1
|
Borisov V, Shkil F. Effects and phenotypic consequences of transient thyrotoxicosis and hypothyroidism at different stages of zebrafish Danio rerio (Teleostei; Cyprinidae) skeleton development. Anat Rec (Hoboken) 2024. [PMID: 39431292 DOI: 10.1002/ar.25592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied. Here, we present experimental data on the developmental effects and phenotypic consequences of transient, pharmacologically induced thyrotoxicosis and hypothyroidism at different stages of ossified skeleton patterning in zebrafish. According to the results, the skeleton structures differed in TH sensitivity. Some showed a notable shift in the developmental timing and rate, while other demonstrated little or no response to changes in TH content. The developmental stages also differed in TH sensitivity. We identified a relatively short developmental period, during which changes in TH level significantly increased the developmental instability and plasticity, leading to phenotypic consequences comparable to those in fish with a persistent hypo- or hyperthyroidism. These findings allow this period to be considered as a critical developmental window.
Collapse
Affiliation(s)
- Vasily Borisov
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Fedor Shkil
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
- N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
2
|
Taylor E, Wynen H, Heyland A. Thyroid hormone membrane receptor binding and transcriptional regulation in the sea urchin Strongylocentrotus purpuratus. Front Endocrinol (Lausanne) 2023; 14:1195733. [PMID: 37305042 PMCID: PMC10250714 DOI: 10.3389/fendo.2023.1195733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Thyroid hormones (THs) are small amino acid derived signaling molecules with broad physiological and developmental functions in animals. Specifically, their function in metamorphic development, ion regulation, angiogenesis and many others have been studied in detail in mammals and some other vertebrates. Despite extensive reports showing pharmacological responses of invertebrate species to THs, little is known about TH signaling mechanisms outside of vertebrates. Previous work in sea urchins suggests that non-genomic mechanisms are activated by TH ligands. Here we show that several THs bind to sea urchin (Strongylocentrotus purpuratus) cell membrane extracts and are displaced by ligands of RGD-binding integrins. A transcriptional analysis across sea urchin developmental stages shows activation of genomic and non-genomic pathways in response to TH exposure, suggesting that both pathways are activated by THs in sea urchin embryos and larvae. We also provide evidence associating TH regulation of gene expression with TH response elements in the genome. In ontogeny, we found more differentially expressed genes in older larvae compared to gastrula stages. In contrast to gastrula stages, the acceleration of skeletogenesis by thyroxine in older larvae is not fully inhibited by competitive ligands or inhibitors of the integrin membrane receptor pathway, suggesting that THs likely activate multiple pathways. Our data confirms a signaling function of THs in sea urchin development and suggests that both genomic and non-genomic mechanisms play a role, with genomic signaling being more prominent during later stages of larval development.
Collapse
Affiliation(s)
| | | | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Jabr N, Gonzalez P, Kocot KM, Cameron CB. The embryology, metamorphosis, and muscle development of Schizocardium karankawa sp. nov. (Enteropneusta) from the Gulf of Mexico. EvoDevo 2023; 14:6. [PMID: 37076909 PMCID: PMC10114407 DOI: 10.1186/s13227-023-00212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Schizocardium karankawa sp. nov. has been collected from subtidal muds of the Laguna Madre, Texas, and the Mississippi coast, Gulf of Mexico. The Texas population is reproductive from early February to mid-April. Gametes are liberated by a small incision in a gonad. Oocyte germinal vesicle breakdown is increased in the presence of sperm, and the highest fertilization success was in the artificial seawater Jamarin U. Manually dechorionated embryos develop normally. Development was asynchronous via a tornaria larva, metamorphosis and maintained to the juvenile worm 6 gill-pore stage. Phalloidin-labeled late-stage tornaria revealed retractor muscles that connect the pericardial sac with the apical tuft anteriorly, the oesophagus ventrally, and muscle cells of the early mesocoels. The muscle development of early juvenile worms began with dorso-lateral trunk muscles, lateral trunk bands, and sphincters around the gill pores and anus. Adult worms are characterized by a stomochord that bifurcates anteriorly into paired vermiform processes, gill bars that extend almost the entire dorsal to ventral branchial region resulting in a narrow ventral hypobranchial ridge, and an elaborate epibranchial organ with six zones of discrete cell types. The trunk has up to three rows of liver sacs, and lateral gonads. The acorn worm evo-devo model species Saccoglossus kowalevskii, Ptychodera flava, and Schizocardium californicum are phylogenetically distant with disparate life histories. S. karnakawa from S. californicum are phylogenetically close, and differences between them that become apparent as adult worms include the number of gill pores and hepatic sacs, and elaborations of the heart-kidney-stomochord complex. An important challenge for evolutionary developmental biology is to form links from phylogenetically distant and large-scale differences to phylogenetically close and small-scale differences. This description of the embryology, development, and adult morphology of S. karankawa permits investigations into how acorn worm development evolves at fine scales.
Collapse
Affiliation(s)
- Noura Jabr
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Paul Gonzalez
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin M Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Christopher B Cameron
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
4
|
Joshi SR, Liu J, Bloom T, Karaca Atabay E, Kuo TH, Lee M, Belcheva E, Spaits M, Grenha R, Maguire MC, Frost JL, Wang K, Briscoe SD, Alexander MJ, Herrin BR, Castonguay R, Pearsall RS, Andre P, Yu PB, Kumar R, Li G. Sotatercept analog suppresses inflammation to reverse experimental pulmonary arterial hypertension. Sci Rep 2022; 12:7803. [PMID: 35551212 PMCID: PMC9098455 DOI: 10.1038/s41598-022-11435-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sotatercept is an activin receptor type IIA-Fc (ActRIIA-Fc) fusion protein that improves cardiopulmonary function in patients with pulmonary arterial hypertension (PAH) by selectively trapping activins and growth differentiation factors. However, the cellular and molecular mechanisms of ActRIIA-Fc action are incompletely understood. Here, we determined through genome-wide expression profiling that inflammatory and immune responses are prominently upregulated in the lungs of a Sugen-hypoxia rat model of severe angio-obliterative PAH, concordant with profiles observed in PAH patients. Therapeutic treatment with ActRIIA-Fc-but not with a vasodilator-strikingly reversed proinflammatory and proliferative gene expression profiles and normalized macrophage infiltration in diseased rodent lungs. Furthermore, ActRIIA-Fc normalized pulmonary macrophage infiltration and corrected cardiopulmonary structure and function in Bmpr2 haploinsufficient mice subjected to hypoxia, a model of heritable PAH. Three high-affinity ligands of ActRIIA-Fc each induced macrophage activation in vitro, and their combined immunoneutralization in PAH rats produced cardiopulmonary benefits comparable to those elicited by ActRIIA-Fc. Our results in complementary experimental and genetic models of PAH reveal therapeutic anti-inflammatory activities of ActRIIA-Fc that, together with its known anti-proliferative effects on vascular cell types, could underlie clinical activity of sotatercept as either monotherapy or add-on to current PAH therapies.
Collapse
Affiliation(s)
- Sachindra R Joshi
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jun Liu
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Troy Bloom
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
- Ultivue, Cambridge, MA, USA
| | - Elif Karaca Atabay
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Tzu-Hsing Kuo
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michael Lee
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Elitza Belcheva
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Matthew Spaits
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Rosa Grenha
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michelle C Maguire
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jeffrey L Frost
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Kathryn Wang
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steven D Briscoe
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mark J Alexander
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Brantley R Herrin
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Roselyne Castonguay
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - R Scott Pearsall
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
- Cellarity, Cambridge, MA, USA
| | - Patrick Andre
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ravindra Kumar
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Gang Li
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|