversion by promoting EpiSC gene expression. Furthermore, unlike cBAF, inhibition of the ncBAF complex downregulates TGF-β signaling, thereby hindering both ESC to EpiSC conversion and EpiSC maintenance. Moreover, this study revealed the dual mechanisms, methylating histone or non-histone protein STAT3, by which polycomb repressive complex two components participate in the regulation of ESCs to EpiSCs. This research elucidates the interplay between distinct BAF complexes and specific signaling pathways in regulating the conversion and maintenance of ESCs and EpiSCs.
Collapse
Affiliation(s)
- Zhaoru Ma
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Shuping Tan
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Yukun Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tenghui Yang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Hao Wu
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Zhexin Zhu
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Heifei, China
| | - Jiayi Guo
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
| | - Ying Ye
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, China.
| |
Collapse
|
2
|
Balder P, Jones C, Coward K, Yeste M. Sperm chromatin: Evaluation, epigenetic signatures and relevance for embryo development and assisted reproductive technology outcomes. Eur J Cell Biol 2024; 103:151429. [PMID: 38905808 DOI: 10.1016/j.ejcb.2024.151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Sperm chromatin is distinct from somatic cell chromatin, as a result of extensive remodeling during the final stages of spermatogenesis. In this process, the majority of histones is replaced with protamines. The chromatin is consequently highly condensed and inert, which facilitates protection of the DNA. The sperm epigenomic landscape is shaped by histone retention, histone and protamine modification, DNA methylation, and RNAs. In recent years, sperm chromatin integrity and its epigenetic marks have been increasingly studied, and the constitution of sperm chromatin is steadily being uncovered. This growing body of research prompts assessment of the frequently overlooked involvement of sperm in fertility and embryonic development. Moreover, numerous endogenous and exogenous factors are known to affect sperm chromatin, which may in turn impact the reproductive success. Concerns have been raised about the effects of assisted reproductive technology (ART) on the sperm epigenome, embryonic development and offspring health. This review examines the structure and epigenetic signatures of sperm chromatin in the context of fertility and early embryonic development. Additionally, sperm chromatin evaluation and causes of aberrant integrity are outlined. Building on the knowledge discussed in the current review, future research should aim to elucidate the intricate relationship between all aspects of sperm chromatin and embryo development. This could lead to the uncovering of new targets for treating infertility, as well as the acquisition of much needed insights into the possible reciprocal association between ART and sperm chromatin integrity.
Collapse
Affiliation(s)
- Pauline Balder
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona ES-08010, Spain.
| |
Collapse
|
3
|
Vendrell X, de Castro P, Escrich L, Grau N, Gonzalez-Martin R, Quiñonero A, Escribá MJ, Domínguez F. Longitudinal profiling of human androgenotes through single-cell analysis unveils paternal gene expression dynamics in early embryo development. Hum Reprod 2024; 39:1186-1196. [PMID: 38622061 PMCID: PMC11145015 DOI: 10.1093/humrep/deae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
STUDY QUESTION How do transcriptomics vary in haploid human androgenote embryos at single cell level in the first four cell cycles of embryo development? SUMMARY ANSWER Gene expression peaks at the fourth cell cycle, however some androcytes exhibit unique transcriptional behaviors. WHAT IS KNOWN ALREADY The developmental potential of an embryo is determined by the competence of the oocyte and the sperm. However, studies of the contribution of the paternal genome using pure haploid androgenotes are very scarce. STUDY DESIGN, SIZE, DURATION This study was performed analyzing the single-cell transcriptomic sequencing of 38 androcytes obtained from 10 androgenote bioconstructs previously produced in vitro (de Castro et al., 2023). These results were analyzed through different bioinformatics software such as g: Profiler, GSEA, Cytoscape, and Reactome. PARTICIPANTS/MATERIALS, SETTING, METHODS Single cell sequencing was used to obtain the transcriptomic profiles of the different androcytes. The results obtained were compared between the different cycles studied using the DESeq2 program and functional enrichment pathways using g: Profiler, Cytoscape, and Reactome. MAIN RESULTS AND THE ROLE OF CHANCE A wave of paternally driven transcriptomic activation was found during the third-cell cycle, with 1128 upregulated and 225 downregulated genes and the fourth-cell cycle, with 1373 upregulated and 286 downregulated genes, compared to first-cell cycle androcytes. Differentially expressed routes related to cell differentiation, DNA-binding transcription, RNA biosynthesis and RNA polymerase II transcription regulatory complex, and cell death were found in the third and fourth with respect to the first-cell cycle. Conversely, in the fourth cell cycle, 153 downregulated and 332 upregulated genes were found compared with third cell cycle, associated with differentially expressed processes related to E-box binding and zinc finger protein 652 (ZNF652) transcription factor. Further, significant overexpression of LEUTX, PRAMEF1, DUXA, RFPL4A, TRIM43, and ZNF675 found in androgenotes, compared to biparental embryos, highlights the paternal contributions to zygote genome activation. LARGE SCALE DATA All raw sequencing data are available through the Gene Expression Omnibus (GEO) under accessions number: GSE216501. LIMITATIONS, REASONS FOR CAUTION Extrapolation of biological events from uniparental constructs to biparental embryos should be done with caution. Maternal and paternal genomes do not act independently of each other in a natural condition. The absence of one genome may affect gene transcription of the other. In this sense, the haploid condition of the bioconstructs could mask the transcriptomic patterns of the single cells. WIDER IMPLICATIONS OF THE FINDINGS The results obtained demonstrated the level of involvement of the human paternal haploid genome in the early stages of embryo development as well as its evolution at the transcriptomic level, laying the groundwork for the use of these bioconstructs as reliable models to dispel doubts about the genetic role played by the paternal genome in the early cycles of embryo development. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Instituto de Salud Carlos III (ISCIII) through the project 'PI22/00924', co-funded by European Regional Development Fund (ERDF); 'A way to make Europe'. F.D. was supported by the Spanish Ministry of Economy and Competitiveness through the Miguel Servet program (CPII018/00002). M.J.E. was supported by Instituto de Salud Carlos III (PI19/00577 [M.J.E.]) and FI20/00086. P.dC. was supported by a predoctoral grant for training in research into health (PFIS PI19/00577) from the Instituto de Salud Carlos III. All authors declare having no conflict of interest with regard to this trial.
Collapse
Affiliation(s)
- X Vendrell
- Reproductive Genetics Department, Sistemas Genómicos-Synlab, Valencia, Spain
| | - P de Castro
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - L Escrich
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - N Grau
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - R Gonzalez-Martin
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - A Quiñonero
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - M J Escribá
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - F Domínguez
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| |
Collapse
|
4
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int J Mol Sci 2024; 25:1459. [PMID: 38338738 PMCID: PMC10855761 DOI: 10.3390/ijms25031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mammalian fertilization initiates the reprogramming of oocytes and sperm, forming a totipotent zygote. During this intricate process, the zygotic genome undergoes a maternal-to-zygotic transition (MZT) and subsequent zygotic genome activation (ZGA), marking the initiation of transcriptional control and gene expression post-fertilization. Histone modifications are pivotal in shaping cellular identity and gene expression in many mammals. Recent advances in chromatin analysis have enabled detailed explorations of histone modifications during ZGA. This review delves into conserved and unique regulatory strategies, providing essential insights into the dynamic changes in histone modifications and their variants during ZGA in mammals. The objective is to explore recent advancements in leading mechanisms related to histone modifications governing this embryonic development phase in depth. These considerations will be useful for informing future therapeutic approaches that target epigenetic regulation in diverse biological contexts. It will also contribute to the extensive areas of evolutionary and developmental biology and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi P.O. Box 4600, United Arab Emirates; (F.S.-L.); (N.I.-B.); (Y.M.C.-A.); (I.C.-H.); (C.A.V.-V.); (A.A.B.-H.); (Y.V.-C.)
| |
Collapse
|
5
|
Fang T, Wang F, Zhang R, Du ZQ, Yang CX. Single-cell RNA sequencing reveals blastomere heterogeneity of 2-cell embryos in pigs. Reprod Domest Anim 2023; 58:1393-1403. [PMID: 37568261 DOI: 10.1111/rda.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
In mammals, single blastomeres from as early as 2-cell embryos demonstrate heterogeneous developmental capacity and fate decision into different cell lineages. However, mechanisms underlying blastomere heterogeneity of 2-cell embryos remain largely unresolved. Here, we analysed the molecular heterogeneity of full-length mRNAs and their 3'UTR regions, based on the single-cell RNA-seq data of pig 2-cell embryos generated from in vivo fertilization (in vivo), in vitro fertilization (in vitro) and parthenogenetic activation (PA), respectively. First, unsupervised clustering helped discover two different groups of blastomeres for 2-cell pig embryos. Between these two groups of blastomeres in pig 2-cell embryos, 35, 301 and 428 full-length mRNAs respectively in in vivo, in vitro and PA embryo types were identified to be differentially expressed (padj ≤ .05 and |log2 [fold change]| ≥1) (DE mRNAs), while 92, 89 and 42 mRNAs were shown to be with significantly different 3'UTR lengths (3'UTR DE) (padj ≤ .05). Gene enrichment for both DE mRNAs and 3'UTR DE mRNAs found multiple signalling pathways, including cell cycle, RNA processing. Few numbers of common DE mRNAs and 3'UTR DE mRNAs existed between in vitro and in vivo blastomeres derived from 2-cell embryos, indicating the larger differences between in vitro and in vivo fertilized embryos. Integrative genomics viewer analysis further identified that 3'UTRs of HSDL2 and SGTA (in vivo), FAM204A and phosphoserine phosphatase (in vitro), PRPF40A and RPIA (PA) had >100 nt average length changes. Moreover, numbers and locations of regulatory elements (polyadenylation site, cytoplasmic polyadenylation element and microRNA binding sites) within 3'UTRs of these DE mRNAs were predicted. These results indicate that molecular heterogeneity existed among blastomeres from different types of pig 2-cell embryos, providing useful information and novel insights into future functional investigation on its relationship with the subsequent embryo development and differentiation.
Collapse
Affiliation(s)
- Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Fang Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Rong Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
New insights into the epitranscriptomic control of pluripotent stem cell fate. Exp Mol Med 2022; 54:1643-1651. [PMID: 36266446 PMCID: PMC9636187 DOI: 10.1038/s12276-022-00824-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022] Open
Abstract
Each cell in the human body has a distinguishable fate. Pluripotent stem cells are challenged with a myriad of lineage differentiation options. Defects are more likely to be fatal to stem cells than to somatic cells due to the broad impact of the former on early development. Hence, a detailed understanding of the mechanisms that determine the fate of stem cells is needed. The mechanisms by which human pluripotent stem cells, although not fully equipped with complex chromatin structures or epigenetic regulatory mechanisms, accurately control gene expression and are important to the stem cell field. In this review, we examine the events driving pluripotent stem cell fate and the underlying changes in gene expression during early development. In addition, we highlight the role played by the epitranscriptome in the regulation of gene expression that is necessary for each fate-related event.
Collapse
|
7
|
Detraux D, Renard P. Succinate as a New Actor in Pluripotency and Early Development? Metabolites 2022; 12:651. [PMID: 35888775 PMCID: PMC9325148 DOI: 10.3390/metabo12070651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Pluripotent cells have been stabilized from pre- and post-implantation blastocysts, representing respectively naïve and primed stages of embryonic stem cells (ESCs) with distinct epigenetic, metabolic and transcriptomic features. Beside these two well characterized pluripotent stages, several intermediate states have been reported, as well as a small subpopulation of cells that have reacquired features of the 2C-embryo (2C-like cells) in naïve mouse ESC culture. Altogether, these represent a continuum of distinct pluripotency stages, characterized by metabolic transitions, for which we propose a new role for a long-known metabolite: succinate. Mostly seen as the metabolite of the TCA, succinate is also at the crossroad of several mitochondrial biochemical pathways. Its role also extends far beyond the mitochondrion, as it can be secreted, modify proteins by lysine succinylation and inhibit the activity of alpha-ketoglutarate-dependent dioxygenases, such as prolyl hydroxylase (PHDs) or histone and DNA demethylases. When released in the extracellular compartment, succinate can trigger several key transduction pathways after binding to SUCNR1, a G-Protein Coupled Receptor. In this review, we highlight the different intra- and extracellular roles that succinate might play in the fields of early pluripotency and embryo development.
Collapse
Affiliation(s)
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| |
Collapse
|
8
|
Pluripotent Core in Bovine Embryos: A Review. Animals (Basel) 2022; 12:ani12081010. [PMID: 35454256 PMCID: PMC9032358 DOI: 10.3390/ani12081010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.
Collapse
|
9
|
Innocenti F, Fiorentino G, Cimadomo D, Soscia D, Garagna S, Rienzi L, Ubaldi FM, Zuccotti M. Maternal effect factors that contribute to oocytes developmental competence: an update. J Assist Reprod Genet 2022; 39:861-871. [PMID: 35165782 PMCID: PMC9051001 DOI: 10.1007/s10815-022-02434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oocyte developmental competence is defined as the capacity of the female gamete to be fertilized and sustain development to the blastocyst stage. Epigenetic reprogramming, a correct cell division pattern, and an efficient DNA damage response are all critical events that, before embryonic genome activation, are governed by maternally inherited factors such as maternal-effect gene (MEG) products. Although these molecules are stored inside the oocyte until ovulation and exert their main role during fertilization and preimplantation development, some of them are already functioning during folliculogenesis and oocyte meiosis resumption. This mini review summarizes the crucial roles played by MEGs during oocyte maturation, fertilization, and preimplantation development with a direct/indirect effect on the acquisition or maintenance of oocyte competence. Our aim is to inspire future research on a topic with potential clinical perspectives for the prediction and treatment of female infertility.
Collapse
Affiliation(s)
- Federica Innocenti
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Danilo Cimadomo
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy.
| | - Daria Soscia
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | | | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | |
Collapse
|