1
|
Lv H, Liu B, Dai Y, Li F, Bellone S, Zhou Y, Mamillapalli R, Zhao D, Venkatachalapathy M, Hu Y, Carmichael GG, Li D, Taylor HS, Huang Y. TET3-overexpressing macrophages promote endometriosis. J Clin Invest 2024; 134:e181839. [PMID: 39141428 PMCID: PMC11527447 DOI: 10.1172/jci181839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Endometriosis is a debilitating, chronic inflammatory disease affecting approximately 10% of reproductive-age women worldwide with no cure. While macrophages have been intrinsically linked to the pathophysiology of endometriosis, targeting them therapeutically has been extremely challenging due to their high heterogeneity and because these disease-associated macrophages (DAMs) can be either pathogenic or protective. Here, we report identification of pathogenic macrophages characterized by TET3 overexpression in human endometriosis lesions. We show that factors from the disease microenvironment upregulated TET3 expression, transforming macrophages into pathogenic DAMs. TET3 overexpression stimulated proinflammatory cytokine production via a feedback mechanism involving inhibition of let-7 miRNA expression. Remarkably, these cells relied on TET3 overexpression for survival and hence were vulnerable to TET3 knockdown. We demonstrated that Bobcat339, a synthetic cytosine derivative, triggered TET3 degradation in both human and mouse macrophages. This degradation was dependent on a von Hippel-Lindau (VHL) E3 ubiquitin ligase whose expression was also upregulated in TET3-overexpressing macrophages. Furthermore, depleting TET3-overexpressing macrophages either through myeloid-specific Tet3 ablation or using Bobcat339 strongly inhibited endometriosis progression in mice. Our results defined TET3-overexpressing macrophages as key pathogenic contributors to and attractive therapeutic targets for endometriosis. Our findings may also be applicable to other chronic inflammatory diseases where DAMs have important roles.
Collapse
Affiliation(s)
- Haining Lv
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Beibei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Center of Reproductive Medicine, National Health Commission Key Laboratory of Advanced Reproductive Medicine and Fertility, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yangyang Dai
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Da Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Center of Reproductive Medicine, National Health Commission Key Laboratory of Advanced Reproductive Medicine and Fertility, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Schiroli G, Kartha V, Duarte FM, Kristiansen TA, Mayerhofer C, Shrestha R, Earl A, Hu Y, Tay T, Rhee C, Buenrostro JD, Scadden DT. Cell of origin epigenetic priming determines susceptibility to Tet2 mutation. Nat Commun 2024; 15:4325. [PMID: 38773071 PMCID: PMC11109152 DOI: 10.1038/s41467-024-48508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.
Collapse
Affiliation(s)
- Giulia Schiroli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Vinay Kartha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Trine A Kristiansen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Christina Mayerhofer
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Rojesh Shrestha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yan Hu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine Rhee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Longhini ALF, Fernández-Maestre I, Kennedy MC, Wereski MG, Mowla S, Xiao W, Lowe SW, Levine RL, Gardner R. Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues. Front Immunol 2024; 15:1374943. [PMID: 38605953 PMCID: PMC11008467 DOI: 10.3389/fimmu.2024.1374943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging. Methods To address this issue, we designed a panel with 13 fixed markers that define the major immune populations -referred to as the backbone panel- that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question. Results This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments. Discussion Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.
Collapse
Affiliation(s)
- Ana Leda F. Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| | - Inés Fernández-Maestre
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Margaret C. Kennedy
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Shoron Mowla
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wenbin Xiao
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| |
Collapse
|
4
|
Li Y, Song R, Shen G, Huang L, Xiao D, Ma Q, Zhang L. MicroRNA-210 Downregulates TET2 (Ten-Eleven Translocation Methylcytosine Dioxygenase 2) and Contributes to Neuroinflammation in Ischemic Stroke of Adult Mice. Stroke 2023; 54:857-867. [PMID: 36734233 PMCID: PMC10151037 DOI: 10.1161/strokeaha.122.041651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Stroke is a leading cause of morbidity and mortality worldwide. Neuroinflammation plays a key role in acute brain injury of ischemic stroke. MicroRNA-210 (miR210) is the master hypoxamir and regulates microglial activation and inflammation in a variety of diseases. In this study, we uncovered the mechanism of miR210 in orchestrating ischemic stroke-induced neuroinflammation through repression of TET2 (ten-eleven translocation methylcytosine dioxygenase 2) in the adult mouse brain. METHODS Ischemic stroke was induced in adult WT (wild type) or miR210 KO (miR210 deficient) mice by transient intraluminal middle cerebral artery occlusion. Injection of TET2 silencing RNA or miR210 complementary locked nucleic acid oligonucleotides, or miR210 KO mice were used to validate miR210-TET2 axis and its role in ischemic brain injury. Furthermore, the effect of TET2 overexpression on miR210-stimulated proinflammatory cytokines was examined in BV2 microglia. Post assays included magnetic resonance imaging scan for brain infarct size; neurobehavioral tests, reverse transcription-quantitative polymerase chain reaction, and Western blot for miR210; and TET2 levels, flow cytometry, and ELISA for neuroinflammation in the brain after stroke or microglia in vitro. RESULTS miR210 injection significantly reduced TET2 protein abundance in the brain, while miR210 complementary locked nucleic acid oligonucleotides or miR210 KO preserved TET2 regardless of ischemic brain injury. TET2 knockdown reversed the protective effects of miR210 inhibition or miR210 KO on ischemic stroke-induced brain infarct size and neurobehavioral deficits. Moreover, flow cytometry and ELISA assays showed that TET2 knockdown also significantly dampened the anti-inflammatory effect of miR210 inhibition on microglial activation and IL (interleukin)-6 release after stroke. In addition, overexpression of TET2 in BV2 microglia counteracted miR210-induced increase in cytokines. CONCLUSIONS miR210 inhibition reduced ischemic stroke-induced neuroinflammatory response via repression of TET2 in the adult mouse brain, suggesting that miR210 is a potential treatment target for acute brain injury after ischemic stroke.
Collapse
Affiliation(s)
- Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Guofang Shen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lei Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - DaLiao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
5
|
Qin W, Saris A, van ’t Veer C, Roelofs JJTH, Scicluna BP, de Vos AF, van der Poll T. Myeloid miR-155 plays a limited role in antibacterial defense during Klebsiella-derived pneumosepsis and is dispensable for lipopolysaccharide- or Klebsiella-induced inflammation in mice. Pathog Dis 2023; 81:ftad031. [PMID: 37858304 PMCID: PMC10636497 DOI: 10.1093/femspd/ftad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
MicroRNA-155 (miR-155) plays a crucial role in regulating host inflammatory responses during bacterial infection. Previous studies have shown that constitutive miR-155 deficiency alleviates inflammation while having varying effects in different bacterial infection models. However, whether miR-155 in myeloid cells is involved in the regulation of inflammatory and antibacterial responses is largely elusive. Mice with myeloid cell specific miR-155 deficiency were generated to study the in vitro response of bone marrow-derived macrophages (BMDMs), alveolar macrophages (AMs) and peritoneal macrophages (PMs) to lipopolysaccharide (LPS), and the in vivo response after intranasal or intraperitoneal challenge with LPS or infection with Klebsiella (K.) pneumoniae via the airways. MiR-155-deficient macrophages released less inflammatory cytokines than control macrophages upon stimulation with LPS in vitro. However, the in vivo inflammatory cytokine response to LPS or K. pneumoniae was not affected by myeloid miR-155 deficiency. Moreover, bacterial outgrowth in the lungs was not altered in myeloid miR-155-deficient mice, but Klebsiella loads in the liver of these mice were significantly higher than in control mice. These data argue against a major role for myeloid miR-155 in host inflammatory responses during LPS-induced inflammation and K. pneumoniae-induced pneumosepsis but suggest that myeloid miR-155 contributes to host defense against Klebsiella infection in the liver.
Collapse
Affiliation(s)
- Wanhai Qin
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis van ’t Veer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, MSD 2080, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080, Msida, Malta
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Guo F, Jing M, Zhang A, Yu Y, Gao P, Wang Q, Wang L, Xu Z, Ma J, Zhang Y. Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene. Animals (Basel) 2022; 12:ani12151899. [PMID: 35892549 PMCID: PMC9330308 DOI: 10.3390/ani12151899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The poultry meat we eat is the skeletal muscle which comprises approximately three-quarters of the body weight of a chicken. In the modern poultry industry, the intensively raised broilers face the risk of exposure to environmental factors which can cause acute or chronic systemic inflammation. Inflammation, in return, contributes to the pathology of skeletal muscle diseases which are characterized by the loss of skeletal muscle mass. By adding betaine, a natural component, into the water of the newly hatched broilers for two weeks, we found that inflammation-related gene expression in the leg muscle was remarkably reduced. Specifically, we found that betaine inhibited the LPS-induced abnormal expression of IL-6 and TLR4. Further study indicated that the methylation modulation of the gene may be involved in betaine’s action. We suggest that betaine could be considered a safe and cheap preventive reagent candidate for chicken skeletal muscle inflammatory diseases. Abstract Betaine was found to alleviate inflammation in different studies. Here, newly hatched broilers were randomly divided into control and betaine consumptive groups, who had access to normal drinking water and water with betaine at a dose of 1000 mg/L, respectively. At the age of two weeks, the boilers were intraperitoneally treated with LPS. The protective effects of betaine against LPS-induced skeletal muscle inflammation were studied. Betaine attenuated the LPS-induced overexpression of IL-6 significantly in the leg muscle. Furthermore, LPS lowered the expression of TLR4 and TLR2 but increased the expression of MyD88. Betaine eliminated the effect of LPS on the expression of TLR4 but not TLR2 and MyD88. LPS also increased the expression of Tet methylcytosine dioxygenase 2 (Tet2), and this effect was also eliminated by betaine consumption. MeDIP-qPCR analysis showed that the methylation level in the promoter region of IL-6 was decreased by LPS treatment, whilst betaine cannot prevent this effect. On the contrary, LPS significantly increase the methylation level in the promoter region of TLR4, which was decreased by the consumption of betaine. Our findings suggest that betaine can alleviate LPS-induced muscle inflammation in chicken, and the regulation of aberrant DNA methylation might be a possible mechanism.
Collapse
|
7
|
Myeloid cell tet methylcytosine dioxygenase 2 does not affect the host response during gram-negative bacterial pneumonia and sepsis. Cytokine 2022; 154:155876. [DOI: 10.1016/j.cyto.2022.155876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
|
8
|
Qin W, Brands X, van’t Veer C, de Vos AF, Scicluna BP, van der Poll T. DNA Methyltransferase 3b in Myeloid Cells Does Not Affect the Acute Immune Response in the Airways during Pseudomonas Pneumonia. Cells 2022; 11:787. [PMID: 35269409 PMCID: PMC8909799 DOI: 10.3390/cells11050787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methyltransferase 3b (Dnmt3b) has been suggested to play a role in the host immune response during bacterial infection. Neutrophils and other myeloid cells are crucial for lung defense against Pseudomonas (P.) aeruginosa infection. This study aimed to investigate the role of Dnmt3b in neutrophils and myeloid cells during acute pneumonia caused by P. aeruginosa. Neutrophil-specific (Dnmt3bfl/flMrp8Cre) or myeloid cell-specific (Dnmt3bfl/flLysMCre) Dnmt3b-deficient mice and littermate control mice were infected with P. aeruginosa PAK via the airways. Bacteria burdens, neutrophil recruitment, and activation (CD11b expression, myeloperoxidase, and elastase levels), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) were measured in bronchoalveolar lavage fluid (BALF) at 6 and 24 h after infection. Our data showed that the bacterial loads and neutrophil recruitment and activation did not differ in BALF obtained from neutrophil-specific Dnmt3b-deficient and control mice, whilst BALF IL-6 and TNF levels were lower in the former group at 24 but not at 6 h after infection. None of the host response parameters measured differed between myeloid cell-specific Dnmt3b-deficient and control mice. In conclusion, dnmt3b deficiency in neutrophils or myeloid cells does not affect acute immune responses in the airways during Pseudomonas pneumonia.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Xanthe Brands
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Cornelis van’t Veer
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Alex F. de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Brendon P. Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
- Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|