1
|
Kozłowska-Tomczyk K, Borski N, Głód P, Gogola-Mruk J, Ptak A. PGRMC1 and PAQR4 are promising molecular targets for a rare subtype of ovarian cancer. Open Life Sci 2024; 19:20220982. [PMID: 39464509 PMCID: PMC11512499 DOI: 10.1515/biol-2022-0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The heterogeneity of ovarian cancer (OC) has made developing effective treatments difficult. Nowadays, hormone therapy plays a growing role in the treatment of OC; however, hormone modulators have had only limited success so far. To provide a more rigorous foundation for hormonal therapy for different OC subtypes, the current study used a series of bioinformatics approaches to analyse the expression profiles of genes encoding membrane progesterone (PGRMC1, progestins and the adipoQ receptor [PAQR] family), and androgen (zinc transporter member 9 [ZIP9], OXER1) receptors. Our work investigated also their prognostic value in the context of OC. We found differences in expression of ZIP9 and OXER1 between different OC subtypes, as well as between patient tumour and normal tissues. Expression of mRNA encoding PAQR7 and PAQR8 in a panel of OC cell lines was below the qPCR detection limit and was downregulated in tumour tissue samples, whereas high expression of PGRMC1 and PAQR4 mRNA was observed in rare subtypes of OC cell lines. In addition, chemical inhibition of PGRMC1 reduced the viability of rare OCs represented by COV434 cells. In conclusion, PGRMC1 and PAQR4 are promising targets for anticancer therapy, particularly for rare subtypes of OC. These findings may reflect differences in the observed responses of various OC subtypes to hormone therapy.
Collapse
Affiliation(s)
- Kamila Kozłowska-Tomczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
2
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
3
|
Sage MAG, Duffy DM. Novel Plasma Membrane Androgen Receptor SLC39A9 Mediates Ovulatory Changes in Cells of the Monkey Ovarian Follicle. Endocrinology 2024; 165:bqae071. [PMID: 38889246 PMCID: PMC11212825 DOI: 10.1210/endocr/bqae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Follicular androgens are important for successful ovulation and fertilization. The classical nuclear androgen receptor (AR) is a transcription factor expressed in the cells of the ovarian follicle. Androgen actions can also occur via membrane androgen receptor SLC39A9. Studies in fish ovary demonstrated that androgens bind to SLC39A9 and increase intracellular zinc to regulate ovarian cell function. To determine if SLC39A9 is expressed and functional in the key cell types of the mammalian ovulatory follicle, adult female cynomolgus macaques underwent ovarian stimulation. Ovaries or ovarian follicular aspirates were harvested at 0, 12, 24, and 36 hours after human chorionic gonadotropin (hCG). SLC39A9 and AR mRNA and protein were present in granulosa, theca, and vascular endothelial cells across the entire 40-hour ovulatory window. Testosterone, bovine serum albumin-conjugated testosterone (BSA-T), and androstenedione stimulated zinc influx in granulosa, theca, and vascular endothelial cells. The SLC39A9-selective agonist (-)-epicatechin also stimulated zinc influx in vascular endothelial cells. Taken together, these data support the conclusion that SLC39A9 activation via androgen induces zinc influx in key ovarian cells. Testosterone, BSA-T, and androstenedione each increased proliferation in vascular endothelial cells, indicating the potential involvement of SLC39A9 in ovulatory angiogenesis. Vascular endothelial cell migration also increased after treatment with testosterone, but not after treatment with BSA-T or androstenedione, suggesting that androgens stimulate vascular endothelial cell migration through nuclear AR but not SLC39A9. The presence of SLC39A9 receptors and SLC39A9 activation by follicular androstenedione concentrations suggests that androgen activation of ovarian SLC39A9 may regulate ovulatory changes in the mammalian follicle.
Collapse
Affiliation(s)
- Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
4
|
Chen L, Chen S, Li Y, Qiu Y, Chen X, Wu Y, Deng X, Chen M, Wang C, Hong Z, Qiu C. Upregulation of GOLPH3 mediated by Bisphenol a promotes colorectal cancer proliferation and migration: evidence based on integrated analysis. Front Pharmacol 2024; 15:1337883. [PMID: 38828452 PMCID: PMC11143881 DOI: 10.3389/fphar.2024.1337883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background The interaction between environmental endocrine-disrupting chemicals, such as Bisphenol A (BPA), and their influence on cancer progression, particularly regarding the GOLPH3 gene in colorectal cancer, remains unclear. Methods We performed an integrated analysis of transcriptional profiling, clinical data, and bioinformatics analyses utilizing data from the Comparative Toxicogenomics Database and The Cancer Genome Atlas. The study employed ClueGO, Gene Set Enrichment Analysis, and Gene Set Variation Analysis for functional enrichment analysis, alongside experimental assays to examine the effects of BPA exposure on colorectal cancer cell lines, focusing on GOLPH3 expression and its implications for cancer progression. Results Our findings demonstrated that BPA exposure significantly promoted the progression of colorectal cancer by upregulating GOLPH3, which in turn enhanced the malignant phenotype of colorectal cancer cells. Comparative analysis revealed elevated GOLPH3 protein levels in cancerous tissues versus normal tissues, with single-cell analysis indicating widespread GOLPH3 presence across various cell types in the cancer microenvironment. GOLPH3 was also associated with multiple carcinogenic pathways, including the G2M checkpoint. Furthermore, our investigation into the colorectal cancer microenvironment and genomic mutation signature underscored the oncogenic potential of GOLPH3, exacerbated by BPA exposure. Conclusion This study provides novel insights into the complex interactions between BPA exposure and GOLPH3 in the context of colorectal cancer, emphasizing the need for heightened awareness and measures to mitigate BPA exposure risks. Our findings advocate for further research to validate these observations in clinical and epidemiological settings and explore potential therapeutic targets within these pathways.
Collapse
Affiliation(s)
- Lihua Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- The 2nd Clinical College of Fujian Medical University, Quanzhou, China
| | - Shaojian Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yachen Li
- Medical Department of the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaojing Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuze Wu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xian Deng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mingliang Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunxiao Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
5
|
Kranjčević JK, Čonkaš J, Ozretić P. The Role of Estrogen and Estrogen Receptors in Head and Neck Tumors. Cancers (Basel) 2024; 16:1575. [PMID: 38672656 PMCID: PMC11049451 DOI: 10.3390/cancers16081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common histological form of head and neck tumors (HNTs), which originate from the epithelium of the lips and oral cavity, pharynx, larynx, salivary glands, nasal cavity, and sinuses. The main risk factors include consumption of tobacco in all forms and alcohol, as well as infections with high-risk human papillomaviruses or the Epstein-Barr virus. Regardless of the etiological agent, the risk of developing different types of HNTs is from two to more than six times higher in males than in females. The reason for such disparities probably lies in a combination of both biological and psychosocial factors. Therefore, it is hypothesized that exposure to female sex hormones, primarily estrogen, provides women with protection against the formation and metastasis of HNTs. In this review, we synthesized available knowledge on the role of estrogen and estrogen receptors (ERs) in the development and progression of HNTs, with special emphasis on membrane ERs, which are much less studied. We can summarize that in addition to epidemiologic studies unequivocally pointing to the protective effect of estrogen in women, an increased expression of both nuclear ERs, ERα, and ERβ, and membrane ERs, ERα36, GPER1, and NaV1.2, was present in different types of HNSCC, for which anti-estrogens could be used as an effective therapeutic approach.
Collapse
Affiliation(s)
| | | | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia (J.Č.)
| |
Collapse
|
6
|
Sun HY, Lin XY. Analysis of the management and therapeutic performance of diabetes mellitus employing special target. World J Diabetes 2023; 14:1721-1737. [PMID: 38222785 PMCID: PMC10784800 DOI: 10.4239/wjd.v14.i12.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/14/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized predominantly by hyperglycemia. The most common causes contributing to the pathophysiology of diabetes are insufficient insulin secretion, resistance to insulin's tissue-acting effects, or a combination of both. Over the last 30 years, the global prevalence of diabetes increased from 4% to 6.4%. If no better treatment or cure is found, this amount might climb to 430 million in the coming years. The major factors of the disease's deterioration include age, obesity, and a sedentary lifestyle. Finding new therapies to manage diabetes safely and effectively without jeopardizing patient compliance has always been essential. Among the medications available to manage DM on this journey are glucagon-like peptide-1 agonists, thiazolidinediones, sulphonyl urease, glinides, biguanides, and insulin-targeting receptors discovered more than 10 years ago. Despite the extensive preliminary studies, a few clinical observations suggest this process is still in its early stages. The present review focuses on targets that contribute to insulin regulation and may be employed as targets in treating diabetes since they may be more efficient and secure than current and traditional treatments.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
7
|
Maddalon A, Cari L, Iulini M, Alhosseini MN, Galbiati V, Marinovich M, Nocentini G, Corsini E. Impact of endocrine disruptors on peripheral blood mononuclear cells in vitro: role of gender. Arch Toxicol 2023; 97:3129-3150. [PMID: 37676302 PMCID: PMC10567873 DOI: 10.1007/s00204-023-03592-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Humans can be exposed to endocrine disruptors (EDs) in numerous ways. EDs can interfere with endogenous hormones at different levels, resulting in numerous adverse human health outcomes, including immunotoxicity. In this regard, this study aimed to investigate in vitro the possible effects of EDs on immune cells and possible gender differences. Peripheral blood mononuclear cells from healthy humans, both males and females, were exposed to 6 different EDs, namely atrazine (herbicide), cypermethrin (insecticide), diethyl phthalate (plasticizer), 17α-ethynylestradiol (contraceptive drug), perfluorooctanesulfonic acid (persistent organic pollutant), and vinclozolin (fungicide). We evaluated the effect of EDs on RACK1 (receptor for activated C kinase 1) expression, considering it as a bridge between the endocrine and the immune system, and putatively used as screening tool of immunotoxic effects of EDs. The exposure to EDs resulted at different extent in alteration in RACK1 expression, pro-inflammatory activity, natural killer lytic ability, and lymphocyte differentiation, with sex-related differences. In particular, diethyl phthalate and perfluorooctanesulfonic acid resulted the most active EDs tested, with gender differences in terms of effects and magnitude. The results from our study evidenced the ability of EDs to directly affect immune cells.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Mahdieh Naghavi Alhosseini
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
8
|
Tirado-Garibay AC, Falcón-Ruiz EA, Ochoa-Zarzosa A, López-Meza JE. GPER: An Estrogen Receptor Key in Metastasis and Tumoral Microenvironments. Int J Mol Sci 2023; 24:14993. [PMID: 37834441 PMCID: PMC10573234 DOI: 10.3390/ijms241914993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogens and their role in cancer are well-studied, and some cancer types are classified in terms of their response to them. In recent years, a G protein-coupled estrogen receptor (GPER) has been described with relevance in cancer. GPER is a pleiotropic receptor with tissue-specific activity; in normal tissues, its activation is related to correct development and homeostasis, while in cancer cells, it can be pro- or anti-tumorigenic. Also, GPER replaces estrogen responsiveness in estrogen receptor alpha (ERα)-lacking cancer cell lines. One of the most outstanding activities of GPER is its role in epithelial-mesenchymal transition (EMT), which is relevant for metastasis development. In addition, the presence of this receptor in tumor microenvironment cells contributes to the phenotypic plasticity required for the dissemination and maintenance of tumors. These characteristics suggest that GPER could be a promising therapeutic target for regulating cancer development. This review focuses on the role of GPER in EMT in tumorigenic and associated cells, highlighting its role in relation to the main hallmarks of cancer and possible therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología—FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, Mexico; (A.C.T.-G.); (E.A.F.-R.); (A.O.-Z.)
| |
Collapse
|
9
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
10
|
Yang D, Zhao F, Su Y, Zhou Y, Shen J, Zhao K, Ding Y. Analysis of M2 macrophage-associated risk score signature in pancreatic cancer TME landscape and immunotherapy. Front Mol Biosci 2023; 10:1184708. [PMID: 37469705 PMCID: PMC10352656 DOI: 10.3389/fmolb.2023.1184708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Background: M2 macrophages perform an influential role in the progression of pancreatic cancer. This study is dedicated to explore the value of M2 macrophage-related genes in the treatment and prognosis of pancreatic cancer. Methods: RNA-Seq and clinical information were downloaded from TCGA, GEO and ICGC databases. The pancreatic cancer tumour microenvironment was revealed using the CIBERSORT algorithm. Weighted gene co-expression network analysis (WGCNA) was used to detect M2 macrophage-associated gene modules. Univariate Cox regression, Least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate Cox regression were applied to develop the prognostic model. The modelling and validation cohorts were divided into high-risk and low-risk groups according to the median risk score. The nomogram predicting survival was constructed based on risk scores. Correlations between risk scores and tumour mutational load, clinical variables, immune checkpoint blockade, and immune cells were further explored. Finally, potential associations between different risk models and chemotherapeutic agent efficacy were predicted. Results: The intersection of the WGCNA results from the TCGA and GEO data screened for 317 M2 macrophage-associated genes. Nine genes were identified by multivariate COX regression analysis and applied to the construction of risk models. The results of GSEA analysis revealed that most of these genes were related to signaling, cytokine receptor interaction and immunodeficiency pathways. The high and low risk groups were closely associated with tumour mutational burden, immune checkpoint blockade related genes, and immune cells. The maximum inhibitory concentrations of metformin, paclitaxel, and rufatinib lapatinib were significantly differences on the two risk groups. Conclusion: WGCNA-based analysis of M2 macrophage-associated genes can help predict the prognosis of pancreatic cancer patients and may provide new options for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Su
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kailiang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Balboni B, Masi M, Rocchia W, Girotto S, Cavalli A. GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier? Int J Mol Sci 2023; 24:7541. [PMID: 37108703 PMCID: PMC10139115 DOI: 10.3390/ijms24087541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and the potential involvement of long-range conformational effects that are difficult to pinpoint. GSK-3β is involved in several pathologies. This critical target has an ATP-binding site that is highly homologous with the orthosteric sites of other kinases. Unsurprisingly, there is also great similarity between the ATP-binding sites of GSK-3β and its isomer, which is not redundant and thus would benefit from selective inhibition. Allostery would also allow for a moderate and tunable inhibition, which is ideal for GSK-3β, because this target is involved in multiple pathways, some of which must be preserved. However, despite considerable research efforts, only one allosteric GSK-3β inhibitor has reached the clinic. Moreover, unlike other kinases, there are no X-ray structures of GSK-3β in complex with allosteric inhibitors in the PDB data bank. This review aims to summarize the state of the art in allosteric GSK-3β inhibitor investigations, highlighting the aspects that make this target challenging for an allosteric approach.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Mirco Masi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| |
Collapse
|
12
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Aickareth J, Hawwar M, Sanchez N, Gnanasekaran R, Zhang J. Membrane Progesterone Receptors (mPRs/PAQRs) Are Going beyond Its Initial Definitions. MEMBRANES 2023; 13:membranes13030260. [PMID: 36984647 PMCID: PMC10056622 DOI: 10.3390/membranes13030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 05/13/2023]
Abstract
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig cells of the testes and neuronal and glial cells. PRG has wide-ranging physiological effects, including impacts on metabolic systems, central nervous systems and reproductive systems in both genders. It was first purified as an ovarian steroid with hormonal function for pregnancy, and is known to play a role in pro-gestational proliferation during pregnancy. The main function of PRG is exerted through its binding to progesterone receptors (nPRs, mPRs/PAQRs) to evoke cellular responses through genomic or non-genomic signaling cascades. Most of the existing research on PRG focuses on classic PRG-nPR-paired actions such as nuclear transcriptional factors, but new evidence suggests that PRG also exerts a wide range of PRG actions through non-classic membrane PRG receptors, which can be divided into two sub-classes: mPRs/PAQRs and PGRMCs. The review will concentrate on recently found non-classical membrane progesterone receptors (mainly mPRs/PAQRs) and speculate their connections, utilizing the present comprehension of progesterone receptors.
Collapse
|
14
|
Čonkaš J, Sabol M, Ozretić P. 'Toxic Masculinity': What Is Known about the Role of Androgen Receptors in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043766. [PMID: 36835177 PMCID: PMC9965076 DOI: 10.3390/ijms24043766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most prevalent cancer in the head and neck region, develops from the mucosal epithelium of the upper aerodigestive tract. Its development directly correlates with alcohol and/or tobacco consumption and infection with human papillomavirus. Interestingly, the relative risk for HNSCC is up to five times higher in males, so it is considered that the endocrine microenvironment is another risk factor. A gender-specific risk for HNSCC suggests either the existence of specific risk factors that affect only males or that females have defensive hormonal and metabolic features. In this review, we summarized the current knowledge about the role of both nuclear and membrane androgen receptors (nAR and mARs, respectively) in HNSCC. As expected, the significance of nAR is much better known; it was shown that increased nAR expression was observed in HNSCC, while treatment with dihydrotestosterone increased proliferation, migration, and invasion of HNSCC cells. For only three out of five currently known mARs-TRPM8, CaV1.2, and OXER1-it was shown either their increased expression in various types of HNSCC or that their increased activity enhanced the migration and invasion of HNSCC cells. The primary treatments for HNSCC are surgery and radiotherapy, but targeted immunotherapies are on the rise. On the other hand, given the evidence of elevated nAR expression in HNSCC, this receptor represents a potential target for antiandrogen therapy. Moreover, there is still plenty of room for further examination of mARs' role in HNSCC diagnosis, prognosis, and treatment.
Collapse
|
15
|
Maddalon A, Masi M, Iulini M, Linciano P, Galbiati V, Marinovich M, Racchi M, Buoso E, Corsini E. Effects of endocrine active contaminating pesticides on RACK1 expression and immunological consequences in THP-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103971. [PMID: 36084878 DOI: 10.1016/j.etap.2022.103971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
We have previously demonstrated that RACK1, which expression is under steroid hormone control, plays an important role in the activation of immune cells and its expression can be useful to evaluate the immunotoxic profile of endocrine disrupting chemicals (EDCs). Hence, we investigated the effects of three contaminating and persistent pesticides: the fungicide vinclozolin (VIN), the herbicide atrazine (ATR) and the insecticide cypermethrin (CYP) on RACK1 expression and on innate immune response. VIN resulted in modest alteration of RACK1 while ATR and CYP reduced in a dose dependent manner RACK1 expression, ultimately leading to the decrease in lipopolysaccharide-induced IL-8 and TNF-α release and CD86 and CD54 surface marker expression. Moreover, our data indicate that, after exposure to EDCs, alterations of RACK1 expression can also occur with mechanisms not directly mediated by an interaction with a nuclear or membrane steroid receptors. Therefore, RACK1 could represent a useful EDCs screening tool to evaluate their immunotoxic potential and to dissect their mechanisms of action.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Pasquale Linciano
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
16
|
Masi M, Maddalon A, Iulini M, Linciano P, Galbiati V, Marinovich M, Racchi M, Corsini E, Buoso E. Effects of endocrine disrupting chemicals on the expression of RACK1 and LPS-induced THP-1 cell activation. Toxicology 2022; 480:153321. [PMID: 36113621 DOI: 10.1016/j.tox.2022.153321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
The existence of a complex hormonal balance among glucocorticoids, androgens and estrogens involved in the regulation of Receptor for Activated C Kinase 1 (RACK1) expression and its related immune cells activation, highlights the possibility to employ this protein as screening tool for the evaluation of the immunotoxic profile of endocrine disrupting chemicals (EDCs), hormone-active substances capable of interfering with the physiologic hormonal signaling. Hence, the aim of this work was to investigate the effect of the exposure of EDCS 17α-ethynylestradiol (EE), diethyl phthalate (DEP) and perfluorooctanesulfonic acid (PFOS) on RACK1 expression and on lipopolysaccharide (LPS)-induced activation of the human monocytic cell line THP-1, a validated model for this investigation. In line with our previous results with estrogen-active compounds, EE treatment significantly induced RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which paralleled an increase in LPS-induced IL-8, TNF-α production and CD86 expression, previously demonstrated to be dependent on RACK1/PKCβ activation. EE mediates its effect on RACK1 expression through G-protein-coupled estrogen receptor (GPER) and androgen receptor (AR) ligand-independent cascade, as also suggested by in silico molecular docking simulation. Conversely, DEP and PFOS induced a dose-dependent downregulation of RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which was mirrored by a reduction of IL-8, TNF-α production and CD86 expression. Mifepristone pre-treatments abolish DEP and PFOS effects, confirming their GR agonist profile, also corroborated by molecular docking. Altogether, our data confirm that RACK1 represents an interesting target of steroid active compounds, which expression offers the opportunity to screen the immunotoxic potential of different hormone-active substances of concerns due to their human exposure and environmental persistence.
Collapse
Affiliation(s)
- Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Pasquale Linciano
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
17
|
Proteostasis Deregulation in Neurodegeneration and Its Link with Stress Granules: Focus on the Scaffold and Ribosomal Protein RACK1. Cells 2022; 11:cells11162590. [PMID: 36010666 PMCID: PMC9406587 DOI: 10.3390/cells11162590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes required for proteostasis regulation—can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer’s disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.
Collapse
|
18
|
Buoso E, Attanzio A, Biundo F. Cellular Senescence in Age-Related Diseases: Molecular Bases and Therapeutic Interventions. Cells 2022; 11:cells11132029. [PMID: 35805113 PMCID: PMC9266226 DOI: 10.3390/cells11132029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy;
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-0912-3862-434
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| |
Collapse
|
19
|
Corti M, Lorenzetti S, Ubaldi A, Zilli R, Marcoccia D. Endocrine Disruptors and Prostate Cancer. Int J Mol Sci 2022; 23:1216. [PMID: 35163140 PMCID: PMC8835300 DOI: 10.3390/ijms23031216] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
The role of endocrine disruptors (EDs) in the human prostate gland is an overlooked issue even though the prostate is essential for male fertility. From experimental models, it is known that EDs can influence several molecular mechanisms involved in prostate homeostasis and diseases, including prostate cancer (PCa), one of the most common cancers in the male, whose onset and progression is characterized by the deregulation of several cellular pathways including androgen receptor (AR) signaling. The prostate gland essentiality relies on its function to produce and secrete the prostatic fluid, a component of the seminal fluid, needed to keep alive and functional sperms upon ejaculation. In physiological condition, in the prostate epithelium the more-active androgen, the 5α-dihydrotestosterone (DHT), formed from testosterone (T) by the 5α-reductase enzyme (SRD5A), binds to AR and, upon homodimerization and nuclear translocation, recognizes the promoter of target genes modulating them. In pathological conditions, AR mutations and/or less specific AR binding by ligands modulate differently targeted genes leading to an altered regulation of cell proliferation and triggering PCa onset and development. EDs acting on the AR-dependent signaling within the prostate gland can contribute to the PCa onset and to exacerbating its development.
Collapse
Affiliation(s)
- Margherita Corti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| |
Collapse
|
20
|
Anghel R, Serbanescu G. Actualities in Involvement of Estrogens in the Pathogenesis of Colorectal Cancer. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2021; 17:422-425. [PMID: 35342472 PMCID: PMC8919495 DOI: 10.4183/aeb.2021.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gastrointestinal effects of estrogens are emerging as an important topic in colorectal cancer management. Current research demonstrated the link between inflammation and this malignancy, so important estrogen dependent mediators of the inflammatory response have been identified. Radioresistance and chemoresistance still represent an important cause of therapeutic failure in colorectal cancer and lead to further studies of colorectal carcinogenesis and predictive markers.
Collapse
Affiliation(s)
- R.M. Anghel
- “Carol Davila” University of Medicine and Pharmacy, Faculty of General Medicine, Bucharest, Romania
- Institute of Oncology, Bucharest, Romania
| | - G.L. Serbanescu
- “Carol Davila” University of Medicine and Pharmacy, Faculty of General Medicine, Bucharest, Romania
- Institute of Oncology, Bucharest, Romania
| |
Collapse
|