1
|
Feria-Rodríguez A, March D, Mourre B, Hendriks IE, Vázquez-Luis M. Sink-source connectivity for restocking of Pinna nobilis in the western Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106428. [PMID: 38492503 DOI: 10.1016/j.marenvres.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
The critically endangered endemic bivalve Pinna nobilis from the Mediterranean Sea suffered a sudden population decline after a mass mortality event in early autumn 2016. Conservation efforts aimed at preventing extinction included safeguarding resistant individuals and implementing a breeding plan to contribute to the repopulation of the species. This study utilized a model combining Lagrangian dispersion and connectivity analyses to pinpoint optimal restocking sites in the Western Mediterranean. Our approach allowed to identify locations capable of sustaining and generating larvae for broader repopulation in key areas of the Western Mediterranean Sea prior to the mass mortality event. Six important repopulation locations from Murcia, Valencia and Balearic Islands were selected for reintroduction efforts. The results obtained in this study show how the network could be self-sufficient and able to self-replenish itself of recruits. Overall, our work can be used to direct the reintroduction of resistant animals in the Western Mediterranean Sea.
Collapse
Affiliation(s)
- A Feria-Rodríguez
- Instituto Español de Oceanografía (IEO-CSIC). Centro Oceanográfico de Baleares, 07015, Palma de Mallorca, Spain.
| | - D March
- Unidad de Zoología Marina, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València 46100, Paterna, Spain; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, TR10 9FE, Penryn, United Kingdom
| | - B Mourre
- SOCIB, Balearic Islands Coastal Observing and Forecasting System, Parc Bit, Ed., 07121 Palma, Spain
| | - I E Hendriks
- Oceanography and Global Change Department, Mediterranean Institute for Advanced Studies (CSIC-UIB), 07190, Esporles, Spain
| | - M Vázquez-Luis
- Instituto Español de Oceanografía (IEO-CSIC). Centro Oceanográfico de Baleares, 07015, Palma de Mallorca, Spain
| |
Collapse
|
2
|
Gürkan M, Ertürk Gürkan S, Künili İE, Acar S, Özel OT, Düzgüneş ZD, Türe M. Evaluation of the health of Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) distributed in the Çanakkale strait, Turkey. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106492. [PMID: 38598959 DOI: 10.1016/j.marenvres.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The observation of mortality in Mediterranean mussels (Mytilus galloprovincialis) distributed in the Çanakkale Strait in recent years was influential in developing the research question for this study. In this study, the presence of bacteria (Vibrio spp.) and parasites (Marteilia spp. and Haplosporidium spp.) in mussels collected from Kumkale, Kepez, and Umurbey stations in the Çanakkale Strait was investigated seasonally. Microbiological findings, histopathology, oxidative stress enzymes and their gene expressions, lipid peroxidation, lysosomal membrane stability, and changes in haemolymph were examined. In summer samples, both the defence system and the extent of damage were higher in gill tissue. In winter samples, enzyme activities and lipid peroxidation were found to be predominantly higher in digestive gland tissues. Histological examinations and Hemacolor staining revealed the presence of protozoan cysts, and for bacterial examination, molecular analysis performed after culturing revealed the presence of 7 Vibrio species. While the total numbers of heterotrophic bacteria detected in all samples were at acceptable levels, the predominance of Vibrio spp. numbers among the total heterotrophic bacteria detected in almost all samples were noteworthy. The total hemocyte count was calculated as 5.810(4)±0.58 (cells/mm3) in winter and 7.210(4)±1.03 (cells/mm3) in summer. These factors are considered to be possible causes of mussel mortality.
Collapse
Affiliation(s)
- Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye.
| | - İbrahim Ender Künili
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Fishing and Fish Processing Technology, Çanakkale, Turkiye
| | - Seçil Acar
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Marine Sciences and Limnology, Çanakkale, Turkiye
| | - Osman Tolga Özel
- Central Fisheries Research Institute, Department of Aquaculture, Trabzon, Turkiye
| | - Zehra Duygu Düzgüneş
- Central Fisheries Research Institute, Department of Breeding and Genetics, Trabzon, Turkiye
| | - Mustafa Türe
- Central Fisheries Research Institute, Department of Fisheries Health, Trabzon, Turkiye
| |
Collapse
|
3
|
Carella F, Prado P, De Vico G, Palić D, Villari G, García-March JR, Tena-Medialdea J, Cortés Melendreras E, Giménez-Casalduero F, Sigovini M, Aceto S. A widespread picornavirus affects the hemocytes of the noble pen shell ( Pinna nobilis), leading to its immunosuppression. Front Vet Sci 2023; 10:1273521. [PMID: 38164394 PMCID: PMC10758234 DOI: 10.3389/fvets.2023.1273521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The widespread mass mortality of the noble pen shell (Pinna nobilis) has occurred in several Mediterranean countries in the past 7 years. Single-stranded RNA viruses affecting immune cells and leading to immune dysfunction have been widely reported in human and animal species. Here, we present data linking P. nobilis mass mortality events (MMEs) to hemocyte picornavirus (PV) infection. This study was performed on specimens from wild and captive populations. Methods We sampled P. nobilis from two regions of Spain [Catalonia (24 animals) and Murcia (four animals)] and one region in Italy [Venice (6 animals)]. Each of them were analyzed using transmission electron microscopy (TEM) to describe the morphology and self-assembly of virions. Illumina sequencing coupled to qPCR was performed to describe the identified virus and part of its genome. Results and discussion In 100% of our samples, ultrastructure revealed the presence of a virus (20 nm diameter) capable of replicating within granulocytes and hyalinocytes, leading to the accumulation of complex vesicles of different dimensions within the cytoplasm. As the PV infection progressed, dead hemocytes, infectious exosomes, and budding of extracellular vesicles were visible, along with endocytic vesicles entering other cells. The THC (total hemocyte count) values observed in both captive (eight animals) (3.5 × 104-1.60 × 105 ml-1 cells) and wild animals (14 samples) (1.90-2.42 × 105 ml-1 cells) were lower than those reported before MMEs. Sequencing of P. nobilis (six animals) hemocyte cDNA libraries revealed the presence of two main sequences of Picornavirales, family Marnaviridae. The highest number of reads belonged to animals that exhibited active replication phases and abundant viral particles from transmission electron microscopy (TEM) observations. These sequences correspond to the genus Sogarnavirus-a picornavirus identified in the marine diatom Chaetoceros tenuissimus (named C. tenuissimus RNA virus type II). Real-time PCR performed on the two most abundant RNA viruses previously identified by in silico analysis revealed positive results only for sequences similar to the C. tenuissimus RNA virus. These results may not conclusively identify picornavirus in noble pen shell hemocytes; therefore, further study is required. Our findings suggest that picornavirus infection likely causes immunosuppression, making individuals prone to opportunistic infections, which is a potential cause for the MMEs observed in the Mediterranean.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patricia Prado
- Institute of Agrifood Research and Technology (IRTA)-Sant Carles de la Ràpita, Tarragona, Spain
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Grazia Villari
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - José Rafael García-March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | - José Tena-Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | | | - Francisca Giménez-Casalduero
- Department of Marine Science and Applied Biology, Research Marine Centre in Santa Pola (CIMAR), University of Alicante, Alicante, Spain
| | - Marco Sigovini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Venice, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Donato G, Lunetta A, Spinelli A, Catanese G, Giacobbe S. Sanctuaries are not inviolable: Haplosporidium pinnae as responsible for the collapse of the Pinna nobilis population in Lake Faro (central Mediterranean). J Invertebr Pathol 2023; 201:108014. [PMID: 37918657 DOI: 10.1016/j.jip.2023.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The rapid spread of the protozoan Haplosporidium pinnae is having a strong negative effect on Pinna nobilis populations. A case study on a residual population in Lake Faro (Sicily, Central Mediterranean), whose long-term monitoring has revealed a dramatic decline following the 2018-2020 mass mortality event, is presented. In the framework of such monitoring, we performed tissue sampling on nine living P. nobilis, detecting the pathogen in seven of them. In contrast, other pathogens associated with P. nobilis disease in other areas, i.e., Mycobacterium spp. and Vibrio mediterranei, were not recorded. The surviving individuals (approximately twenty) showed that brackish areas only weakly mitigate the effects of H. pinnae disease and might not be resolutive. Nevertheless, the results show that Lake Faro may constitute one of the last Mediterranean P. nobilis sanctuaries.
Collapse
Affiliation(s)
- Gemma Donato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia, 57, 95129, Catania, Italy
| | - Alessia Lunetta
- Institute for Biological Resources and Marine Biotechnologies, Section of Messina, National Research Council (CNR-IRBIM), Spianata S. Rineri 86, 98122 Messina, Italy.
| | - Andrea Spinelli
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Oceanogràfic, Ciudad de las Artes y las Ciencias, Carrer d'Eduardo Primo Yúfera, 1, 46013 Valencia, Spain
| | - Gaetano Catanese
- Laboratorio de Investigaciones Marinas y Acuicultura (LIMIA -IRFAP) - Govern de les Illes Balears, Av. Ing. G. Roca, 69. 07157 Port d'Andratx, Balearic Islands, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua - Universidad de las Islas Baleares (INAGEA-UIB), Ctra. De Valldemossa, km 7.5., Palma, Spain
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, ChiBioFarAm, Università Degli Studi di Messina, V.le Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Carella F, Palić D, Šarić T, Župan I, Gorgoglione B, Prado P, Andree KB, Giantsis IA, Michaelidis B, Lattos A, Theodorou JA, Luis Barja Perez J, Rodriguez S, Scarpa F, Casu M, Antuofermo E, Sanna D, Otranto D, Panarese R, Iaria C, Marino F, Vico GD. Multipathogen infections and multifactorial pathogenesis involved in noble pen shell ( Pinna nobilis) mass mortality events: Background and current pathologic approaches. Vet Pathol 2023; 60:560-577. [PMID: 37458195 DOI: 10.1177/03009858231186737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Disease outbreaks in several ecologically or commercially important invertebrate marine species have been reported in recent years all over the world. Mass mortality events (MMEs) have affected the noble pen shell (Pinna nobilis), causing its near extinction. Our knowledge of the dynamics of diseases affecting this species is still unclear. Early studies investigating the causative etiological agent focused on a novel protozoan parasite, Haplosporidium pinnae, although further investigations suggested that concurrent polymicrobial infections could have been pivotal in some MMEs, even in the absence of H. pinnae. Indeed, moribund specimens collected during MMEs in Italy, Greece, and Spain demonstrated the presence of a bacteria from within the Mycobacterium simiae complex and, in some cases, species similar to Vibrio mediterranei. The diagnostic processes used for investigation of MMEs are still not standardized and require the expertise of veterinary and para-veterinary pathologists, who could simultaneously evaluate a variety of factors, from clinical signs to environmental conditions. Here, we review the available literature on mortality events in P. nobilis and discuss approaches to define MMEs in P. nobilis. The proposed consensus approach should form the basis for establishing a foundation for future studies aimed at preserving populations in the wild.
Collapse
Affiliation(s)
| | - Dušan Palić
- Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Sergio Rodriguez
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | - Domenico Otranto
- University of Bari, Bari, Italy
- Bu-Ali Sina University, Hamedan, Iran
| | | | | | | | | |
Collapse
|
6
|
Lattos A, Feidantsis K, Giantsis IA, Theodorou JA, Michaelidis B. Seasonality in Synergism with Multi-Pathogen Presence Leads to Mass Mortalities of the Highly Endangered Pinna nobilis in Greek Coastlines: A Pathophysiological Approach. Microorganisms 2023; 11:1117. [PMID: 37317091 DOI: 10.3390/microorganisms11051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
Mortalities of Pinna nobilis populations set at risk the survival of the species from many Mediterranean coastline habitats. In many cases, both Haplosporidium pinnae and Mycobacterium spp. are implicated in mass mortalities of P. nobilis populations, leading the species into extinction. In the context of the importance of these pathogens' role in P. nobilis mortalities, the present study investigated two Greek populations of the species hosting different microbial loads (one only H. pinnae and the second both pathogens) by the means of pathophysiological markers. More specifically, the populations from Kalloni Gulf (Lesvos Island) and from Maliakos Gulf (Fthiotis), seasonally sampled, were chosen based on the host pathogens in order to investigate physiological and immunological biomarkers to assess those pathogens' roles. In order to determine if the haplosporidian parasite possesses a major role in the mortalities or if both pathogens are involved in these phenomena, a variety of biomarkers, including apoptosis, autophagy, inflammation and heat shock response were applied. The results indicated a decreased physiological performance of individuals hosting both pathogens in comparison with those hosting only H. pinnae. Our findings provide evidence for the synergistic role of those pathogens in the mortality events, which is also enhanced by the influence of seasonality.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100 Florina, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-23200 Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Virulence Genes and In Vitro Antibiotic Profile of Photobacterium damselae Strains, Isolated from Fish Reared in Greek Aquaculture Facilities. Animals (Basel) 2022; 12:ani12223133. [PMID: 36428362 PMCID: PMC9687077 DOI: 10.3390/ani12223133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria belonging to the species Photobacterium damselae are pathogens of cultured marine fish, causing diseases of high importance, such as Pasteurellosis. Thus, they are considered a major threat to the aquaculture sector. Despite the great importance of fish mariculture for the Greek economy, the distribution and abundance of these bacteria are not well documented in aquaculture units in Greece. Keeping this in mind, the scope of the present study was to investigate the presence, antibiotic profile, and virulence of Photobacterium bacteria originating from a representative sample of mariculture units throughout Greece. Samples were collected from diseased fish belonging to three different cultured fish species, namely Sparus aurata, Dicentrarchus labrax, and Pagrus pagrus, from both the Aegean and the Ionian Sea. Tissue samples were cultured in agar media, and bacteria were molecularly identified using both bacterial universal and species-specific primer pairs for Photobacterium spp. Additionally, the identified strains were characterized for the presence of virulence genes as well as antibiotic profiles. According to the results, the aforementioned bacteria are distributed in the Greek aquaculture units and are characterized by high pathogenicity based on the abundance of virulence genes. Furthermore, the majority of the detected strains exhibit some level of antibiotic resistance. In summary, our results indicate the need for systematic surveillance and study of their antibiotic profiles in Greek aquaculture since these bacteria constitute a major threat to the sector.
Collapse
|
8
|
Giorgio Tiscar P, Rubino F, Paoletti B, Di Francesco CE, Mosca F, Della Salda L, Hattab J, Smoglica C, Morelli S, Fanelli G. New insights about Haplosporidium pinnae and the pen shell Pinna nobilis mass mortality events. J Invertebr Pathol 2022; 190:107735. [PMID: 35247465 DOI: 10.1016/j.jip.2022.107735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/29/2021] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Since early autumn 2016, Mass Mortality Events (MME) have drastically impacted the population of the fan mussel Pinna nobilis in the Mediterranean Sea. Haplosporidium pinnae, a newly described Haplosporidian species, has been considered the causative agent of the mortality outbreaks in association to opportunistic bacterial pathogens. In the present study, we first reported a cytological description of H. pinnae in moribund specimens of P. nobilis which were collected in the Gulf of Taranto (Ionian Sea, Italy) during summer 2018. Different life-cycle stages of the parasite, including uni- and binucleate cells, small plasmodia, big multinucleate plasmodia and sporocysts with spores, were detected in all the examined animals and most of the parasite cells were present in gills, mantle and digestive gland, while the spores were found only in the latter organ. Histology and molecular biology were also performed, confirming the nature of the infectious agent, as already reported in the area. Additionally, molecular study revealed the presence of the Mycobacterium ulcerans - M. marinum complex but no evident macroscopical or microscopical lesions, just as no bacteria referred to Mycobacterium were observed. In conclusion, the present study aimed to provide further contributions to the understanding of the mortality of P. nobilis, pointing on the role of the cytological method of investigation both for diagnostic and epidemiological purposes, and discussing about the current epidemic situation in the Adriatic sea.
Collapse
Affiliation(s)
| | | | - Barbara Paoletti
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | | - Francesco Mosca
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Leonardo Della Salda
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Jasmine Hattab
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Camilla Smoglica
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | |
Collapse
|
9
|
Lattos A, Chaligiannis I, Papadopoulos D, Giantsis IA, Petridou EI, Vafeas G, Staikou A, Michaelidis B. How Safe to Eat Are Raw Bivalves? Host Pathogenic and Public Health Concern Microbes within Mussels, Oysters, and Clams in Greek Markets. Foods 2021; 10:2793. [PMID: 34829074 PMCID: PMC8623680 DOI: 10.3390/foods10112793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Raw-bivalves consumption is a wide trend in Mediterranean countries. Despite the unambiguous nutritional value of seafood, raw consumption of bivalves may involve risks that could pose a significant threat to consumers' health. Their filter-feeding behavior is responsible for the potential hosting of a wide variety of microorganisms, either pathogenic for the bivalves or public health threats. Under this prism, the current study was conducted in an effort to evaluate the risk of eating raw bivalves originating from the two biggest seafood markets in Thessaloniki, the largest production area of bivalves in Greece. Both microbiological and molecular methodologies were applied in order to assess the presence of various harmful microbes, including noroviruses, Bonamia, Marteilia, Esherichia coli, Salmonella, and Vibrio. Results indicated the presence of several Vibrio strains in the analyzed samples, of which the halophilic Vibrio harveyi was verified by 16S rRNA sequencing; other than this, no enteropathogenic Vibrio spp. was detected. Furthermore, although Esherichia coli was detected in several samples, it was mostly below the European Union (EU) legislation thresholds. Interestingly, the non-target Photobacterium damselae was also detected, which is associated with both wound infections in human and aquatic animals. Regarding host pathogenic microorganisms, apart from Vibrio harveyi, the protozoan parasite Marteilia refrigens was identified in oysters, highlighting the continuous infection of this bivalve in Greece. In conclusion, bivalves can be generally characterized as a safe-to-eat raw food, hosting more bivalve pathogenic microbes than those of public health concern.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ilias Chaligiannis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ioannis A. Giantsis
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Evanthia I. Petridou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Vafeas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Alexandra Staikou
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| |
Collapse
|