1
|
Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors 2025; 51:e2113. [PMID: 39134426 DOI: 10.1002/biof.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/24/2024] [Indexed: 12/29/2024]
Abstract
Apigenin, a dietary flavonoid, has gained increasing attention for its potential therapeutic applications in radiation protection and radiosensitization. Ionizing radiation (IR) can harm healthy cells, but as radiotherapy remains crucial in cancer treatment. Owing to the remarkable application of radiotherapy in the treatment of cancers, it is vital to protect healthy cells from radiation hazards while increasing the sensitivity of cancer cells to radiation. This article reviews the current understanding of apigenin's radioprotective and radiosensitive properties with a focuses on the involved signaling pathways and key molecular targets. When exposed to irradiation, apigenin reduces inflammation via cyclooxygenase-2 inhibition and modulates proapoptotic and antiapoptotic biomarkers. Apigenin's radical scavenging abilities and antioxidant enhancement mitigate oxidative DNA damage. It inhibits radiation-induced mammalian target of rapamycin activation, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP), and STAT3 expression, while promoting AMPK, autophagy, and apoptosis, suggesting potential in cancer prevention. As a radiosensitizer, apigenin inhibits tumor growth by inducing apoptosis, suppressing VEGF-C, tumor necrosis factor alpha, and STAT3, reducing MMP-2/9 activity, and inhibiting cancer cell glucose uptake. Cellular and animal studies support apigenin's radioprotective and anticancer potential, making it a potential candidate for further research. Investigation into apigenin's therapeutic efficacy in diverse cancer types and radiation damage is essential.
Collapse
Affiliation(s)
- Taha Monadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohajer
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azadbakht
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Hinge S, Dhole S, Banpurkar A, Kulkarni G. Conformational changes in 6 MeV electron beam irradiated aqueous bovine serum albumin. Biochim Biophys Acta Gen Subj 2024; 1869:130744. [PMID: 39694299 DOI: 10.1016/j.bbagen.2024.130744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Understanding the folding and unfolding mechanism of the protein is not only crucial in applications like biomedical, pharmaceutical, tissue engineering but also to the food industry. In the present study, an electron beam with 6 MeV energy derived from the Microtron accelerator was utilized to irradiate the aqueous solution of bovine serum albumin (BSA) at fluences of 5 × 1014 and 10 × 1014 e-/cm2. The control and irradiated BSA solutions were analyzed using UV-visible and FTIR spectroscopy. UV-visible spectroscopy showed a hyperchromic red shift in 235 nm (π → π*) and a blue shift in 268 nm (n → π*) bands with increasing fluence. Changes in aromatic acid residues of the proteins tertiary structure were observed from the 2nd derivative of absorbance spectra. FTIR spectra revealed a decrease in peak area corresponding to β-turns (21.80 to 15.50 %), and random coil (41.30 to 28.80 %) and increase in peak area was observed for β-sheet (29.25 to 35.40 %). These findings reveal the conformal changes in the electron irradiated BSA. Further, a decrease in the interfacial tension at the air/water interface suggests increase in hydrophobicity of the aqueous solution with fluence.
Collapse
Affiliation(s)
- Sarika Hinge
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India.
| | - Sanjay Dhole
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Kulkarni
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
3
|
Yang Y, Yang W, Hu T, Sun M, Wang J, Shen J, Ding E. Protective Effect of Biochanin A on Gamma Radiation-Induced Oxidative Stress, Antioxidant Status, Apoptotic, and DNA Repairing Molecules in Swiss Albino Mice. Cell Biochem Funct 2024; 42:e70005. [PMID: 39498677 DOI: 10.1002/cbf.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
Radiation therapy is indispensable in medical practice but often causes adverse effects on healthy tissues, necessitating the search for natural radioprotectors. This study investigates the protective effect of Biochanin A (BCA) against gamma radiation-induced oxidative stress and DNA damage in Swiss albino mice. Gamma radiation, a potent ionizing source, generates reactive oxygen species (ROS) that damage cellular biomolecules, including DNA. Antioxidants play a crucial role in neutralizing ROS and preventing oxidative damage. Swiss albino mice were divided into control, BCA control (10 mg/kg body weight), radiation alone (7 Gy), and radiation+ BCA pretreatment groups. BCA, a natural isoflavone with known antioxidant and cytoprotective properties, was administered intraperitoneally before radiation exposure. After irradiation, lipid peroxidation levels, antioxidant enzyme activities/level (superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione), expression levels of DNA repair genes (P53, P21, GADD45α), apoptotic markers (Bax, Bcl-2, Caspase-3, -9 and Cytochrome-C), and inflammatory marker (NF-κB) were analyzed in small intestine tissue. Our findings indicate that gamma radiation significantly elevated lipid peroxidation levels and altered antioxidant enzyme activities, indicating oxidative stress. However, BCA pretreatment mitigated these effects by bolstering antioxidant defences, reducing radiation-induced oxidative damage. Additionally, BCA altered apoptotic markers, NF-κB expression, promoting cell survival mechanisms. At the molecular level, BCA pretreatment upregulated key DNA repair genes (P53, P21, GADD45α), crucial for repairing radiation-induced DNA damage and maintaining genomic stability. These results underscore BCA potential as a radioprotector, suggesting its efficacy in mitigating radiation-induced oxidative stress and preserving cellular integrity. In conclusion, BCA demonstrates promising radioprotective properties by attenuating oxidative stress, enhancing antioxidant defences, modulating apoptotic pathways, and promoting DNA repair mechanisms following gamma radiation exposure. Further research is necessary to elucidate its precise mechanisms of action and explore its potential therapeutic applications in radiation oncology and environmental radioprotection.
Collapse
Affiliation(s)
- Yang Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yang
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Tianpeng Hu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Momo Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jin Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Ultrasound, Tianjin First Central Hospital, Tianjin, China
| | - Jie Shen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Enci Ding
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Zhang M, Zhou H, Liu L, Song W. Biological effect of U(VI) exposure on lung epithelial BEAS-2B cells. CHEMOSPHERE 2024; 366:143451. [PMID: 39362378 DOI: 10.1016/j.chemosphere.2024.143451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In this study, the biological effects of U(VI) exposure on lung epithelial cells were investigated by MTT assay, immunofluorescence, flow cytometry, and Western blotting. U(VI)-induced stress triggers oxidative stress in cells, activates MAPK signaling pathways, and promotes inflammation. Additionally, U(VI) causes damage to the cell membrane structure and severe DNA injury, impacting the accuracy of transcription and translation. The results demonstrate that U(VI) exposure significantly inhibits cell proliferation and migration. This is attributed to the disruption of the PI3K/AKT/GSK-3β/β-catenin signaling pathway and the reduction in CyclinD1 expression, leading to a delayed cell cycle, decreased growth rate, mitochondrial damage, and reduced energy metabolism. This study provides a comprehensive understanding of the molecular mechanisms underlying uranium-induced cellular toxicity in lung epithelial cells.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wencheng Song
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China; Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Akhlada, Siddiqui N, Anurag, Saifi A, Kesharwani A, Parihar VK, Sharma A. Neuroprotective Action of Selected Natural Drugs Against Neurological Diseases and Mental Disorders: Potential Use Against Radiation Damage. Neurochem Res 2024; 49:2336-2351. [PMID: 38864943 DOI: 10.1007/s11064-024-04184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Exposure to radiation, ionizing and non-ionizing radiation, is a significant concern in modern society. The brain is the organ that is most sensitive to radiation exposure. This review describes how exposure to radiation can affect neurotransmitters in different brain regions, affecting brain function. This review covers neurodegenerative diseases such as Alzheimer's, Parkinson's, and neuroinflammation due to changes in neurons in the central nervous system, and the effects thereon of medicinal plants such as Allium cepa, Allium sativum, Centella asiatica, Coriandrum sativum, and Crocus sativus plants, used for centuries in traditional medicine. These herbal medicines exert free radical scavenging, and antioxidant as well as anti-inflammatory properties which can be beneficial in managing neurological diseases. The present review compiles the neuroprotective effects of selected natural plants against neurological damage, as well as highlights the different mechanisms of action elicited to induce and produce beneficial effects. The current review describes recent studies on the pharmacological effects of neuroprotective herbs on various neurological and mental illnesses, and shows the way further studies can impact this field, including potential effects on radiation-induced damage.
Collapse
Affiliation(s)
- Akhlada
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| |
Collapse
|
6
|
Hosty L, Heatherington T, Quondamatteo F, Browne S. Extracellular matrix-inspired biomaterials for wound healing. Mol Biol Rep 2024; 51:830. [PMID: 39037470 PMCID: PMC11263448 DOI: 10.1007/s11033-024-09750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19-34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing.
Collapse
Affiliation(s)
- Louise Hosty
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Thomas Heatherington
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÙRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
7
|
Yang T, Geng F, Tang X, Yu Z, Liu Y, Song B, Tang Z, Wang B, Ye B, Yu D, Zhang S. UV radiation-induced peptides in frog skin confer protection against cutaneous photodamage through suppressing MAPK signaling. MedComm (Beijing) 2024; 5:e625. [PMID: 38919335 PMCID: PMC11196897 DOI: 10.1002/mco2.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.
Collapse
Affiliation(s)
- Tingyi Yang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Fenghao Geng
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoyou Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Zuxiang Yu
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Zhihui Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Baoning Wang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Bengui Ye
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital)MianyangChina
| |
Collapse
|
8
|
Mokrzyński K, Szewczyk G. Photoreactivity of polycyclic aromatic hydrocarbons (PAHs) and their mechanisms of phototoxicity against human immortalized keratinocytes (HaCaT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171449. [PMID: 38460699 DOI: 10.1016/j.scitotenv.2024.171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic compounds in the environment. They are produced by many anthropogenic sources of different origins and are known for their toxicity, carcinogenicity, and mutagenicity. Sixteen PAHs have been identified as Priority Pollutants by the US EPA, which are often associated with particulate matter, facilitating their dispersion through air and water. When human skin is exposed to PAHs, it might occur simultaneously with solar radiation, potentially leading to phototoxic effects. Phototoxic mechanisms involve the generation of singlet oxygen and reactive oxygen species, DNA damage under specific light wavelengths, and the formation of charge transfer complexes. Despite predictions of phototoxic properties for some PAHs, there remains a paucity of experimental data. This study examined the photoreactive and phototoxic properties of the 16 PAHs enlisted in the Priority Pollutants list. Examined PAHs efficiently photogenerated singlet oxygen and superoxide anion in simple solutions. Furthermore, singlet oxygen phosphorescence was detected in PAH-loaded HaCaT cells. Phototoxicity against human keratinocytes was evaluated using various assays. At 5 nM concentration, examined PAHs significantly reduced viability and mitochondrial membrane potential of HaCaT cells following the exposure to solar simulated light. Analyzed compounds induced a substantial peroxidation of cellular proteins after light treatment. The results revealed that a majority of the examined PAHs exhibited substantial reactive oxygen species photoproduction under UVA and violet-blue light, with their phototoxicity corresponding to their photoreactive properties. These findings improve our comprehension of the interactions between PAHs and human skin cells under environmental conditions, particularly when exposed to solar radiation.
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
9
|
Khashei Varnamkhasti K, Moghanibashi M, Naeimi S. Implications of ZNF334 gene in lymph node metastasis of lung SCC: potential bypassing of cellular senescence. J Transl Med 2024; 22:372. [PMID: 38637790 PMCID: PMC11025273 DOI: 10.1186/s12967-024-05115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The primary goal of this work is to identify biomarkers associated with lung squamous cell carcinoma and assess their potential for early detection of lymph node metastasis. METHODS This study investigated gene expression in lymph node metastasis of lung squamous cell carcinoma using data from the Cancer Genome Atlas and R software. Protein-protein interaction networks, hub genes, and enriched pathways were analyzed. ZNF334 and TINAGL1, two less explored genes, were further examined through in vitro, ex vivo, and in vivo experiments to validate the findings from bioinformatics analyses. The role of ZNF334 and TINAGL1 in senescence induction was assessed after H2O2 and UV induced senescence phenotype determined using β-galactosidase activity and cell cycle status assay. RESULTS We identified a total of 611 up- and 339 down-regulated lung squamous cell carcinoma lymph node metastasis-associated genes (FDR < 0.05). Pathway enrichment analysis highlighted the central respiratory pathway within mitochondria for the subnet genes and the nuclear DNA-directed RNA polymerases for the hub genes. Significantly down regulation of ZNF334 gene was associated with malignancy lymph node progression and senescence induction has significantly altered ZNF334 expression (with consistency in bioinformatics, in vitro, ex vivo, and in vivo results). Deregulation of TINAGL1 expression with inconsistency in bioinformatics, in vitro (different types of lung squamous cancer cell lines), ex vivo, and in vivo results, was also associated with malignancy lymph node progression and altered in senescence phenotype. CONCLUSIONS ZNF334 is a highly generalizable gene to lymph node metastasis of lung squamous cell carcinoma and its expression alter certainly under senescence conditions.
Collapse
Affiliation(s)
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Sirous Naeimi
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
10
|
Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. ENVIRONMENT INTERNATIONAL 2024; 185:108535. [PMID: 38428192 DOI: 10.1016/j.envint.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Ultraviolet (UV) radiation is ubiquitous in the environment, which has been classified as an established human carcinogen. As the largest and outermost organ of the body, direct exposure of skin to sunlight or UV radiation can result in sunburn, inflammation, photo-immunosuppression, photoaging and even skin cancers. To date, there are tactics to protect the skin by preventing UV radiation and reducing the amount of UV radiation to the skin. Nevertheless, deciphering the essential regulatory mechanisms may pave the way for therapeutic interventions against UV-induced skin disorders. Additionally, UV light is considered beneficial for specific skin-related conditions in medical UV therapy. Recent evidence indicates that the biological effects of UV exposure extend beyond the skin and include the treatment of inflammatory diseases, solid tumors and certain abnormal behaviors. This review mainly focuses on the effects of UV on the skin. Moreover, novel findings of the biological effects of UV in other organs and systems are also summarized. Nevertheless, the mechanisms through which UV affects the human organism remain to be fully elucidated to achieve a more comprehensive understanding of its biological effects.
Collapse
Affiliation(s)
- Xiaoyou Tang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tingyi Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Hai Xiong
- Medical College of Tibet University, Lasa 850000, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuyu Zhang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
11
|
Shafiq P, Mehmood Y. Awareness of Radiation Hazards and Knowledge About Radiation Protection Among Medical Students at the Northern Border University, Arar. Cureus 2024; 16:e55484. [PMID: 38571854 PMCID: PMC10989399 DOI: 10.7759/cureus.55484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Studies have shown that medical students and doctors are not well equipped with knowledge of radiation hazards and their protection. This lack of knowledge may cause harm to patients and healthcare professionals. Objectives To compare the awareness of radiation hazards and knowledge about radiation protection among medical students at Northern Border University, Arar, Saudi Arabia, with and without prior teaching. Methods and materials This cross-sectional study was carried out among medical students from clinical years at Northern Border University, Arar, Saudi Arabia, from May 1st, 2023, to June 30th, 2023. Their consents were taken. Then they were randomly sorted into two groups. One group was given a radiation safety short course, and then they answered a questionnaire. The other group filled out the questionnaire without prior instruction, and analysis was done. The outcome of this study was quantified based on the score calculated after participants filled out the questionnaire. Results The mean score of students who didn't attend the radiology course was 3.38±1.8, while the score of students who attended the radiology course was 7.87±1.4 (p<0.001). Radiology course attendance showed a significant association with knowledge and awareness scores. Conclusions The average knowledge of medical students regarding radiation protection and hazards is quite poor. This lack of understanding could potentially lead to increased risks for both patients and healthcare professionals. The knowledge about radiation hazards and protection is increased in students who attended a short radiology course. We recommend implementing comprehensive educational programs that focus on radiation hazards and protection for medical students.
Collapse
Affiliation(s)
- Pakeeza Shafiq
- Department of Surgery, Northern Border University, Arar, SAU
| | - Yasir Mehmood
- Department of Surgery, Northern Border University, Arar, SAU
| |
Collapse
|
12
|
Teflischi Gharavi A, Niknejad A, Irian S, Rahimi A, Salimi M. Polyethylene Glycol -Mediated Exosome Isolation: A Method for Exosomal RNA Analysis. IRANIAN BIOMEDICAL JOURNAL 2024; 28:132-9. [PMID: 38468372 PMCID: PMC11186611 DOI: 10.61186/ibj.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Background : Exosomal RNAs (ExoRNAs) offer valuable insights into their cellular origin. ExoRNA studies were faced with challenges in obtaining sufficient amounts of high-quality RNA. Herein, we aimed to compare three traditional exosome isolation methods to introduce an appropriate strategy to extract RNA from cancer-derived exosomes for further RNA analysis. Methods Exosomes were isolated through ultracentrifugation, precipitation kit, and size exclusion column chromatography, and then characterized by dynamic light scattering and transmission electron microscopy, followed by extracting total RNA. The quality and quantity of the extracted RNAs were assessed by a NanoDrop and 2.5% agarose gel electrophoresis. Results Extracted exosomes displayed a similar range of size and morphology. We found that polyethylene glycol-precipitation method resulted in a higher RNA yield with a 260/280 ratio of 1.9. The obtained exoRNA appeared as a smear in the agarose gel, indicative of small exoRNAs. Conclusion We provide researchers a suitable approach to isolate exosomes based on yield and purity of exoRNA.
Collapse
Affiliation(s)
- Abdulwahab Teflischi Gharavi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Niknejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirabbas Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Skrodzki D, Molinaro M, Brown R, Moitra P, Pan D. Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS NANO 2024; 18:1289-1324. [PMID: 38166377 DOI: 10.1021/acsnano.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.
Collapse
Affiliation(s)
- David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Richard Brown
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
14
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
15
|
Avcıoğlu C, Avcıoğlu S. Transition Metal Borides for All-in-One Radiation Shielding. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6496. [PMID: 37834632 PMCID: PMC10573671 DOI: 10.3390/ma16196496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
All-in-one radiation shielding is an emerging concept in developing new-generation radiation protection materials since various forms of ionizing radiation, such as neutrons and gamma rays, can occur simultaneously. In this study, we examine the ability of transition metal borides to attenuate both photon and particle radiation. Specifically, fourteen different transition metal borides (including inner transition metal borides) are selected for examination based on their thermodynamic stabilities, molecular weights, and neutron capture cross-sections of the elements they contain. Radiation shielding characteristics of the transition metal borides are computationally investigated using Phy-X/PSD, EpiXS and NGCal software. The gamma-ray shielding capabilities of the transition metal borides are evaluated in terms of the mass attenuation coefficient (μm), the linear attenuation coefficient (µ), the effective atomic number (Zeff), the half-value layer (HVL), the tenth-value layer (TVL), and the mean free path (MFP). The mass and linear attenuation factors are identified for thermal and fast neutrons at energies of 0.025 eV and 4 MeV, respectively. Moreover, the fast neutron removal cross-sections (∑R) of the transition metal borides are calculated to assess their neutron shielding abilities. The results revealed that borides of transition metals with a high atomic number, such as Re, W, and Ta, possess outstanding gamma shielding performance. At 4 MeV photon energy, the half-value layers of ReB2 and WB2 compounds were found as 1.38 cm and 1.43 cm, respectively. Most notably, these HVL values are lower than the HVL value of toxic Pb (1.45 cm at 4 MeV), which is one of the conventional radiation shielding materials. On the other hand, SmB6 and DyB6 demonstrated exceptional neutron attenuation for thermal and fast neutrons due to the high neutron capture cross-sections of Sm, Dy, and B. The outcomes of this study reveal that transition metal borides can be suitable candidates for shielding against mixed neutron and gamma radiation.
Collapse
Affiliation(s)
- Celal Avcıoğlu
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin, Germany
| | - Suna Avcıoğlu
- Department of Metallurgical and Materials Engineering, Faculty of Chemistry and Metallurgy, Yıldız Technical University, 34956 Istanbul, Turkey
| |
Collapse
|
16
|
Toto NA, Malak M, Kheirallah N, Eldrieny AM, El-Samad LM, Giesy JP, El Wakil A. Eco-friendly postharvest irradiation strategy with 131I isotope for environmental management of populations of migratory locust, Locusta migratoria. Int J Radiat Biol 2023; 99:1978-1989. [PMID: 37382969 DOI: 10.1080/09553002.2023.2232033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE Irradiation of food is promising for control of pests to minimize postharvest losses of yields and thus improvement of food safety, shelf life of produce. It is a method of choice that induces a series of lethal biochemical and molecular changes culminating into the engagement of a downstream cascade to cause abnormalities in irradiated pests. In this study, the effects of iodine-131 (131I) isotope radiation on the male gonad development of the migratory locust, Locusta migratoria, were evaluated. MATERIALS AND METHODS Newly emerged adult male locusts, less than one-day-old, were divided into two groups, control and irradiated. Locusts in the control group (n = 20 insects) didn't drink irradiated water and were reared under normal environmental conditions for one week. Locusts in the irradiated group (n = 20 insects) were exposed to irradiated water at a dose of 30 mCi and they were subsequently observed until they drank the whole quantity. RESULTS At the end of the experiment, scanning and electron microscopic examination of testes obtained from irradiated locusts revealed several major abnormalities, including malformed nuclei of spermatozoa, irregular plasma membranes, shrinkage of testicular follicles, vacuolated cytoplasm, disintegrated nebenkern and agglutinations of spermatids. Flow cytometry analysis revealed that 131I radiation induced both early and late apoptosis, but not necrosis, in testicular tissues. Testes of irradiated insects also exhibited a burst in reactive oxygen species (ROS), as indicated by significant elevation in amounts of malondialdehyde (MDA), a marker for peroxidation of lipids. In contrast, irradiation coincided with significant reductions in activities of enzymatic antioxidant biomarkers. Relative to controls, a three-fold upregulation of expression of mRNA of heat shock protein, Hsp90, was observed in testicular tissue of irradiated locusts. 131I-irradiated insects exhibited genotoxicity, as indicated by significant increases in various indicators of DNA damage by the comet assay, including tail length (7.80 ± 0.80 µm; p < .01), olive tail moment (40.37 ± 8.08; p < .01) and tail DNA intensity % (5.1 ± 0.51; p < .01), in testicular cells compared to the controls. CONCLUSION This is the first report on elucidation of I131-irradiation-mediated histopathological, biochemical and molecular mechanisms in gonads of male L. migratoria. Herein, the findings underscore the utility of 131I radiation as an eco-friendly postharvest strategy for management of insect pests and in particular for control of populations of L. migratoria.
Collapse
Affiliation(s)
- Noura A Toto
- Department of Zoology, Damanhour University, Damanhour, Egypt
| | - Marian Malak
- Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | | | - Ahmed M Eldrieny
- Department of Radiology and Medical Imaging Technology, Pharos University, Alexandria, Egypt
| | | | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Mantsou A, Papachristou E, Keramidas P, Lamprou P, Pavlidis A, Papi RM, Dimitriou K, Aggeli A, Choli-Papadopoulou T. A Novel Drastic Peptide Genetically Adapted to Biomimetic Scaffolds "Delivers" Osteogenic Signals to Human Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1236. [PMID: 37049329 PMCID: PMC10096854 DOI: 10.3390/nano13071236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
This work describes the design, preparation, and deep investigation of "intelligent nanobiomaterials" that fulfill the safety rules and aim to serve as "signal deliverers" for osteogenesis, harboring a specific peptide that promotes and enhances osteogenesis at the end of their hydrogel fibers. The de novo synthesized protein fibers, besides their mechanical properties owed to their protein constituents from elastin, silk fibroin and mussel-foot adhesive protein-1 as well as to cell-attachment peptides from extracellular matrix glycoproteins, incorporate the Bone Morphogenetic Protein-2 (BMP2) peptide (AISMLYLDEN) that, according to our studies, serves as "signal deliverer" for osteogenesis. The osteogenetic capacity of the biomaterial has been evidenced by investigating the osteogenic marker genes ALP, RUNX2, Osteocalcin, COL1A1, BMPR1A, and BMPR2, which were increased drastically in cells cultured on scaffold-BMP2 for 21 days, even in the absence of osteogenesis medium. In addition, the induction of phosphorylation of intracellular Smad-1/5 and Erk-1/2 proteins clearly supported the osteogenetic capacity of the biomaterial.
Collapse
Affiliation(s)
- Aglaia Mantsou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Eleni Papachristou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Panagiotis Keramidas
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Paraskevas Lamprou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Alexandros Pavlidis
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Rigini M. Papi
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Katerina Dimitriou
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (K.D.); (A.A.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (K.D.); (A.A.)
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| |
Collapse
|
18
|
Lacombe J, Zenhausern F. Effect of mechanical forces on cellular response to radiation. Radiother Oncol 2022; 176:187-198. [PMID: 36228760 DOI: 10.1016/j.radonc.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/β-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| |
Collapse
|