1
|
Dou JY, Zhou MJ, Xuan MY, Guo J, Liu SH, Lian LH, Cui ZY, Nan JX, Wu YL. Astilbin alleviates hepatic fibrosis through PXR-PINK1/Parkin pathway: A new strategy by regulating hepatic stellate cells-macrophage crosstalk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156144. [PMID: 39405612 DOI: 10.1016/j.phymed.2024.156144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Astilbin (ATB), a natural dihydroflavonol compound, exists in many plants, processed and functional foods. ATB has multiple pharmacological effects, such as antioxidant, lipid-lowering, and hepatoprotective. However, its anti-hepatic fibrosis and mechanisms remain unclearly elucidated. PURPOSE This study explored the effect of ATB against the hepatic fibrosis and its regulation of hepatic microenvironment by regulating hepatic stellate cells-macrophage crosstalk. METHOD Thioacetamide (TAA) was intraperitoneal injected to establish hepatic fibrosis mice, and treated with ATB or curcumin by gavage, respectively. Hepatic stellate cells (HSCs) were stimulated with TGF-β or conditioned medium (CM) from LPS-induced THP-1, then cultured with ATB, PXR agonist or antagonist. RESULTS In TAA-induced mice, ATB improved histopathological changes, serum transaminases increase; alleviated extracellular matrix (ECM) deposition, epithelial-mesenchymal transformation (EMT), inflammatory infiltration, PTEN induced kinase 1 (PINK1)/Parkin-mediated mitophagy and activated pregnane X receptor (PXR) expression. In vitro, ATB significantly reduced ECM, inflammatory cytokines release, mitophagy, EMT, and activated PXR expression. ATB could increase PXR and decrease PINK1/Parkin, functioning as a PXR agonist. PXR deficiency in LX-2 could degrade the regulation of ATB on ECM, inflammation, EMT, and mitophagy. CM from LPS-induced THP-1 activated LX-2 and resulted in PXR decreasing, while ATB could regulate the crosstalk between HSCs and macrophages. Deficiency of PXR, whether in LX-2 or in macrophages, all weakened the inhibitory effect of ATB on α-SMA, EMT, inflammatory cytokines, and PINK1/Parkin signaling. CONCLUSION ATB ameliorated hepatic fibrosis by inhibiting HSCs activation, inflammation and EMT through PXR-mediated PINK1/Parkin signaling. Especially, ATB targeted the hepatic microenvironment between hepatic stellate cells and macrophages, which might be a promising strategy for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei-Yan Xuan
- School of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Jia Guo
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Sai-Hu Liu
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
2
|
Zhang X, Cao Z, Li L, Lu P, Geng Q, Yan L, Liu B, Lin L, Zhang L, Shi C, Tan Y, He X, Li L, Zhao N, Lu C. Triptolide-induced acute liver injury and its mechanism with estradiol in regulating macrophage-mediated inflammation and hepatocyte function. Biomed Pharmacother 2024; 180:117481. [PMID: 39316971 DOI: 10.1016/j.biopha.2024.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Triptolide (TP), a diterpene from Tripterygium wilfordii, exhibits potent anti-inflammatory, immunomodulatory, and antitumor properties but is limited by severe hepatotoxicity. This study investigates sex differences in TP-induced liver injury and the protective role of estradiol (E2) in modulating macrophage-mediated inflammation and hepatocyte function. An acute liver injury model was established in male and female Balb/c mice using intraperitoneal TP injection. Liver function tests, histological analyses, and immunohistochemical staining were performed. THP-1 macrophage and various liver cell lines were used to study the effects of TP and E2 in vitro. Virtual screening, molecular docking, luciferase assays, and qPCR were employed to identify potential targets and elucidate underlying mechanisms. TP caused more severe liver injury in female mice, evidenced by increased liver indices, aspartate aminotransferase (AST) levels, and extensive hepatocyte damage. TP promoted M1 macrophage polarization, enhancing inflammation, particularly in female mice. E2 mitigated TP-induced inflammatory responses by downregulating pro-inflammatory cytokines and macrophage activation markers. Molecular docking and functional assays identified Nuclear receptor subfamily 1 group I member 2 (NR1I2) as a key target mediating the protective effects of E2. The study highlights significant sex differences in TP-induced hepatotoxicity, with females being more susceptible. E2 exerts protective effects against TP-induced liver injury by modulating immune responses, presenting a potential therapeutic approach to mitigate drug-induced liver injury (DILI). Further research on NR1I2 could lead to targeted therapies for reducing drug-induced liver damage.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China; Beijing NO.6 hospital, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Zhao P, Gao Y, Zhou Y, Huang M, Fan S, Bi H. Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions. Drug Metab Dispos 2024; 52:1161-1169. [PMID: 38296653 DOI: 10.1124/dmd.123.001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. SIGNIFICANCE STATEMENT: PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| |
Collapse
|
4
|
Cheon I, Kim M, Kim KH, Ko S. Hepatic Nuclear Receptors in Cholestasis-to-Cholangiocarcinoma Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00358-4. [PMID: 39326734 DOI: 10.1016/j.ajpath.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Cholestasis, characterized by impaired bile flow, is associated with an increased risk of cholangiocarcinoma (CCA), a malignancy originating from the biliary epithelium and hepatocytes. Hepatic nuclear receptors (NRs) are pivotal in regulating bile acid and metabolic homeostasis, and their dysregulation is implicated in cholestatic liver diseases and the progression of liver cancer. This review elucidates the role of various hepatic NRs in the pathogenesis of cholestasis-to-CCA progression. We explore their impact on bile acid metabolism as well as their interactions with other signaling pathways implicated in CCA development. Additionally, we introduce available murine models of cholestasis/primary sclerosing cholangitis leading to CCA and discuss the clinical potential of targeting hepatic NRs as a promising approach for the prevention and treatment of cholestatic liver diseases and CCA. Understanding the complex interplay between hepatic NRs and cholestasis-to-CCA pathology holds promise for the development of novel preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Qiu S, Pan Y, Cui Y, Li M, Yue T, Pu S, Zhang Q, Wang M. HNF4α improves hepatocyte regeneration by upregulating PXR. FASEB J 2024; 38:e23830. [PMID: 39072875 DOI: 10.1096/fj.202400459rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) and the pregnane X receptor (PXR) are involved in hepatocyte regeneration. It is not clear whether HNF4α is involved in hepatocyte regeneration through the regulation of PXR. This study aims to explore the regulatory relationship between HNF4a and PXR, and whether it affects hepatocyte regeneration. A mouse PXR gene reporter and an HNF4α overexpression plasmid were constructed and transfected into mouse hepatoma cells (Hepa1-6). Overexpression of HNF4α, detection of the PXR gene reporter fluorescence value, PXR gene, and protein expression analysis were conducted to explore the regulatory relationship between HNF4α and PXR. Apoptosis and cell cycle data were measured to verify whether HNF4α is involved in hepatocyte regeneration through PXR. The luciferase gene reporter assay results indicated when HNF4α was overexpressed, the fluorescence value of the PXR gene reporter was higher than that in the control at 24 h. With increasing HNF4α expression, the PXR gene and protein expression increased, indicating that HNF4α binds to the PXR promoter and upregulates PXR expression. Apoptosis and cell cycle analysis results demonstrated that when the expression of HNF4α increased, the expression of PXR increased, the apoptosis rate decreased, and the proliferation rate increased. Meanwhile, when the upward trend of PXR gene expression was inhibited by ketoconazole, the proliferation rate decreased. By inhibiting HNF4α and creating a partial hepatectomy (PHx), we demonstrated that HNF4α can upregulate PXR to promote liver regeneration in vivo. Therefore, HNF4α is shown to improve hepatocyte regeneration by upregulating PXR, which provides a reference for future research on the combined application of drugs for the treatment of liver injury.
Collapse
Affiliation(s)
- Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tao Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Su H, Liang H, Tian J, Zheng L, Li H, Yang X, Yin S, Bi H. Discovery of PXR agonists from Hypericum japonicum: A class of novel nonaromatic acylphloroglucinol-terpenoid adducts. Bioorg Chem 2024; 147:107354. [PMID: 38599054 DOI: 10.1016/j.bioorg.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.
Collapse
Affiliation(s)
- Haiguo Su
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hangfei Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianing Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huilin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Sheng Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| |
Collapse
|
7
|
Loerch C, Szepanowski LP, Reiss J, Adjaye J, Graffmann N. Forskolin induces FXR expression and enhances maturation of iPSC-derived hepatocyte-like cells. Front Cell Dev Biol 2024; 12:1383928. [PMID: 38694820 PMCID: PMC11061433 DOI: 10.3389/fcell.2024.1383928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
The generation of iPSC-derived hepatocyte-like cells (HLCs) is a powerful tool for studying liver diseases, their therapy as well as drug development. iPSC-derived disease models benefit from their diverse origin of patients, enabling the study of disease-associated mutations and, when considering more than one iPSC line to reflect a more diverse genetic background compared to immortalized cell lines. Unfortunately, the use of iPSC-derived HLCs is limited due to their lack of maturity and a rather fetal phenotype. Commercial kits and complicated 3D-protocols are cost- and time-intensive and hardly useable for smaller working groups. In this study, we optimized our previously published protocol by fine-tuning the initial cell number, exchanging antibiotics and basal medium composition and introducing the small molecule forskolin during the HLC maturation step. We thereby contribute to the liver research field by providing a simple, cost- and time-effective 2D differentiation protocol. We generate functional HLCs with significantly increased HLC hallmark gene (ALB, HNF4α, and CYP3A4) and protein (ALB) expression, as well as significantly elevated inducible CYP3A4 activity.
Collapse
Affiliation(s)
- Christiane Loerch
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julian Reiss
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- University College London, EGA Institute for Women`s Health- Zayed Center for Research Into Rare Diseases in Children (ZGR), London, United Kingdom
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
9
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
10
|
Sun Q, Guo Y, Hu W, Zhang M, Wang S, Lei Y, Meng H, Li N, Xu P, Li Z, Lin H, Huang F, Qiu Z. Bempedoic Acid Unveils Therapeutic Potential in Non-Alcoholic Fatty Liver Disease: Suppression of the Hepatic PXR-SLC13A5/ACLY Signaling Axis. Drug Metab Dispos 2023; 51:1628-1641. [PMID: 37684055 DOI: 10.1124/dmd.123.001449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatic SLC13A5/SLC25A1-ATP-dependent citrate lyase (ACLY) signaling pathway, responsible for maintaining the citrate homeostasis, plays a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Bempedoic acid (BA), an ACLY inhibitor commonly used for managing hypercholesterolemia, has shown promising results in addressing hepatic steatosis. This study aimed to elucidate the intricate relationships in processes of hepatic lipogenesis among SLC13A5, SLC25A1, and ACLY and to examine the therapeutic potential of BA in NAFLD, providing insights into its underlying mechanism. In murine primary hepatocytes and HepG2 cells, the silencing or pharmacological inhibition of SLC25A1/ACLY resulted in significant upregulation of SLC13A5 transcription and activity. This increase in SLC13A5 activity subsequently led to enhanced lipogenesis, indicating a compensatory role of SLC13A5 when the SLC25A1/ACLY pathway was inhibited. However, BA effectively counteracted this upregulation, reduced lipid accumulation, and ameliorated various biomarkers of NAFLD. The disease-modifying effects of BA were further confirmed in NAFLD mice. Mechanistic investigations revealed that BA could reverse the elevated transcription levels of SLC13A5 and ACLY, and the subsequent lipogenesis induced by PXR activation in vitro and in vivo. Importantly, this effect was diminished when PXR was knocked down, suggesting the involvement of the hepatic PXR-SLC13A5/ACLY signaling axis in the mechanism of BA action. In conclusion, SLC13A5-mediated extracellular citrate influx emerges as an alternative pathway to SLC25A1/ACLY in the regulation of lipogenesis in hepatocytes, BA exhibits therapeutic potential in NAFLD by suppressing the hepatic PXR-SLC13A5/ACLY signaling axis, while PXR, a key regulator in drug metabolism may be involved in the pathogenesis of NAFLD. SIGNIFICANCE STATEMENT: This work describes that bempedoic acid, an ATP-dependent citrate lyase (ACLY) inhibitor, ameliorates hepatic lipid accumulation and various hallmarks of non-alcoholic fatty liver disease. Suppression of hepatic SLC25A1-ACLY pathway upregulates SLC13A5 transcription, which in turn activates extracellular citrate influx and the subsequent DNL. Whereas in hepatocytes or the liver tissue challenged with high energy intake, bempedoic acid reverses compensatory activation of SLC13A5 via modulating the hepatic PXR-SLC13A5/ACLY axis, thereby simultaneously downregulating SLC13A5 and ACLY.
Collapse
Affiliation(s)
- Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yating Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Wenjun Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Mengdi Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Shijiao Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yuanyuan Lei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haitao Meng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Ning Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Pengfei Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhiyu Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haishu Lin
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhixia Qiu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| |
Collapse
|
11
|
Lan H, Zhang Y, Fan M, Wu B, Wang C. Pregnane X receptor as a therapeutic target for cholestatic liver injury. Drug Metab Rev 2023; 55:371-387. [PMID: 37593784 DOI: 10.1080/03602532.2023.2248680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Cholestatic liver injury (CLI) is caused by toxic bile acids (BAs) accumulation in the liver and can lead to inflammation and liver fibrosis. The mechanisms underlying CLI development remain unclear, and this disease has no effective cure. However, regulating BA synthesis and homeostasis represents a promising therapeutic strategy for CLI treatment. Pregnane X receptor (PXR) plays an essential role in the metabolism of endobiotics and xenobiotics via the transcription of metabolic enzymes and transporters, which can ultimately modulate BA homeostasis and exert anticholestatic effects. Furthermore, recent studies have demonstrated that PXR exhibits antifibrotic and anti-inflammatory properties, providing novel insights into treating CLI. Meanwhile, several drugs have been identified as PXR agonists that improve CLI. Nevertheless, the precise role of PXR in CLI still needs to be fully understood. This review summarizes how PXR improves CLI by ameliorating cholestasis, inhibiting inflammation, and reducing fibrosis and discusses the progress of promising PXR agonists for treating CLI.
Collapse
Affiliation(s)
- Huan Lan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Bingxin Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
12
|
Warren D, Benedito VA, Skinner RC, Alawadi A, Vendemiatti E, Laub DJ, Showman C, Matak K, Tou JC. Low-Protein Diets Composed of Protein Recovered from Food Processing Supported Growth, but Induced Mild Hepatic Steatosis Compared with a No-Protein Diet in Young Female Rats. J Nutr 2023; 153:1668-1679. [PMID: 36990182 PMCID: PMC10447611 DOI: 10.1016/j.tjnut.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Living in low-income countries often restricts the consumption of adequate protein and animal protein. OBJECTIVES This study aimed to investigate the effects of feeding low-protein diets on growth and liver health using proteins recovered from animal processing. METHODS Female Sprague-Dawley rats (aged 28 d) were randomly assigned (n = 8 rats/group) to be fed standard purified diets with 0% or 10% kcal protein that was comprised of either carp, whey, or casein. RESULTS Rats that were fed low-protein diets showed higher growth but developed mild hepatic steatosis compared to rats that were fed a no-protein diet, regardless of the protein source. Real-time quantitative polymerase chain reactions targeting the expression of genes involved in liver lipid homeostasis were not significantly different among groups. Global RNA-sequencing technology identified 9 differentially expressed genes linked to folate-mediated 1-carbon metabolism, endoplasmic reticulum (ER) stress, and metabolic diseases. Canonical pathway analysis revealed that mechanisms differed depending on the protein source. ER stress and dysregulated energy metabolism were implicated in hepatic steatosis in carp- and whey-fed rats. In contrast, impaired liver one-carbon methylations, lipoprotein assembly, and lipid export were implicated in casein-fed rats. CONCLUSIONS Carp sarcoplasmic protein showed comparable results to commercially available casein and whey protein. A better understanding of the molecular mechanisms in hepatic steatosis development can assist formulation of proteins recovered from food processing into a sustainable source of high-quality protein.
Collapse
Affiliation(s)
- Derek Warren
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States; Department of Biology, University of the Ozarks, Clarksville, AR, United States
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - R Chris Skinner
- Food Systems Research Center, College of Agriculture and Life Sciences, University of Vermont Burlington, VT, United States
| | - Ayad Alawadi
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Eloisa Vendemiatti
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - David J Laub
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
13
|
Aseem SO, Hylemon PB, Zhou H. Bile Acids and Biliary Fibrosis. Cells 2023; 12:cells12050792. [PMID: 36899928 PMCID: PMC10001305 DOI: 10.3390/cells12050792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary fibrosis is the driving pathological process in cholangiopathies such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Cholangiopathies are also associated with cholestasis, which is the retention of biliary components, including bile acids, in the liver and blood. Cholestasis may worsen with biliary fibrosis. Furthermore, bile acid levels, composition and homeostasis are dysregulated in PBC and PSC. In fact, mounting data from animal models and human cholangiopathies suggest that bile acids play a crucial role in the pathogenesis and progression of biliary fibrosis. The identification of bile acid receptors has advanced our understanding of various signaling pathways involved in regulating cholangiocyte functions and the potential impact on biliary fibrosis. We will also briefly review recent findings linking these receptors with epigenetic regulatory mechanisms. Further detailed understanding of bile acid signaling in the pathogenesis of biliary fibrosis will uncover additional therapeutic avenues for cholangiopathies.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
14
|
Zhang J, Jia Q, Li Y, He J. The Function of Xenobiotic Receptors in Metabolic Diseases. Drug Metab Dispos 2023; 51:237-248. [PMID: 36414407 DOI: 10.1124/dmd.122.000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Obeticholic Acid for Primary Biliary Cholangitis. Biomedicines 2022; 10:biomedicines10102464. [PMID: 36289726 PMCID: PMC9599277 DOI: 10.3390/biomedicines10102464] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a rare autoimmune cholestatic liver disease that may progress to fibrosis and/or cirrhosis. Treatment options are currently limited. The first-line therapy for this disease is the drug ursodeoxycholic acid (UDCA), which has been proven to normalize serum markers of liver dysfunction, halt histologic disease progression, and lead to a prolongation of transplant-free survival. However, 30–40% of patients unfortunately do not respond to this first-line therapy. Obeticholic acid (OCA) is the only registered agent for second-line treatment in UDCA-non responders. In this review, we focus on the pharmacological features of OCA, describing its mechanism of action of and its tolerability and efficacy in PBC patients. We also highlight current perspectives on future therapies for this condition.
Collapse
|
16
|
Kamaraj R, Drastik M, Maixnerova J, Pavek P. Allosteric Antagonism of the Pregnane X Receptor (PXR): Current-State-of-the-Art and Prediction of Novel Allosteric Sites. Cells 2022; 11:2974. [PMID: 36230936 PMCID: PMC9563780 DOI: 10.3390/cells11192974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-activated transcription factor with high levels of expression in the liver. It not only plays a key role in drug metabolism and elimination, but also promotes tumor growth, drug resistance, and metabolic diseases. It has been proposed as a therapeutic target for type II diabetes, metabolic syndrome, and inflammatory bowel disease, and PXR antagonists have recently been considered as a therapy for colon cancer. There are currently no PXR antagonists that can be used in a clinical setting. Nevertheless, due to the large and complex ligand-binding pocket (LBP) of the PXR, it is challenging to discover PXR antagonists at the orthosteric site. Alternative ligand binding sites of the PXR have also been proposed and are currently being studied. Recently, the AF-2 allosteric binding site of the PXR has been identified, with several compounds modulating the site discovered. Herein, we aimed to summarize our current knowledge of allosteric modulation of the PXR as well as our attempt to unlock novel allosteric sites. We describe the novel binding function 3 (BF-3) site of PXR, which is also common for other nuclear receptors. In addition, we also mention a novel allosteric site III based on in silico prediction. The identified allosteric sites of the PXR provide new insights into the development of safe and efficient allosteric modulators of the PXR receptor. We therefore propose that novel PXR allosteric sites might be promising targets for treating chronic metabolic diseases and some cancers.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
17
|
Sayaf K, Gabbia D, Russo FP, De Martin S. The Role of Sex in Acute and Chronic Liver Damage. Int J Mol Sci 2022; 23:ijms231810654. [PMID: 36142565 PMCID: PMC9505609 DOI: 10.3390/ijms231810654] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute and chronic hepatic damages are caused by xenobiotics or different diseases affecting the liver, characterized by different etiologies and pathological features. It has been demonstrated extensively that liver damage progresses differently in men and women, and some chronic liver diseases show a more favorable prognosis in women than in men. This review aims to update the most recent advances in the comprehension of the molecular basis of the sex difference observed in both acute and chronic liver damage. With this purpose, we report experimental studies on animal models and clinical observations investigating both acute liver failure, e.g., drug-induced liver injury (DILI), and chronic liver diseases, e.g., viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology and Multivisceral Transplant Units, Azienda Ospedale—Università di Padova, 35131 Padova, Italy
- Correspondence:
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
18
|
Listopad S, Magnan C, Asghar A, Stolz A, Tayek JA, Liu ZX, Morgan TR, Norden-Krichmar TM. Differentiating between liver diseases by applying multiclass machine learning approaches to transcriptomics of liver tissue or blood-based samples. JHEP Rep 2022; 4:100560. [PMID: 36119721 PMCID: PMC9472076 DOI: 10.1016/j.jhepr.2022.100560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/08/2023] Open
Abstract
Background & Aims Liver disease carries significant healthcare burden and frequently requires a combination of blood tests, imaging, and invasive liver biopsy to diagnose. Distinguishing between inflammatory liver diseases, which may have similar clinical presentations, is particularly challenging. In this study, we implemented a machine learning pipeline for the identification of diagnostic gene expression biomarkers across several alcohol-associated and non-alcohol-associated liver diseases, using either liver tissue or blood-based samples. Methods We collected peripheral blood mononuclear cells (PBMCs) and liver tissue samples from participants with alcohol-associated hepatitis (AH), alcohol-associated cirrhosis (AC), non-alcohol-associated fatty liver disease, chronic HCV infection, and healthy controls. We performed RNA sequencing (RNA-seq) on 137 PBMC samples and 67 liver tissue samples. Using gene expression data, we implemented a machine learning feature selection and classification pipeline to identify diagnostic biomarkers which distinguish between the liver disease groups. The liver tissue results were validated using a public independent RNA-seq dataset. The biomarkers were computationally validated for biological relevance using pathway analysis tools. Results Utilizing liver tissue RNA-seq data, we distinguished between AH, AC, and healthy conditions with overall accuracies of 90% in our dataset, and 82% in the independent dataset, with 33 genes. Distinguishing 4 liver conditions and healthy controls yielded 91% overall accuracy in our liver tissue dataset with 39 genes, and 75% overall accuracy in our PBMC dataset with 75 genes. Conclusions Our machine learning pipeline was effective at identifying a small set of diagnostic gene biomarkers and classifying several liver diseases using RNA-seq data from liver tissue and PBMCs. The methodologies implemented and genes identified in this study may facilitate future efforts toward a liquid biopsy diagnostic for liver diseases. Lay summary Distinguishing between inflammatory liver diseases without multiple tests can be challenging due to their clinically similar characteristics. To lay the groundwork for the development of a non-invasive blood-based diagnostic across a range of liver diseases, we compared samples from participants with alcohol-associated hepatitis, alcohol-associated cirrhosis, chronic hepatitis C infection, and non-alcohol-associated fatty liver disease. We used a machine learning computational approach to demonstrate that gene expression data generated from either liver tissue or blood samples can be used to discover a small set of gene biomarkers for effective diagnosis of these liver diseases.
Collapse
Key Words
- AC, alcohol-associated cirrhosis
- AH, alcohol-associated hepatitis
- AKR1B10, aldo-keto reductase family 1 member B10
- BTM, blood transcription module
- Classification
- DE, differential expression
- FPKM, fragments per kilobase of exon model per million reads mapped
- GSEA, gene set-enrichment analysis
- IG, information gain
- IPA, Ingenuity Pathway Analysis
- LR, logistic regression
- LTCDS, liver tissue cell distribution system
- LV, liver tissue
- ML, machine learning
- MMP, matrix metalloproteases
- NAFLD, non-alcohol-associated fatty liver disease
- PBMCs, peripheral blood mononuclear cells
- RNA sequencing
- RNA-seq, RNA sequencing
- SCAHC, Southern California Alcoholic Hepatitis Consortium
- SVM, support vector machine
- TNF, tumor necrosis factor
- alcohol-associated liver disease
- biomarker discovery
- kNN, k-nearest neighbors
Collapse
Affiliation(s)
- Stanislav Listopad
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Christophe Magnan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Aliya Asghar
- Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Andrew Stolz
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - John A. Tayek
- Division of General Internal Medicine, Harbor-UCLA Medical Center, University of California Los Angeles, Torrance, CA 90509, USA
| | - Zhang-Xu Liu
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Timothy R. Morgan
- Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Trina M. Norden-Krichmar
- Department of Computer Science, University of California, Irvine, CA 92697, USA,Department of Epidemiology and Biostatistics, University of California, Irvine, CA 92697, USA,Corresponding author. Address: Department of Epidemiology and Biostatistics, University of California, Irvine, CA 92697 USA; Tel.: 949-824-8802.
| |
Collapse
|
19
|
Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol 2022; 202:115147. [PMID: 35714683 DOI: 10.1016/j.bcp.2022.115147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR) is a xenosensor that acts as a transcription factor in the cell nucleus to protect cells from toxic insults. In response to exposure to several chemical agents, PXR induces the expression of enzymes and drug transporters that biotransform xenobiotic and endobiotic and eliminate metabolites. Recently, PXR has been shown to have immunomodulatory effects that involve cross-communication with molecular pathways in innate immunity cells. Conversely, several inflammatory factors regulate PXR signaling. This review examines the crosstalk between PXR and nuclear factor kappa B (NFkB), Toll-like receptors (TLRs), and inflammasome components. Discussions of the consequences of these interactions on immune responses to infections caused by viruses, bacteria, fungi, and parasites are included together with a review of the effects of microorganisms on PXR-associated drug metabolism. This paper aims to encourage researchers to pursue studies that will better elucidate the relationship between PXR and the immune system and thus inform treatment development.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360, Ciudad de México, Mexico.
| |
Collapse
|
20
|
Lefever DE, Miedel MT, Pei F, DiStefano JK, Debiasio R, Shun TY, Saydmohammed M, Chikina M, Vernetti LA, Soto-Gutierrez A, Monga SP, Bataller R, Behari J, Yechoor VK, Bahar I, Gough A, Stern AM, Taylor DL. A Quantitative Systems Pharmacology Platform Reveals NAFLD Pathophysiological States and Targeting Strategies. Metabolites 2022; 12:528. [PMID: 35736460 PMCID: PMC9227696 DOI: 10.3390/metabo12060528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.
Collapse
Affiliation(s)
- Daniel E. Lefever
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute TGen, Phoenix, AZ 85004, USA;
| | - Richard Debiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Manush Saydmohammed
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lawrence A. Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Alejandro Soto-Gutierrez
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Satdarshan P. Monga
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ramon Bataller
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
| | - Jaideep Behari
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
- UPMC Liver Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vijay K. Yechoor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ivet Bahar
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Andrew M. Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - D. Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
21
|
Fu M, Yin W, Zhang W, Zhu Y, Ni H, Gong L. MicroRNA-15a inhibits hepatic stellate cell activation and proliferation via targeting SRY-box transcription factor 9. Bioengineered 2022; 13:13011-13020. [PMID: 35611752 PMCID: PMC9276033 DOI: 10.1080/21655979.2022.2068895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating research have indicated that microRNAs are associated with the progression of hepatic fibrosis (HF). Nevertheless, the biological role and function of microRNA (miR)-15a in HF are still unknown. Our data revealed that miR-15a expression was decreased in TGF-β1-treated LX-2 cells and CCl4-induced mouse model. Additionally, miR-15a could directly target the 3’‑untranslated region of SRY-box transcription factor 9 (SOX9) to inhibit its expression. miR-15a overexpression attenuated the viability and invasion, but enhanced apoptosis in LX-2 cells. However, miR-15a knockdown had the opposite effects. Interestingly, SOX9 overexpression reversed the changes in cell viability, invasion and apoptosis mediated by miR-15a overexpression. Moreover, the miR-15a overexpression-mediated collagen I and alpha smooth muscle actin (a-SMA) downregulation were reversed by SOX9 overexpression. Overall, miR-15a could inhibit LX-2 cell viability and HF pathogenesis by targeting SOX9 in vitro and in vivo.
Collapse
Affiliation(s)
- Maoying Fu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Weihua Yin
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Yanfang Zhu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Huihui Ni
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Li Gong
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| |
Collapse
|
22
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|