1
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
2
|
Shabbir S, Hadi A, Jabeen N, Hussain M. Developmental exposure of antibiotics shortens life span and induces teratogenicity in Drosophila melanogaster. Toxicol Rep 2024; 13:101784. [PMID: 39534686 PMCID: PMC11554921 DOI: 10.1016/j.toxrep.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Antibiotics are the major therapeutic arsenal against bacterial infections. Yet, beneath this medical triumph lies an under investigated challenge of the potential teratological and toxicological impacts associated with the use of antibiotics. In the present study, we have explored the teratogenic potential of five commonly used antibiotics (streptomycin, metronidazole, tigecycline, doxycycline and norfloxacin) on Drosophila melanogaster Oregon-R strain. Except norfloxacin, all other tested antibiotics significantly delayed the onset of pupariation. Consistently, metronidazole, doxycycline and tigecycline resulted in statistically significant drops in egg-to-adult viability and adversely affected egg-to-pupa transition. In comparison, embryonic exposure of streptomycin impeded pupa-to-fly transition. All tested antibiotics induced morphological defects in antenna, wings, proboscis, eye, head, thorax, haltere and abdomen. Interestingly, developmental exposure of antibiotics resulted in statistically significant decrease in the lifespan of both male and female flies. This suggests an increased incidence of teratogenic faults at the systemic level, which are otherwise not manifested morphologically, due to the exposure of tested antibiotics during development. Taken together, our data show that developmental exposure of antibiotics may induce varying degrees of teratogenicity in D. melanogaster. Given the genomic homology and conservation of major molecular pathways that underpin development in humans and D. melanogaster, the findings do hold translational potential.
Collapse
Affiliation(s)
- Sanya Shabbir
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Centre, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75280, Pakistan
- Department of Microbiology, University of Karachi, Pakistan
| | - Abdullah Hadi
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Centre, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75280, Pakistan
| | - Nusrat Jabeen
- Department of Microbiology, University of Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Centre, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75280, Pakistan
| |
Collapse
|
3
|
Li C, Xiao Y, Zhou J, Liu S, Zhang L, Song X, Guo X, Song Q, Zhao J, Deng N. Knockout of onecut2 inhibits proliferation and promotes apoptosis of tumor cells through SKP2-mediated p53 acetylation in hepatocellular carcinoma. Cell Mol Life Sci 2024; 81:469. [PMID: 39609269 PMCID: PMC11604872 DOI: 10.1007/s00018-024-05518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Onecut2 (OC2) plays a vital regulatory role in tumor growth, metastasis and angiogenesis. In this study, we report the regulatory role and specific molecular mechanism of OC2 in the apoptosis of hepatocellular carcinoma (HCC) cells. We found that OC2 knockout via the CRISPR/CAS9 system not only significantly inhibited the proliferation and angiogenesis of HCC cells but also significantly promoted apoptosis. The apoptosis rate of the OC2 knockout HCC cell line reached 30.514%. In a mouse model, the proliferation inhibition rate of tumor cells reached 98.8%. To explore the mechanism of apoptosis, ChIP-Seq and dual-luciferase reporter assays were carried out. The results showed that OC2 could directly bind to the promotor of SKP2 and regulate its expression. Moreover, downregulating the expression of OC2 and SKP2 could release p300, promote the acetylation of p53, increase the expression of p21 and p27, and promote the apoptosis of HCC cells. Moreover, the overexpression of OC2 or SKP2 in the knockout HCC cell line clearly inhibited the acetylation level of p53 and reduced cell apoptosis. This study revealed that OC2 could regulate the apoptosis of HCC cells through the SKP2/p53/p21 axis, which may provide some therapeutic targets for HCC in the clinic.
Collapse
Affiliation(s)
- Cunjie Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yuxin Xiao
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Jieling Zhou
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Shifeng Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
- School of Medicine, Foshan University, Foshan, 528225, China
| | - Xinran Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Xinhua Guo
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qifang Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
de Almeida K, Câmara P, Camargo G, Pereira T, Vieira A, Lopes-Cendes I, Severino P, Souto EB, Pascoal A, Pascoal V. Identification of microRNAs expressed in an animal model of periodontal disease and their impact on pathological processes. Tissue Cell 2024; 90:102525. [PMID: 39178577 DOI: 10.1016/j.tice.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs represent a class of small RNAs that act to silence genes post-transcriptionally by inhibiting the translation of target messenger RNAs, and this study aimed to understand how miRNAs influence the set-up of periodontal disease. Periodontitis was induced by inserting a ligature into the left first mandibular molar in a rat model, which was kept for the entire 56 days-time of experiment. After 56 days post-periodontitis induction, the histopathological analysis showed an apical extension of the junctional epithelium, with areas of hyperplasia, exocytosis, and a mixed inflammatory infiltrate with a predominance of neutrophils, lymphocytes, and eventual plasma cells in the deeper layers. The cement surface showed areas of irregularity, covered by cementoblasts and irregular surfaces, confirming the set-up of periodontitis. In the sequencing analysis, 26,404 genes were identified, with 132 reaching statistical significance. Among genes with a statistical difference, 18 were found to encode for microRNAs. The identified microRNAs are primarily involved in bone remodeling by acting on fibroblast growth factors, and collagen production. These outcomes demonstrate a signaling role in bone resorption, which is consistent with the histopathological observations that show the installation of inflammation with epithelial migration and the beginning of the repair process, with cementum resorption. The disclosure of how miRNAs may influence the maintaining of periodontal disease will help the development of new dental materials for the prophylaxis and treatment of alveolar bone resorption.
Collapse
Affiliation(s)
- Kelly de Almeida
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Priscilla Câmara
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Gabriela Camargo
- Postgraduate Program in Dentistry, Nova Friburgo Health Institute, Fluminense Federal University Nova Friburgo, Nova Friburgo, RJ, Brazil
| | - Tiago Pereira
- Graduate Program in Genetics, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - André Vieira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Patrícia Severino
- Biotechnological Postgraduate Program, Tiradentes University, Aracaju, Sergipe 49010-390, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Belfield D04 V1W8, Ireland.
| | - Aislan Pascoal
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Vinicius Pascoal
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil.
| |
Collapse
|
5
|
Van Greenen JD, Hockman D. FGF20. Differentiation 2024; 139:100737. [PMID: 38007375 DOI: 10.1016/j.diff.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Fibroblast growth factor 20 (FGF20) is a neurotrophic factor and a member of the FGF9 subfamily. It was first identified in Xenopus embryos and was isolated shortly thereafter from the adult rat brain. Its receptors include FGFR4, FGFR3b, FGFR2b and the FGFRc splice forms. In adults it is highly expressed in the brain, while it is expressed in a variety of regions during embryonic development, including the inner ear, heart, hair placodes, mammary buds, dental epithelium and limbs. As a result of its wide-spread expression, FGF20 mouse mutants exhibit a variety of phenotypes including congenital deafness, lack of hair, small kidneys and delayed mammary ductal outgrowth. FGF20 is also associated with human diseases including Parkinson's Disease, cancer and hereditary deafness.
Collapse
Affiliation(s)
- Justine D Van Greenen
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
6
|
Edman NI, Phal A, Redler RL, Schlichthaerle T, Srivatsan SR, Ehnes DD, Etemadi A, An SJ, Favor A, Li Z, Praetorius F, Gordon M, Vincent T, Marchiano S, Blakely L, Lin C, Yang W, Coventry B, Hicks DR, Cao L, Bethel N, Heine P, Murray A, Gerben S, Carter L, Miranda M, Negahdari B, Lee S, Trapnell C, Zheng Y, Murry CE, Schweppe DK, Freedman BS, Stewart L, Ekiert DC, Schlessinger J, Shendure J, Bhabha G, Ruohola-Baker H, Baker D. Modulation of FGF pathway signaling and vascular differentiation using designed oligomeric assemblies. Cell 2024; 187:3726-3740.e43. [PMID: 38861993 PMCID: PMC11246234 DOI: 10.1016/j.cell.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.
Collapse
Affiliation(s)
- Natasha I Edman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ashish Phal
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Rachel L Redler
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sanjay R Srivatsan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Devon Duron Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ali Etemadi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seong J An
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrew Favor
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max Gordon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Thomas Vincent
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Leslie Blakely
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Chuwei Lin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Neville Bethel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Piper Heine
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marcos Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Babak Negahdari
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA
| | - Ying Zheng
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle WA 98109, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle WA 98195, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin S Freedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Mensah IK, Gowher H. Signaling Pathways Governing Cardiomyocyte Differentiation. Genes (Basel) 2024; 15:798. [PMID: 38927734 PMCID: PMC11202427 DOI: 10.3390/genes15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Deng J, Wei RQ, Zhang WM, Shi CY, Yang R, Jin M, Piao C. Crocin's role in modulating MMP2/TIMP1 and mitigating hypoxia-induced pulmonary hypertension in mice. Sci Rep 2024; 14:12716. [PMID: 38830933 PMCID: PMC11148111 DOI: 10.1038/s41598-024-62900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-β1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-β1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-β1-induced myofibroblast activation.
Collapse
Affiliation(s)
- Jing Deng
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China
| | - Rui-Qi Wei
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Wen-Mei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Chang-Yu Shi
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Rui Yang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Ming Jin
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China.
| | - Chunmei Piao
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
9
|
Ramkumar N, Richardson C, O'Brien M, Butt FA, Park J, Chao AT, Bagnat M, Poss K, Di Talia S. Phased ERK-responsiveness and developmental robustness regulate teleost skin morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593750. [PMID: 38798380 PMCID: PMC11118522 DOI: 10.1101/2024.05.13.593750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Elongation of the vertebrate embryonic axis necessitates rapid expansion of the epidermis to accommodate the growth of underlying tissues. Here, we generated a toolkit to visualize and quantify signaling in entire cell populations of periderm, the outermost layer of the epidermis, in live developing zebrafish. We find that oriented cell divisions facilitate growth of the early periderm during axial elongation rather than cell addition from the basal layer. Activity levels of ERK, a downstream effector of MAPK pathway, gauged by a live biosensor, predicts cell cycle entry, and optogenetic ERK activation controls proliferation dynamics. As development proceeds, rates of peridermal cell proliferation decrease, ERK activity becomes more pulsatile and functionally transitions to promote hypertrophic cell growth. Targeted genetic blockade of cell division generates animals with oversized periderm cells, yet, unexpectedly, development to adulthood is not impaired. Our findings reveal stage-dependent differential responsiveness to ERK signaling and marked developmental robustness in growing teleost skin.
Collapse
|
10
|
Goutam RS, Kumar V, Lee U, Kim J. Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae. Mol Cells 2024; 47:100058. [PMID: 38522664 PMCID: PMC11031840 DOI: 10.1016/j.mocell.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
- Laboratory of Regenerative Medicine, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| |
Collapse
|
11
|
Xu M, Li Z, Liang X, Li J, Ye Y, Qi P, Yan X. Transcriptomic Analysis Provides Insights into Candidate Genes and Molecular Pathways Involved in Growth of Mytilus coruscus Larvae. Int J Mol Sci 2024; 25:1898. [PMID: 38339176 PMCID: PMC10855951 DOI: 10.3390/ijms25031898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Growth is a fundamental aspect of aquaculture breeding programs, pivotal for successful cultivation. Understanding the mechanisms that govern growth and development differences across various stages can significantly boost seedling production of economically valuable species, thereby enhancing aquaculture efficiency and advancing the aquaculture industry. Mytilus coruscus, a commercially vital marine bivalve, underscores this importance. To decipher the intricate molecular mechanisms dictating growth and developmental disparities in marine shellfish, we conducted transcriptome sequencing and meticulously analyzed gene expression variations and molecular pathways linked to growth traits in M. coruscus. This study delved into the molecular and gene expression variations across five larval development stages, with a specific focus on scrutinizing the differential expression patterns of growth-associated genes using RNA sequencing and quantitative real-time PCR analysis. A substantial number of genes-36,044 differentially expressed genes (DEGs)-exhibited significant differential expression between consecutive developmental stages. These DEGs were then categorized into multiple pathways (Q value < 0.05), including crucial pathways such as the spliceosome, vascular smooth muscle contraction, DNA replication, and apoptosis, among others. In addition, we identified two pivotal signaling pathways-the Hedgehog (Hh) signaling pathway and the TGF-beta (TGF-β) signaling pathway-associated with the growth and development of M. coruscus larvae. Ten key growth-related genes were pinpointed, each playing crucial roles in molecular function and the regulation of growth traits in M. coruscus. These genes and pathways associated with growth provide deep insights into the molecular basis of physiological adaptation, metabolic processes, and growth variability in marine bivalves.
Collapse
Affiliation(s)
| | | | | | | | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (M.X.); (Z.L.); (X.L.); (J.L.); (X.Y.)
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (M.X.); (Z.L.); (X.L.); (J.L.); (X.Y.)
| | | |
Collapse
|
12
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
13
|
Yoder MD, Van Osten S, Weber GF. Gene expression analysis of the Tao kinase family of Ste20p-like map kinase kinase kinases during early embryonic development in Xenopus laevis. Gene Expr Patterns 2023; 48:119318. [PMID: 37011704 PMCID: PMC10453956 DOI: 10.1016/j.gep.2023.119318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Development of the vertebrate embryo requires strict coordination of a highly complex series of signaling cascades, that drive cell proliferation, differentiation, migration, and the general morphogenetic program. Members of the Map kinase signaling pathway are repeatedly required throughout development to activate the downstream effectors, ERK, p38, and JNK. Regulation of these pathways occurs at many levels in the signaling cascade, with the Map3Ks playing an essential role in target selection. The thousand and one amino acid kinases (Taoks) are Map3Ks that have been shown to activate both p38 and JNK and are linked to neurodevelopment in both invertebrate and vertebrate organisms. In vertebrates, there are three Taok paralogs (Taok1, Taok2, and Taok3) which have not yet been ascribed a role in early development. Here we describe the spatiotemporal expression of Taok1, Taok2, and Taok3 in the model organism Xenopus laevis. The X. laevis Tao kinases share roughly 80% identity to each other, with the bulk of the conservation in the kinase domain. Taok1 and Taok3 are highly expressed in pre-gastrula and gastrula stage embryos, with initial expression localized to the animal pole and later expression in the ectoderm and mesoderm. All three Taoks are expressed in the neural and tailbud stages, with overlapping expression in the neural tube, notochord, and many anterior structures (including branchial arches, brain, otic vesicles, and eye). The expression patterns described here provide evidence that the Tao kinases may play a central role in early development, in addition to their function during neural development, and establish a framework to better understand the developmental roles of Tao kinase signaling.
Collapse
Affiliation(s)
- Michael D Yoder
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| | - Steven Van Osten
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, PA, 19063, USA.
| | - Gregory F Weber
- Department of Biology, University of Indianapolis, Indianapolis, IN, 46227, USA.
| |
Collapse
|
14
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
15
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
16
|
Yoo DH, Im YS, Oh JY, Gil D, Kim YO. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep 2023; 13:5683. [PMID: 37029196 PMCID: PMC10082014 DOI: 10.1038/s41598-023-32567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Cultured human pluripotent stem cells (hPSCs) grow as colonies that require breakdown into small clumps for further propagation. Although cell death mechanism by single-cell dissociation of hPSCs has been well defined, how hPSCs respond to the deadly stimulus and recover the original status remains unclear. Here we show that dissociation of hPSCs immediately activates ERK, which subsequently activates RSK and induces DUSP6, an ERK-specific phosphatase. Although the activation is transient, DUSP6 expression persists days after passaging. DUSP6 depletion using the CRISPR/Cas9 system reveals that DUSP6 suppresses the ERK activity over the long term. Elevated ERK activity by DUSP6 depletion increases both viability of hPSCs after single-cell dissociation and differentiation propensity towards mesoderm and endoderm lineages. These findings provide new insights into how hPSCs respond to dissociation in order to maintain pluripotency.
Collapse
Affiliation(s)
- Dae Hoon Yoo
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Young Sam Im
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Ji Young Oh
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Dayeon Gil
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Yong-Ou Kim
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea.
- Center for National Stem Cell and Regenerative Medicine 202, Osongsaengmyung 2-Ro, Heundeok-Gu, Cheongju, Chungcheongbuk-Do, 28160, Republic of Korea.
| |
Collapse
|
17
|
Anderson MJ, Misaghian S, Sharma N, Perantoni AO, Lewandoski M. Fgf8 promotes survival of nephron progenitors by regulating BAX/BAK-mediated apoptosis. Differentiation 2023; 130:7-15. [PMID: 36527791 PMCID: PMC10718080 DOI: 10.1016/j.diff.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (Fgfs) have long been implicated in processes critical to embryonic development, such as cell survival, migration, and differentiation. Several mouse models of organ development ascribe a prosurvival requirement specifically to FGF8. Here, we explore the potential role of prosurvival FGF8 signaling in kidney development. We have previously demonstrated that conditional deletion of Fgf8 in the mesodermal progenitors that give rise to the kidney leads to renal aplasia in the mutant neonate. Deleterious consequences caused by loss of FGF8 begin to manifest by E14.5 when massive aberrant cell death occurs in the cortical nephrogenic zone in the rudimentary kidney as well as in the renal vesicles that give rise to the nephrons. To rescue cell death in the Fgf8 mutant kidney, we inactivate the genes encoding the pro-apoptotic factors BAK and BAX. In a wild-type background, the loss of Bak and Bax abrogates normal cell death and has minimal effect on renal development. However, in Fgf8 mutants, the combined loss of Bak and Bax rescues aberrant cell death in the kidneys and restores some measure of kidney development: 1) the nephron progenitor population is greatly increased; 2) some glomeruli form, which are rarely observed in Fgf8 mutants; and 3) kidney size is rescued by about 50% at E18.5. The development of functional nephrons, however, is not rescued. Thus, FGF8 signaling is required for nephron progenitor survival by regulating BAK/BAX and for subsequent steps involving, as yet, undefined roles in kidney development.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Salvia Misaghian
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Nirmala Sharma
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Alan O Perantoni
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
18
|
Fang C, Zhou L, Huang H, Xu HT, Hong T, Zheng SY. Bioinformatics analysis and validation of the critical genes associated with adamantinomatous craniopharyngioma. Front Oncol 2022; 12:1007236. [DOI: 10.3389/fonc.2022.1007236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Adamantinomatous craniopharyngioma (ACP) is an epithelial tumor that arises when Rathke’s pouch remains during embryonic development. The pathogenesis of ACP remains unclear, and treatment options are limited. Here, we reveal the critical genes expressed in ACP and provide a basis for further research and treatment. The raw dataset GSE94349 was downloaded from the GEO database. We selected 24 ACP and 27 matched samples from individuals with no documented tumor complications (control group). Then, we screened for differentially expressed genes (DEGs) to identify key signaling pathways and associated DEGs. A total of 470 DEGs were identified (251 upregulated and 219 downregulated). Hierarchical clustering showed that the DEGs could precisely distinguish the ACP group from the control group (CG). Gene Ontology (GO) enrichment analysis indicated that the upregulated DEGs were mainly involved in cell adhesion, inflammatory responses, and extracellular matrix management. The downregulated DEGs were primarily involved in cell junction and nervous system development. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the critical pathway was pathways in cancer. In the PPI network, CDH1, SHH, and WNT5A had the highest degrees of interaction and were associated with the formation of ACP. CDH1 was verified as a critical gene by quantitative reverse transcription–polymerase chain reaction (qRT-PCR) in ACP and CG samples. We found that CDH1 may play an important role in the pathways in cancer signaling pathway that regulates ACP development. The CDH1 gene may be a target for future research and treatment of ACP.
Collapse
|
19
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
20
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
21
|
Yoon J, Kumar V, Goutam RS, Kim SC, Park S, Lee U, Kim J. Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos. Cells 2021; 11:44. [PMID: 35011606 PMCID: PMC8750265 DOI: 10.3390/cells11010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023] Open
Abstract
Gastrulation is a critical step in the establishment of a basic body plan during development. Convergence and extension (CE) cell movements organize germ layers during gastrulation. Noncanonical Wnt signaling has been known as major signaling that regulates CE cell movement by activating Rho and Rac. In addition, Bmp molecules are expressed in the ventral side of a developing embryo, and the ventral mesoderm region undergoes minimal CE cell movement while the dorsal mesoderm undergoes dynamic cell movements. This suggests that Bmp signal gradient may affect CE cell movement. To investigate whether Bmp signaling negatively regulates CE cell movements, we performed microarray-based screening and found that the transcription of Xenopus Arhgef3.2 (Rho guanine nucleotide exchange factor) was negatively regulated by Bmp signaling. We also showed that overexpression or knockdown of Xarhgef3.2 caused gastrulation defects. Interestingly, Xarhgef3.2 controlled gastrulation cell movements through interacting with Disheveled (Dsh2) and Dsh2-associated activator of morphogenesis 1 (Daam1). Our results suggest that Bmp gradient affects gastrulation cell movement (CE) via negative regulation of Xarhgef3.2 expression.
Collapse
Affiliation(s)
- Jaeho Yoon
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
- National Cancer Institute, Frederick, MD 21702, USA
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| | - Sung-Chan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea;
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| |
Collapse
|
22
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
23
|
Kumar V, Goutam RS, Umair Z, Park S, Lee U, Kim J. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula. Cells 2021; 10:cells10102779. [PMID: 34685759 PMCID: PMC8534798 DOI: 10.3390/cells10102779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.1. Thus, Chrd induces in a BMP-inhibited manner and promotes neuroectoderm formation. However, the regulatory feedback mechanism of Foxd4l1.1 on mesodermal genes expression during germ-layer specification has not been fully elucidated. In this study, we investigated the regulatory mechanism of Foxd4l1.1 on chrd (a mesodermal gene). We demonstrate that Foxd4l1.1 inhibits chrd expression during neuroectoderm formation in two ways: First, Foxd4l1.1 directly binds to FRE (Foxd4l1.1 response elements) within the chrd promoter region to inhibit transcription. Second, Foxd4l1.1 physically interacts with Smad2 and Smad3, and this interaction blocks Smad2 and Smad3 binding to activin response elements (AREs) within the chrd promoter. Site-directed mutagenesis of FRE within the chrd(-2250) promoter completely abolished repressor activity of the Foxd4l1.1. RT-PCR and reporter gene assay results indicate that Foxd4l1.1 strongly inhibits mesoderm- and ectoderm-specific marker genes to maintain neural fate. Altogether, these results suggest that Foxd4l1.1 negatively regulates chrd transcription by dual mechanism. Thus, our study demonstrates the existence of precise reciprocal regulation of chrd transcription during neuroectoderm and mesoderm germ-layer specification in Xenopus embryos.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Correspondence: (U.L.); (J.K.)
| |
Collapse
|