1
|
Lamas A, Faria R, Marinho A, Vasconcelos C. The mosaic of systemic lupus erythematosus: From autoimmunity to autoinflammation and immunodeficiency and back. Autoimmun Rev 2024; 23:103675. [PMID: 39481623 DOI: 10.1016/j.autrev.2024.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The concept of an "immunological continuum model," introduced by McGonagle and McDermott in 2006, redefines the traditional dichotomy between autoimmunity and autoinflammation, proposing a spectrum where innate and adaptive immune dysregulation can co-occur, reflecting a more nuanced understanding of immune disorders. Systemic lupus erythematosus (SLE) exemplifies the complexity of this continuum, often displaying manifestations of autoimmunity, autoinflammation, and immunodeficiency. The interplay between genetic, epigenetic, hormonal, psychological, and environmental factors contributes to its distinctive immunopathological signatures. Historically recognized as a systemic disease with diverse clinical manifestations, SLE is primarily a polygenic autoimmune condition but can, however, present in monogenic forms. Examining SLE through the lens of the immunological continuum model allows for emphasis on the contributions of both innate and adaptive immunity. SLE and primary immunodeficiencies share genetic susceptibilities and clinical manifestations. Additionally, autoinflammatory mechanisms, such as inflammasome activation and interferonopathies, can play a role in SLE pathogenesis, illustrating the disease's position at the crossroads of immune dysregulation. Recognizing the diverse clinical expressions of SLE and its mimickers is critical for accurate diagnosis and targeted therapy. In conclusion, the immunological continuum model provides a comprehensive framework for understanding SLE, acknowledging its multifaceted nature and guiding future research and clinical practice toward more effective and individualized treatments. After the Mosaic of Autoimmunity, it is now the time to focus and attempt to solve the intricate mosaic of SLE.
Collapse
Affiliation(s)
- António Lamas
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Raquel Faria
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - António Marinho
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Carlos Vasconcelos
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| |
Collapse
|
2
|
Griese M, Kurland G, Cidon M, Deterding RR, Epaud R, Nathan N, Schwerk N, Warburton D, Weinman JP, Young LR, Deutsch GH. Pulmonary fibrosis may begin in infancy: from childhood to adult interstitial lung disease. Thorax 2024; 79:1162-1172. [PMID: 39153860 PMCID: PMC11671978 DOI: 10.1136/thorax-2024-221772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Childhood interstitial lung disease (chILD) encompasses a group of rare heterogeneous respiratory conditions associated with significant morbidity and mortality. Reports suggest that many patients diagnosed with chILD continue to have potentially progressive or fibrosing disease into adulthood. Over the last decade, the spectrum of conditions within chILD has widened substantially, with the discovery of novel entities through advanced genetic testing. However, most evidence is often limited to small case series, with reports disseminated across an array of subspecialty, clinical and molecular journals. In particular, the frequency, management and outcome of paediatric pulmonary fibrosis is not well characterised, unlike in adults, where clear diagnosis and treatment guidelines are available. METHODS AND RESULTS This review assesses the current understanding of pulmonary fibrosis in chILD. Based on registry data, we have provisionally estimated the occurrence of fibrosis in various manifestations of chILD, with 47 different potentially fibrotic chILD entities identified. Published evidence for fibrosis in the spectrum of chILD entities is assessed, and current and future issues in management of pulmonary fibrosis in childhood, continuing into adulthood, are considered. CONCLUSIONS There is a need for improved knowledge of chILD among pulmonologists to optimise the transition of care from paediatric to adult facilities. Updated evidence-based guidelines are needed that incorporate recommendations for the diagnosis and management of immune-mediated disorders, as well as chILD in older children approaching adulthood.
Collapse
Affiliation(s)
- Matthias Griese
- German Center for Lung Research (DZL), University of Munich, LMU Hospital Department of Pediatrics at Dr von Hauner Children's Hospital, Munchen, Germany
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Michal Cidon
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Robin R Deterding
- Section of Pediatric Pulmonary and Sleep Medicine Department of Pediatrics, University of Colorado Denver, Denver, Colorado, USA
- Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ralph Epaud
- Pediatric Pulmonology Department, Centre Hospitalier Intercommunal de Créteil; Centre des Maladies Respiratoires Rares (RESPIRARE®); University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Nadia Nathan
- Paediatric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, Laboratory of Childhood Genetic Diseases, Inserm UMS_S933, Sorbonne Université and AP-HP, Hôpital Trousseau, Paris, France
| | - Nicolaus Schwerk
- Clinic for Paediatric Pneumology, Allergy and Neonatology, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - David Warburton
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jason P Weinman
- Department of Radiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital and University of Washington Medical Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Parentelli AS, Boursier G, Cuisset L, Georgin-Lavialle S. [Genetic mosaicism in Systemic Auto-Inflammatory Diseases: A review of the literature]. Rev Med Interne 2024; 45:696-702. [PMID: 38762439 DOI: 10.1016/j.revmed.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Systemic auto-inflammatory diseases (SAIDs) are disorders associated with deregulation of innate immunity in which patients present classically with systemic inflammatory manifestations, in particular fever, skin-mucosal rashes, arthromyalgia and abdominal pain, with an increase in blood biomarkers of inflammation. At the time of their discovery, these diseases were associated with constitutional mutations in genes encoding proteins involved in innate immunity, and it was then considered that they had to begin in childhood. This dogma of constitutional mutations in SAIDs is no longer so unquestionable, since 2005 several cases of mosaicism have been reported in the literature, initially in cryopyrinopathies, but also in other SAIDs in patients with obvious clinical phenotypes and late onset of disease expression, in particular in the VEXAS syndrome (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic Syndrome) and very recently in MEVF gene. Next-generation sequencing techniques are more sensitive than Sanger for detecting mosaicisms. So, when a clinical diagnosis seems obvious but no constitutional mutation is found by low-depth genetic analysis, it is useful to discuss with expert geneticists whether to consider another genetic approach in a child or an adult. This modifies the situations in which clinicians can evoke these diseases. This review provides an update on mosaicism in SAIDs.
Collapse
Affiliation(s)
- A-S Parentelli
- Service de pédiatrie, CHU Félix-Guyon, allée des Topazes, 97400 Saint-Denis, Réunion.
| | - G Boursier
- Service de génétique moléculaire et cytogénomique, laboratoire de génétique des maladies rares et auto-inflammatoires, CHU de Montpellier, université de Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France; Centre de référence des maladies auto-inflammatoires rares et de l'amylose inflammatoire (CEREMAIA), hôpital Tenon, Assistance publique-Hôpitaux de Paris, 4, rue de la Chine, 75020 Paris, France
| | - L Cuisset
- Service de médecine génomique des maladies de système et d'organe, hôpital Cochin, Assistance publique-Hôpitaux de Paris, université Paris Cité, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - S Georgin-Lavialle
- Service de médecine interne, hôpital Tenon, Assistance publique-Hôpitaux de Paris, Sorbonne université, 4, rue de la Chine, 75020 Paris, France; Centre de référence des maladies auto-inflammatoires rares et de l'amylose inflammatoire (CEREMAIA), hôpital Tenon, Assistance publique-Hôpitaux de Paris, 4, rue de la Chine, 75020 Paris, France
| |
Collapse
|
4
|
Tian M, Li F, Pei H, Liu X, Nie H. The role of the cGAS-STING pathway in chronic pulmonary inflammatory diseases. Front Med (Lausanne) 2024; 11:1436091. [PMID: 39540037 PMCID: PMC11557406 DOI: 10.3389/fmed.2024.1436091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The innate immune system plays a vital role in the inflammatory process, serving as a crucial mechanism for the body to respond to infection, cellular stress, and tissue damage. The cGAS-STING signaling pathway is pivotal in the onset and progression of various autoimmune diseases and chronic inflammation. By recognizing cytoplasmic DNA, this pathway initiates and regulates inflammation and antiviral responses within the innate immune system. Consequently, the regulation of the cGAS-STING pathway has become a prominent area of interest in the treatment of many diseases. Chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis, are characterized by persistent or recurrent lung inflammation and tissue damage, leading to diminished respiratory function. This paper explores the mechanism of action of the cGAS-STING signaling pathway in these diseases, examines the development of STING inhibitors and nanomaterial applications, and discusses the potential clinical application prospects of targeting the cGAS-STING pathway in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fengyuan Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
5
|
Mohammadi S, Khorasani M. Implications of the cGAS-STING pathway in diabetes: Risk factors and therapeutic strategies. Int J Biol Macromol 2024; 278:134210. [PMID: 39069057 DOI: 10.1016/j.ijbiomac.2024.134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus is an increasingly prevalent metabolic disorder characterized by chronic hyperglycemia and impaired insulin action. Although the pathogenesis of diabetes is multifactorial, emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development and progression of the disease. The cyclic GMP-AMP synthase (cGAS) and its downstream signaling pathway, the stimulator of interferon genes (STING), have recently gained attention in the field of diabetes research. This article aims to provide an overview of the role of cGAS-STING in diabetes, focusing on its involvement in the regulation of immune responses, inflammation, insulin resistance, and β-cell dysfunction. Understanding the contribution of cGAS-STING signaling in diabetes may lead to the development of targeted therapeutic strategies for this prevalent metabolic disorder. The results section presents key findings from multiple studies on the impact of STING in diabetes. It discusses the influence of STING on inflammation levels within a diabetic environment, its effect on insulin resistance, and its implications for the development and progression of diabetes. The cGAS-STING signaling pathway plays a crucial role in the development and progression of diabetes.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, 611, Oman
| | - Milad Khorasani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Department of Biochemistry and Nutrition, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Borie R, Berteloot L, Kannengiesser C, Griese M, Cazes A, Crestani B, Hadchouel A, Debray MP. Rare genetic interstitial lung diseases: a pictorial essay. Eur Respir Rev 2024; 33:240101. [PMID: 39537246 PMCID: PMC11558537 DOI: 10.1183/16000617.0101-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
The main monogenic causes of pulmonary fibrosis in adults are mutations in telomere-related genes. These mutations may be associated with extrapulmonary signs (hepatic, haematological and dermatological) and typically present radiologically as usual interstitial pneumonia or unclassifiable fibrosis. In children, the monogenic causes of pulmonary fibrosis are dominated by mutations in surfactant-related genes. These mutations are not associated with extrapulmonary signs and often manifest radiologically as unclassifiable fibrosis with cysts that can lead to chest wall deformities in adults. This review discusses these mutations, along with most of the monogenic causes of interstitial lung disease, including interferon-related genes, mutations in genes causing cystic lung disease, Hermansky-Pudlak syndrome, pulmonary alveolar proteinosis, lysinuric protein intolerance and lysosomal storage disorders, and their pulmonary and extrapulmonary manifestations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Paris, France
- Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Laureline Berteloot
- Service d'Imagerie Pédiatrique, Hôpital universitaire Necker-Enfants malades, Paris, France
- INSERM U1163, Paris, France
| | | | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Aurelie Cazes
- Département d'Anatomo-Pathologie, Hôpital Bichat, AP-HP, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Paris, France
- Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Alice Hadchouel
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Marie Pierre Debray
- Service de Radiologie, Hopital Bichat, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Chen Y, Zhang S, Qu L. The protective effect of Artemisia Capillaris Thunb. Extract against UVB-induced apoptosis and inflammation through inhibiting the cGAS/STING pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112989. [PMID: 39032373 DOI: 10.1016/j.jphotobiol.2024.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Exposure to ultraviolet B (UVB) radiation represents a significant environmental threat to human skin. This study investigates the protective mechanism of Artemisia Capillaris Thunb. (AC) extract against UVB-induced apoptosis and inflammation in HaCaT keratinocytes. AC extract demonstrated a significant protective effect, as evidenced by reduced early apoptosis, late apoptosis, and necrosis, as well as decreased apoptotic cell status upon UVB exposure. Additionally, AC extract effectively inhibited UVB-induced DNA damage, as indicated by diminished γ-H2AX foci formation. Restoration of mitochondrial damage and normalization of mitochondrial membrane potential, along with the reduction of intracellular and mitochondrial reactive oxygen species (ROS) levels, were observed with AC extract pre-treatment. The extract also exhibited anti-inflammatory properties, evidenced by the decreased release of IL-1α, IL-6, and PGE2 from keratinocytes. Additional research on the molecular mechanisms uncovered that the AC extract alters the cGAS/STING pathway, suppressing the mRNA (cGAS, STING, IRF3, IRF7 and TBK1) and protein levels (cGAS, STING, IRF3, IRF7 and NF-κB) linked to this particular pathway. The HPLC analysis identified chlorogenic acid and its derivatives as the major components in AC, constituting up to 16.44% of the total chlorogenic acid content. The cGAS/STING signaling pathway was found to be suppressed by chlorogenic acid and its derivatives, as indicated by molecular docking studies and RT-qPCR analysis. This suppression contributes to the protective effects against cell apoptosis and inflammation induced by UVB. To summarize, AC extract, which is abundant in chlorogenic acid and its derivatives, shows potential in protecting keratinocytes from damage caused by UVB by regulating the cGAS/STING signaling pathway.
Collapse
Affiliation(s)
- Yueyue Chen
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Shuhong Zhang
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Liping Qu
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China.
| |
Collapse
|
8
|
Liptzin DR, Cole L, Schulte G, Curtis D, Curran ML, Alehashemi S, Goldbach-Mansky R, Galambos C, Deutsch G, Weinman JP. Savvy About SAVI. Am J Respir Crit Care Med 2024; 210:e1-e3. [PMID: 38631032 DOI: 10.1164/rccm.202309-1661im] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/17/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Deborah R Liptzin
- University of Washington School of Medicine, Seattle, Washington
- University of Colorado School of Medicine, Aurora, Colorado; and
| | - Lyndsey Cole
- University of Colorado School of Medicine, Aurora, Colorado; and
| | - Greg Schulte
- University of Washington School of Medicine, Seattle, Washington
| | - Donna Curtis
- University of Colorado School of Medicine, Aurora, Colorado; and
| | - Megan L Curran
- University of Colorado School of Medicine, Aurora, Colorado; and
| | - Sara Alehashemi
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Raphaela Goldbach-Mansky
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Csaba Galambos
- University of Colorado School of Medicine, Aurora, Colorado; and
| | - Gail Deutsch
- University of Washington School of Medicine, Seattle, Washington
| | - Jason P Weinman
- University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
9
|
Latour-Álvarez I, Murcia-Clemente L, Vázquez Pigueiras I, Garramone-Ramírez JE, Clemente D, Sanz V, Torrelo A. STING-associated vasculopathy with onset in infancy (SAVI) presenting with skin lesions. Pediatr Dermatol 2024; 41:893-896. [PMID: 38682895 DOI: 10.1111/pde.15620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/30/2024] [Indexed: 05/01/2024]
Abstract
STING-associated vasculopathy with onset in infancy (SAVI) is caused by pathogenic gain-of-function variants in the gene TMEM173 (also named stimulator of interferon genes, STING1). This report details the case of an 11-year-old girl with SAVI who presented with skin-limited symptoms and discusses the phenotype-genotype correlations of the TMEM173 variant present in our patient. Treatment of SAVI focuses on preventing the development or progression of organ damage by reducing systemic inflammation. We summarize the available treatments for this syndrome.
Collapse
Affiliation(s)
- I Latour-Álvarez
- Department of Dermatology, Hospital Universitario del Vinalopó, Elche, Spain
| | - L Murcia-Clemente
- Department of Pediatric Pneumology, Hospital Universitario del Vinalopó, Elche, Spain
| | - I Vázquez Pigueiras
- Department of Pediatric Pneumology, Hospital Universitario del Vinalopó, Elche, Spain
| | - J E Garramone-Ramírez
- Department of Radiology and Imaging, Hospital Universitario del Vinalopó, Elche, Spain
| | - D Clemente
- Department of Pediatric Rheumatology, Hospital Infantil Niño Jesús, Madrid, Spain
| | - V Sanz
- Department of Pediatric Pneumology, Hospital Infantil Niño Jesús, Madrid, Spain
| | - A Torrelo
- Department of Dermatology, Hospital Infantil Niño Jesús, Madrid, Spain
| |
Collapse
|
10
|
Borie R, Ba I, Debray MP, Kannengiesser C, Crestani B. Syndromic genetic causes of pulmonary fibrosis. Curr Opin Pulm Med 2024; 30:473-483. [PMID: 38896087 DOI: 10.1097/mcp.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW The identification of extra-pulmonary symptoms plays a crucial role in diagnosing interstitial lung disease (ILD). These symptoms not only indicate autoimmune diseases but also hint at potential genetic disorders, suggesting a potential overlap between genetic and autoimmune origins. RECENT FINDINGS Genetic factors contributing to ILD are predominantly associated with telomere (TRG) and surfactant-related genes. While surfactant-related gene mutations typically manifest with pulmonary involvement alone, TRG mutations were initially linked to syndromic forms of pulmonary fibrosis, known as telomeropathies, which may involve hematological and hepatic manifestations with variable penetrance. Recognizing extra-pulmonary signs indicative of telomeropathy should prompt the analysis of TRG mutations, the most common genetic cause of familial pulmonary fibrosis. Additionally, various genetic diseases causing ILD, such as alveolar proteinosis, alveolar hemorrhage, or unclassifiable pulmonary fibrosis, often present as part of syndromes that include hepatic, hematological, or skin disorders. SUMMARY This review explores the main genetic conditions identified over the past two decades.
Collapse
Affiliation(s)
- Raphaël Borie
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, France, Université Paris Cité, Inserm, PHERE, Université Paris Cité
| | | | | | | | - Bruno Crestani
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, France, Université Paris Cité, Inserm, PHERE, Université Paris Cité
| |
Collapse
|
11
|
Mendonça LO, Frémond ML. Interferonopathies: From concept to clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101975. [PMID: 39122631 DOI: 10.1016/j.berh.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
The horror autoinflammaticus derived from aberrant type I interferon secretion determines a special group of autoinflammatory diseases named interferonopathies. Diverse mechanisms involved in nucleic acids sensing, metabolizing or the lack of interferon signaling retro-control are responsible for the phenotypes associated to Aicardi-Goutières Syndrome (AGS), Proteasome-Associated Autoinflammatory Diseases (PRAAS), STING-Associated Vasculopathy with Infancy Onset (SAVI) and certain forms of monogenic Systemic lupus erythematosus (SLE). This review approaches interferonopathies from the basic immunogenetic concept to diagnosis and treatment.
Collapse
Affiliation(s)
- Leonardo Oliveira Mendonça
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil; Discipline of Clinical Immunology and Allergy, Department of Internal Medicine, Universidade de Santo Amaro (UNISA), São Paulo, Brazil.
| | - Marie-Louise Frémond
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Laboratory of Neurogenetics and Neuroinflammation Imagine Institute, INSERM UMR1163, Paris, France
| |
Collapse
|
12
|
Deng L, Cao C, Cai Z, Wang Z, Leng B, Chen Z, Kong F, Zhou Z, He J, Nie X, Bian JS. STING Contributes to Pulmonary Hypertension by Targeting IFN and BMPR2 Signaling through Regulating of F2RL3. Am J Respir Cell Mol Biol 2024; 71:356-371. [PMID: 38864771 DOI: 10.1165/rcmb.2023-0308oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/12/2024] [Indexed: 06/13/2024] Open
Abstract
Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of disease initiation. Recent findings suggest that STING (stimulator of IFN genes) activation plays a critical role in endothelial dysfunction and IFN signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. Patients with PH and rodent PH model samples, a Sugen 5416/hypoxia PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic guanosine monophosphate-AMP synthase-STING signaling pathway was activated in lung tissues from rodent PH models and patients with PH and in TNF-α-induced PAECs in vitro. Specifically, STING expression was significantly elevated in the endothelial cells in PH disease settings. In the Sugen 5416/hypoxia mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration of PAECs. Mechanistically, STING transcriptionally regulates its binding partner F2RL3 (F2R-like thrombin or trypsin receptor 3) through the STING-NF-κB axis, which activated IFN signaling and repressed BMPR2 (bone morphogenetic protein receptor 2) signaling both in vitro and in vivo. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression amounts between STING and F2RL3/IFN-stimulated genes was observed in vivo. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengrui Cao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zongye Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziping Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Leng
- Department of Food Science and Technology, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China; and
| | - Zhen Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fanhao Kong
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyue Zhou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaowei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Kozu KT, Nascimento RRNRD, Aires PP, Cordeiro RA, Moura TCLD, Sztajnbok FR, Pereira IA, Almeida de Jesus A, Perazzio SF. Inflammatory turmoil within: an exploration of autoinflammatory disease genetic underpinnings, clinical presentations, and therapeutic approaches. Adv Rheumatol 2024; 64:62. [PMID: 39175060 DOI: 10.1186/s42358-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) arise from dysregulated innate immune system activity, which leads to systemic inflammation. These disorders, encompassing a diverse array of genetic defects classified as inborn errors of immunity, are significant diagnostic challenges due to their genetic heterogeneity and varied clinical presentations. Although recent advances in genetic sequencing have facilitated pathogenic gene discovery, approximately 40% of SAIDs patients lack molecular diagnoses. SAIDs have distinct clinical phenotypes, and targeted therapeutic approaches are needed. This review aims to underscore the complexity and clinical significance of SAIDs, focusing on prototypical disorders grouped according to their pathophysiology as follows: (i) inflammasomopathies, characterized by excessive activation of inflammasomes, which induces notable IL-1β release; (ii) relopathies, which are monogenic disorders characterized by dysregulation within the NF-κB signaling pathway; (iii) IL-18/IL-36 signaling pathway defect-induced SAIDs, autoinflammatory conditions defined by a dysregulated balance of IL-18/IL-36 cytokine signaling, leading to uncontrolled inflammation and tissue damage, mainly in the skin; (iv) type I interferonopathies, a diverse group of disorders characterized by uncontrolled production of type I interferons (IFNs), notably interferon α, β, and ε; (v) anti-inflammatory signaling pathway impairment-induced SAIDs, a spectrum of conditions characterized by IL-10 and TGFβ anti-inflammatory pathway disruption; and (vi) miscellaneous and polygenic SAIDs. The latter group includes VEXAS syndrome, chronic recurrent multifocal osteomyelitis/chronic nonbacterial osteomyelitis, Schnitzler syndrome, and Still's disease, among others, illustrating the heterogeneity of SAIDs and the difficulty in creating a comprehensive classification. Therapeutic strategies involving targeted agents, such as JAK inhibitors, IL-1 blockers, and TNF inhibitors, are tailored to the specific disease phenotypes.
Collapse
Affiliation(s)
- Kátia Tomie Kozu
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil
| | | | - Patrícia Pontes Aires
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil
| | | | | | - Flavio Roberto Sztajnbok
- Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Sandro Félix Perazzio
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil.
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil.
- Division of Immunology and Rheumatology, Fleury Laboratories, Sao Paulo, SP, Brazil.
| |
Collapse
|
14
|
Kim HR, Lim SH, Park JS, Suh DI, Lee S, Kim SY, Chae JH, Kim SH. Unraveling the diagnostic odyssey: stimulator of interferon gene-associated vasculopathy with onset in infancy in a 30-year-old female. JOURNAL OF RHEUMATIC DISEASES 2024; 31:182-187. [PMID: 38957365 PMCID: PMC11215251 DOI: 10.4078/jrd.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 03/18/2024] [Indexed: 07/04/2024]
Abstract
Stimulator of interferon gene (STING)-associated vasculopathy with onset in infancy (SAVI) is an extremely rare autoinflammatory disease. We present the case of a female Korean patient with early-onset interstitial lung disease who was initially suspected to have systemic lupus erythematosus (SLE) but was ultimately diagnosed with SAVI. The patient exhibited signs of interstitial lung disease and cutaneous manifestations before the age of 1 year and continued to have recurrent fever accompanied by pulmonary infiltrates. Based on positive findings for antibodies associated with SLE, such as antinuclear antibodies and anti-double-stranded DNA, the pulmonary involvement was considered a manifestation of SLE. Another significant symptom was recurrent skin ulceration, which led to partial spontaneous amputation of most of the toes due to inflammation. Given the early onset of interstitial lung disease, severe skin ulcers, and symptoms resembling SLE, autoinflammatory syndrome, especially SAVI was suspected. Following confirmation by genetic testing at age 29 years, the patient was started on tofacitinib, a Janus kinase inhibitor. Despite the prolonged use of multiple immunosuppressive therapies, the patient's lung condition continued to worsen, ultimately requiring lung transplantation. This observational report highlights the importance of considering SAVI as a potential diagnosis when manifestations of interstitial lung disease are observed during infancy. Early proactive treatment is crucial for lung involvement, as this can have long-term effects on patient's prognosis.
Collapse
Affiliation(s)
- Hae Ryung Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| | - Seon Hee Lim
- Department of Pediatrics, Pusan National University Children’s Hospital, Busan, Korea
| | - Ji Soo Park
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seungbok Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Heon Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Defaye M, Bradaia A, Abdullah NS, Agosti F, Iftinca M, Delanne-Cuménal M, Soubeyre V, Svendsen K, Gill G, Ozmaeian A, Gheziel N, Martin J, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Basso L, Bourinet E, Chiu IM, Altier C. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J Clin Invest 2024; 134:e176474. [PMID: 38690737 PMCID: PMC11060736 DOI: 10.1172/jci176474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-β response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mélissa Delanne-Cuménal
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Soubeyre
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gurveer Gill
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
| | - Aye Ozmaeian
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nadine Gheziel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jérémy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Guo X, Yang L, Wang J, Wu Y, Li Y, Du L, Li L, Fang Z, Zhang X. The cytosolic DNA-sensing cGAS-STING pathway in neurodegenerative diseases. CNS Neurosci Ther 2024; 30:e14671. [PMID: 38459658 PMCID: PMC10924111 DOI: 10.1111/cns.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND With the widespread prevalence of neurodegenerative diseases (NDs) and high rates of mortality and disability, it is imminent to find accurate targets for intervention. There is growing evidence that neuroimmunity is pivotal in the pathology of NDs and that interventions targeting neuroimmunity hold great promise. Exogenous or dislocated nucleic acids activate the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), activating the stimulator of interferon genes (STING). The activated STING triggers innate immune responses and then the cGAS-STING signaling pathway links abnormal nucleic acid sensing to the immune response. Recently, numerous studies have shown that neuroinflammation regulated by cGAS-STING signaling plays an essential role in NDs. AIMS In this review, we summarized the mechanism of cGAS-STING signaling in NDs and focused on inhibitors targeting cGAS-STING. CONCLUSION The cGAS-STING signaling plays an important role in the pathogenesis of NDs. Inhibiting the cGAS-STING signaling may provide new measures in the treatment of NDs.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Intensive Care UnitJoint Logistics Force No. 988 HospitalZhengzhouChina
| | - Lin Yang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Jiawei Wang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - You Wu
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Yi Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Lixia Du
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Ling Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Anesthesiology, Xijing HospitalFourth Military Medical UniversityShaanxiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| |
Collapse
|
19
|
Weidler S, Koss S, Wolf C, Lucas N, Brunner J, Lee-Kirsch MA. A rare manifestation of STING-associated vasculopathy with onset in infancy: a case report. Pediatr Rheumatol Online J 2024; 22:9. [PMID: 38178067 PMCID: PMC10768237 DOI: 10.1186/s12969-023-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND STING-associated vasculopathy with onset in infancy (SAVI) is a rare type I interferonopathy caused by heterozygous variants in the STING gene. In SAVI, STING variants confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation and various degrees of immunodeficiency and autoimmunity. CASE PRESENTATION We report the case of a 5 year old child and his mother, both of whom presented with systemic inflammatory symptoms yet widely varying organ involvement, disease course and therapeutic response. Genetic testing revealed a heterozygous STING variant, R281Q, in the child and his mother that had previously been associated with SAVI. However, in contrast to previously reported SAVI cases due to the R281Q variant, our patients showed an atypical course of disease with alopecia totalis in the child and a complete lack of lung involvement in the mother. CONCLUSIONS Our findings demonstrate the phenotypic breadth of clinical SAVI manifestations. Given the therapeutic benefit of treatment with JAK inhibitors, early genetic testing for SAVI should be considered in patients with unclear systemic inflammation involving cutaneous, pulmonary, or musculoskeletal symptoms, and signs of immunodeficiency and autoimmunity.
Collapse
Affiliation(s)
- Sophia Weidler
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Sarah Koss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Brunner
- Department of Pediatrics, Innsbruck Medical University, Innsbruck, Austria
- Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
de Cevins C, Delage L, Batignes M, Riller Q, Luka M, Remaury A, Sorin B, Fali T, Masson C, Hoareau B, Meunier C, Parisot M, Zarhrate M, Pérot BP, García-Paredes V, Carbone F, Galliot L, Nal B, Pierre P, Canard L, Boussard C, Crickx E, Guillemot JC, Bader-Meunier B, Bélot A, Quartier P, Frémond ML, Neven B, Boldina G, Augé F, Alain F, Didier M, Rieux-Laucat F, Ménager MM. Single-cell RNA-sequencing of PBMCs from SAVI patients reveals disease-associated monocytes with elevated integrated stress response. Cell Rep Med 2023; 4:101333. [PMID: 38118407 PMCID: PMC10772457 DOI: 10.1016/j.xcrm.2023.101333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-β. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.
Collapse
Affiliation(s)
- Camille de Cevins
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Laure Delage
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Checkpoint Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, 94400 Vitry-sur-Seine, France
| | - Maxime Batignes
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Quentin Riller
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Marine Luka
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Anne Remaury
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Boris Sorin
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Tinhinane Fali
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Cécile Masson
- Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM UMS037 PASS, Plateforme de Cytométrie (CyPS), Paris, France
| | - Catherine Meunier
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Brieuc P Pérot
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Víctor García-Paredes
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Francesco Carbone
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Lou Galliot
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France
| | - Béatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Luc Canard
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Charlotte Boussard
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Etienne Crickx
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive theRapy for immUne disordErs, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, Créteil, France
| | - Jean-Claude Guillemot
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Brigitte Bader-Meunier
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Alexandre Bélot
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France; National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
| | - Pierre Quartier
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Marie-Louise Frémond
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France; Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, 75015 Paris, France
| | - Bénédicte Neven
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Galina Boldina
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Franck Augé
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Fischer Alain
- Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France; Collège de France, Paris, France; Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP) 75015 Paris, France
| | - Michel Didier
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Frédéric Rieux-Laucat
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Mickaël M Ménager
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France.
| |
Collapse
|
21
|
Sullivan NP, Maniam N, Maglione PJ. Interstitial lung diseases in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:500-506. [PMID: 37823528 DOI: 10.1097/aci.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Our goal is to review current understanding of interstitial lung disease (ILD) affecting patients with inborn errors of immunity (IEI). This includes understanding how IEI might predispose to and promote development or progression of ILD as well as how our growing understanding of IEI can help shape treatment of ILD in these patients. Additionally, by examining current knowledge of ILD in IEI, we hope to identify key knowledge gaps that can become focus of future investigative efforts. RECENT FINDINGS Recent identification of novel IEI associated with ILD and the latest reports examining treatment of ILD in IEI are included. Of noted interest, are recent clinical studies of immunomodulatory therapy for ILD in common variable immunodeficiency. SUMMARY ILD is a frequent complication found in many IEI. This article provides a guide to identifying manifestations of ILD in IEI. We review a broad spectrum of IEI that develop ILD, including antibody deficiency and immune dysregulation disorders that promote autoimmunity and autoinflammation. This work integrates clinical information with molecular mechanisms of disease and diagnostic assessments to provide an expedient overview of a clinically relevant and expanding topic.
Collapse
Affiliation(s)
| | - Nivethietha Maniam
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Berrada KR, Belot A, Neven B, Ohlmann C, Tronc F, Rice G, Thouvenin G, Dubus JC, Mazenq J, Frémond ML, Stremler N, Soummer-Feuillet S, Cottin V, Reix P. Lung Transplantation under a Janus Kinase Inhibitor in Three Patients with SAVI Syndrome. J Clin Immunol 2023; 43:2156-2164. [PMID: 37814086 DOI: 10.1007/s10875-023-01595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) is a very rare autoinflammatory disease related to STING1 mutation. SAVI is mainly characterized by fever attacks and skin and respiratory manifestations such as interstitial lung disease or alveolar hemorrhage. Respiratory involvement occurs in 80% of cases and might progress to severe lung fibrosis and require lung transplantation (LT). Three patients with SAVI who underwent LT have been reported to date. Two of the three patients died months or years after LT due to multiple organ failure or sepsis. However, the diagnosis of SAVI was made after LT, thus preventing the use of targeted therapy, such as the Janus kinase 1 and 2 inhibitor (JAK1/2i) ruxolitinib, which might be beneficial for the respiratory status of these patients. We aimed to report our experience in managing three patients who were followed in three large lung transplantation centers in France and who benefited from ruxolitinib before undergoing LT. We describe posttransplant complications that occurred as well as outcomes.
Collapse
Affiliation(s)
- Kenza Rhzioual Berrada
- Service de Pneumologie Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Service de Rhumatologie, Néphrologie Et Dermatologie Pédiatrique, CMR RAISE, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, Université de Lyon, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
- Le Centre National de La Recherche Scientifique, UMR5308, Lyon, France
| | - Bénédicte Neven
- Service d'immunologie-Hématologie Et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, INSERM, Paris, France
| | - Camille Ohlmann
- Service de Pneumologie Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France
| | - François Tronc
- Service de Chirurgie Thoracique Et Transplantation Pulmonaire, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Gillian Rice
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Guillaume Thouvenin
- Service de Pneumologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
- Centre de Recherche St Antoine Inserm UMRS.938, UPMC Université Paris Cité 06, Sorbonne Universités, Paris, France
| | - Jean-Christophe Dubus
- Service de Pneumologie Pédiatrique, Centre Hospitalier Universitaire Timone Enfants, Assistance Publique-Hôpitaux de Marseille, Université de La Méditerranée, Marseille, France
| | - Julie Mazenq
- Service de Pneumologie Pédiatrique, Centre Hospitalier Universitaire Timone Enfants, Assistance Publique-Hôpitaux de Marseille, Université de La Méditerranée, Marseille, France
| | - Marie-Louise Frémond
- Service d'immunologie-Hématologie Et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, INSERM, Paris, France
- Institut Imagine, Laboratoire de Neurogénétique Et de Neuroinflammation, Université de Paris, Paris, France
| | - Nathalie Stremler
- Service de Pneumologie Pédiatrique, Centre Hospitalier Universitaire Timone Enfants, Assistance Publique-Hôpitaux de Marseille, Université de La Méditerranée, Marseille, France
| | - Séverine Soummer-Feuillet
- Service de Chirurgie Thoracique Et Chirurgie Vasculaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Plessis-Robinson, France
- UMR-S-99, Inserm, Hôpital Marie Lannelongue, Faculté de Médecine Paris Saclay, Université Paris-Saclay, Plessis-Robinson, France
| | - Vincent Cottin
- Service de Pneumologie, Centre de Référence Des Maladies Pulmonaires Rares, Hôpital Louis Pradel, Hospices Civils de Lyon; UMR754, INRAE, Université Lyon 1, Lyon, France
| | - Philippe Reix
- Service de Pneumologie Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France.
- CNRS, Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, Équipe EMET, Université Lyon 1, 69622, Villeurbanne, France.
| |
Collapse
|
23
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Wu J, Zhou Q, Zhou H, Lu M. Case report: JAK1/2 inhibition with baricitinib in the treatment of STING-associated vasculopathy with onset in infancy. Pediatr Rheumatol Online J 2023; 21:131. [PMID: 37884945 PMCID: PMC10601276 DOI: 10.1186/s12969-023-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Gain-of-function mutations in STING1 (also known as TMEM173) which result in constitutive activation of STING, have been reported to cause STING-associated vasculopathy with onset in infancy (SAVI). Although a wider spectrum of associated manifestations and perturbations in disease onset have been observed since its description, the genotype-phenotype correlations are not definite, and there is no established treatment protocol for SAVI. CASE PRESENTATION Herein, we report a kindred, heterozygous STING mutation (p.V155M) in which the 2-year-old proband suffered from severe interstitial lung disease (ILD) while her father was initially misdiagnosed with connective tissue disease associated with ILD at an adult age. Baricitinib was initiated after the diagnosis of SAVI in the proband combined with steroids, and during the 14-month follow-up, the respiratory symptoms were improved. However, as the improvement of laboratory indicators was limited, especially in autoimmune indices, and the lung CT images remained unaltered, it seems that JAK1/2 inhibition was unsatisfactory in completely controlling the inflammation of the disease in our study. CONCLUSIONS Baricitinib was shown to elicit some effect on the ILD but failed to control the inflammation of the disease completely. Further exploration of JAK inhibitors or other therapeutic strategies are needed to more optimally treat this inflammatory disease.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, 3333, Binsheng Road, Hangzhou, 310052, China
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meiping Lu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
25
|
Liu Y, Pu F. Updated roles of cGAS-STING signaling in autoimmune diseases. Front Immunol 2023; 14:1254915. [PMID: 37781360 PMCID: PMC10538533 DOI: 10.3389/fimmu.2023.1254915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Natural immunity, the first line for the body to defense against the invasion of pathogen, serves as the body's perception of the presence of pathogens depends on nucleic acid recognition mechanisms. The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons and some other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. Also, STING, with the same character of inflammatory molecules, is inseparable from the body's inflammatory response. In particular, when the expression of STING is upregulated or its related signaling pathways are overactivated, the body may develop serious infectious disorders due to the generation of excessive inflammatory responses, non-infectious diseases, and autoimmune diseases. In recent years, accumulating studies indicated that the abnormal activation of the natural immune cGAS-STING signaling pathway modulated by the nucleic acid receptor cGAS closely associated with the development and occurrence of autoimmune diseases (AID). Thereof, to explore an in-depth role of STING and its related signaling pathways in the diseases associated with inflammation may be helpful to provide new avenues for the treatment of these diseases in the clinic. This article reviews the activation process of the cGAS-STING signaling pathways and its related important roles, and therapeutic drugs in AID, aiming to improve our understanding of AID and achieve better diagnosis and treatment of AID.
Collapse
Affiliation(s)
- Ya Liu
- Department of Rheumatology and Immunology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Feifei Pu
- Hubei Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, Hubei, China
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Tokgun PE, Karagenc N, Karasu U, Tokgun O, Turel S, Demiray A, Akca H, Yüksel S. Treatment of STING-associated vasculopathy with onset in infancy in patients carrying a novel mutation in the TMEM173 gene with the JAK3-inhibitor tofacitinib. Arch Rheumatol 2023; 38:461-467. [PMID: 38046254 PMCID: PMC10689023 DOI: 10.46497/archrheumatol.2023.9927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 10/18/2023] Open
Abstract
Objectives This study aimed to reveal the genetic background of patients in the two-generation family suffering from rheumatoid arthritis, psoriatic arthropathy pain, scratches, and bruises. Patients and methods A clinical exome sequencing analysis was performed in 10 individuals in the same family using the Sophia Genetics clinical exome solution kit. Results A novel V194L mutation in the TMEM173 gene was identified in three members of the family. Two of the family members were treated with the JAK3 inhibitor tofacitinib and recovered completely one month after the treatment. Conclusion The V194L mutation was reported for the first time in this study, and a positive response was achieved with tofacitinib.
Collapse
Affiliation(s)
- Pervin Elvan Tokgun
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Nedim Karagenc
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Uğur Karasu
- Department of Internal Medicine, Division of Rheumatology, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Onur Tokgun
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Samet Turel
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Aydın Demiray
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Hakan Akca
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Selçuk Yüksel
- Department of Pediatric Nephrology and Pediatric Rheumatology, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| |
Collapse
|
27
|
Terlizzi M, Colarusso C, Falanga A, Somma P, De Rosa I, Panico L, Pinto A, Maiolino P, Sorrentino R. Induction of Inflammation Disrupts the Negative Interplay between STING and S1P Axis That Is Observed during Physiological Conditions in the Lung. Int J Mol Sci 2023; 24:ijms24098303. [PMID: 37176007 PMCID: PMC10179278 DOI: 10.3390/ijms24098303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The stimulator of interferon genes (STING) is a master regulator of innate immunity, involved in several inflammatory diseases. Our previous data showed that sphingosine-1-phosphate (S1P) is released during inflammatory conditions in the lung. The aim of this study was to understand the interplay between S1P and STING during both physiological and pathological conditions. The mRNA levels of ceramidase (ASAH1), S1P precursor enzyme, and STING were inversely correlated in healthy lung tissues, but positively correlated in tumor tissues. The activation of STING induced higher expression of ASAH1 and was accompanied by IFN-β and IL-6 release. ASAH1 and sphingosine kinases (SPHK I/II) blockade significantly reduced IL-6, but not IFNβ, after STING activation. In support of this, taking advantage of a mouse model, we found that inflamed lungs had higher levels of inactive ASAH1 when STING was inhibited. This confirmed the human data, where higher levels of STING promoted the activation of ASAH1. Lung cancer patients positive to STING and ASAH1 mRNA levels had a dismal prognosis in that the overall survival was reduced compared to STING/ASAH1 negative patients. These data highlight that during physiological conditions, STING and the S1P axis do not interfere, whereas in lung cancer patients their interplay is associated to poor prognosis.
Collapse
Affiliation(s)
- Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Anna Falanga
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Ilaria De Rosa
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Luigi Panico
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Piera Maiolino
- "Fondazione Pascale", National Institute of Tumor, 80131 Naples, Italy
| | | |
Collapse
|
28
|
Zhang S, Zheng R, Pan Y, Sun H. Potential Therapeutic Value of the STING Inhibitors. Molecules 2023; 28:3127. [PMID: 37049889 PMCID: PMC10096477 DOI: 10.3390/molecules28073127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The stimulator of interferon genes (STING) is a critical protein in the activation of the immune system in response to DNA. It can participate the inflammatory response process by modulating the inflammation-preferred translation program through the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway or by inducing the secretion of type I interferons (IFNs) and a variety of proinflammatory factors through the recruitment of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) or the regulation of the nuclear factor kappa-B (NF-κB) pathway. Based on the structure, location, function, genotype, and regulatory mechanism of STING, this review summarizes the potential value of STING inhibitors in the prevention and treatment of infectious diseases, psoriasis, systemic lupus erythematosus, non-alcoholic fatty liver disease, and other inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shangran Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runan Zheng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhong Pan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
29
|
Nguyen HN, Salman R, Vogel TP, Silva-Carmona M, DeGuzman M, Guillerman RP. Imaging findings of COPA Syndrome. Pediatr Radiol 2023; 53:844-853. [PMID: 36746811 DOI: 10.1007/s00247-023-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Autosomal dominant mutations in the coatomer-associated protein alpha (COPA) gene cause an immune dysregulation disorder associated with pulmonary hemorrhage, lymphoid hyperplasia, arthritis, and glomerulonephritis. OBJECTIVE To describe the thoracic, musculoskeletal, and renal imaging findings of COPA syndrome with a focus on the evolution of the pulmonary findings. MATERIALS AND METHODS With approval of the Institutional Review Board, consensus retrospective review of findings on chest radiography and computed tomography (CT), musculoskeletal radiography and magnetic resonance imaging (MRI), and renal ultrasound (US) was performed for pediatric COPA syndrome patients. COPA syndrome patients < 18 years of age presenting between 1992 and 2019 were identified from an institutional rheumatology registry. RESULTS Twelve pediatric COPA syndrome patients (mean age of 6.5 years at first imaging exam; 6 females) were identified. Imaging exams available for review included 45 chest CT exams on 12 patients, 37 musculoskeletal exams on 4 patients, and 10 renal US exams on 5 patients. All 12 had abnormal chest CT exams, with findings including ground-glass opacities (12/12), cysts (8/12), septal thickening (9/12), nodules (8/12), fibrosis (7/12), crazy-paving (2/12), consolidation (1/12), hilar/mediastinal lymphadenopathy (11/12), and chest wall deformity (5/12). Nine had at least one follow-up chest CT, which showed improvement in nodules (7/9), ground-glass opacities (4/9), and lymphadenopathy (9/9), but worsening of septal thickening (3/9), cyst formation (3/9), and fibrosis (3/9). Four had musculoskeletal imaging revealing synovitis (2/4), bone erosions (1/4), tenosynovitis (1/4), enthesitis (1/4), and subcutaneous nodules (1/4). Five had at least one renal US, revealing renal size abnormalities (4/5) and cortical hyperechogenicity (3/5). CONCLUSION The most prevalent imaging finding of COPA syndrome is diffuse lung disease related to early childhood-onset recurrent pulmonary hemorrhage and lymphoid hyperplasia that may progress to pulmonary fibrosis. Other imaging findings manifesting later in childhood or adolescence relate to arthritis and glomerulonephritis.
Collapse
Affiliation(s)
- HaiThuy N Nguyen
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| | - Rida Salman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA.
| | - Tiphanie P Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Manuel Silva-Carmona
- Pulmonary Division, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marietta DeGuzman
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - R Paul Guillerman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| |
Collapse
|
30
|
Nayir Buyuksahin H, Basaran O, Balık Z, Bilginer Y, Ozen S, Dogru D. Interstitial lung disease in autoinflammatory disease in childhood: A systematic review of the literature. Pediatr Pulmonol 2023; 58:367-373. [PMID: 36314652 DOI: 10.1002/ppul.26220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND/OBJECTIVES The lung is one of the target organs in the systemic involvement of autoinflammatory disease (AID), and interstitial lung disease (ILD) is the primary phenotype of lung involvement in AID. In this review, we aimed to conduct a systematic review of the available literature to highlight ILD in AID. METHODS We conducted a systematic literature search in PubMed/MEDLINE and Scopus from the inception of the databases to January 2022. References were first screened by title and then by abstract by two authors. Eighteen original papers were selected for full-text review. RESULTS During the literature search, we identified 18 relevant articles describing 52 cases of AID and ILD. Of those, 44 patients had stimulator of interferon genes-associated vasculopathy with onset in infancy (SAVI), six had coatomer protein complex (COPA) syndrome, one had haploinsufficiency of A20, and one had mevalonate kinase deficiency. Pulmonary fibrosis, cyst formation, and ground glass areas were the most common findings in chest tomography of patients with COPA syndrome and SAVI. Janus kinase inhibitors were used to treat most of the patients with SAVI, which stabilized ILD. CONCLUSIONS ILD should be considered carefully in children with AID, especially those with interferonopathy.
Collapse
Affiliation(s)
- Halime Nayir Buyuksahin
- Department of Pediatrics, Division of Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ozge Basaran
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Zeynep Balık
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatrics, Division of Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Shen D, Fan X, Zhou Q, Xu X, Lu M. Use of Tofacitinib for infant-onset STING-associated vasculopathy: A case report from China. Medicine (Baltimore) 2022; 101:e31832. [PMID: 36482559 PMCID: PMC9726360 DOI: 10.1097/md.0000000000031832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Stimulator of interferon gene (STING)-associated vasculopathy with onset in infancy (SAVI), caused by gain-of-function mutations in human transmembrane protein 173 (TMEM173), is characterized by widespread chronic inflammation primarily affecting the skin and lungs. Although SAVI is an inflammatory disease, typical anti-inflammatory agents have limited or no effect. METHODS AND RESULTS A 1-year-old boy presented with recurrent facial rashes since he was 8 months. Moreover, he suffered from recurrent oral ulcers, chronic cough, and failure to thrive. Laboratory parameters showed elevated erythrocyte sedimentation rate (ESR) and immunoglobulin levels. Chest high-resolution computed tomography (HRCT) showed interstitial lung disease (ILD). Whole-exome sequencing revealed a heterozygous mutation in the TMEM173 gene (c.463G > A, p.V155M). Ultimately, the patient was diagnosed with SAVI. Tofacitinib was initiated at the age of 19 months, resulting in the alleviation of facial rashes and improvement of ILD within 3 months. CONCLUSION SAVI is a difficult-to-treat type I interferonopathy. We hope that JAKi treatment will prove valuable for SAVI patients.
Collapse
Affiliation(s)
- Danping Shen
- Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaorui Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Meiping Lu
- Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- * Correspondence: Meiping Lu, Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 57, Zhugan Lane, Hangzhou 310003, China (e-mail: )
| |
Collapse
|
32
|
Vila IK, Guha S, Kalucka J, Olagnier D, Laguette N. Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine Growth Factor Rev 2022; 68:54-68. [PMID: 36085258 DOI: 10.1016/j.cytogfr.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023]
Abstract
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| | - Soumyabrata Guha
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Joanna Kalucka
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Nadine Laguette
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
33
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
34
|
de Moura Rodrigues D, Lacerda-Queiroz N, Couillin I, Riteau N. STING Targeting in Lung Diseases. Cells 2022; 11:3483. [PMID: 36359882 PMCID: PMC9657237 DOI: 10.3390/cells11213483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 01/30/2024] Open
Abstract
The cGAS-STING pathway displays important functions in the regulation of innate and adaptive immunity following the detection of microbial and host-derived DNA. Here, we briefly summarize biological functions of STING and review recent literature highlighting its important contribution in the context of respiratory diseases. Over the last years, tremendous progress has been made in our understanding of STING activation, which has favored the development of STING agonists or antagonists with potential therapeutic benefits. Antagonists might alleviate STING-associated chronic inflammation and autoimmunity. Furthermore, pharmacological activation of STING displays strong antiviral properties, as recently shown in the context of SARS-CoV-2 infection. STING agonists also elicit potent stimulatory activities when used as an adjuvant promoting antitumor responses and vaccines efficacy.
Collapse
Affiliation(s)
- Dorian de Moura Rodrigues
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| |
Collapse
|
35
|
Wan R, Fänder J, Zakaraia I, Lee-Kirsch MA, Wolf C, Lucas N, Olfe LI, Hendrich C, Jonigk D, Holzinger D, Steindor M, Schmidt G, Davenport C, Klemann C, Schwerk N, Griese M, Schlegelberger B, Stehling F, Happle C, Auber B, Steinemann D, Wetzke M, von Hardenberg S. Phenotypic spectrum in recessive STING-associated vasculopathy with onset in infancy: Four novel cases and analysis of previously reported cases. Front Immunol 2022; 13:1029423. [PMID: 36275728 PMCID: PMC9583393 DOI: 10.3389/fimmu.2022.1029423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.
Collapse
Affiliation(s)
- Rensheng Wan
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Johannes Fänder
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ia Zakaraia
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Isabel Olfe
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Corinna Hendrich
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease, Hannover, Germany
| | - Dirk Holzinger
- Department of Pediatric Haemato-Oncology, University of Duisburg-Essen, Essen, Germany
- Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthias Griese
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, German Center for Lung Research, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| | - Sandra von Hardenberg
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| |
Collapse
|
36
|
Zhong B, Shu HB. MITA/STING-mediated antiviral immunity and autoimmunity: the evolution, mechanism, and intervention. Curr Opin Immunol 2022; 78:102248. [PMID: 36193584 DOI: 10.1016/j.coi.2022.102248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/27/2022] [Indexed: 01/29/2023]
Abstract
Mediator of IRF3 activation (MITA, also known as stimulator of interferon genes (STING) and endoplasmic reticulum interferon stimulator (ERIS)) is an ER-associated protein that senses cellular and bacterium-derived cyclic dinucleotide (CDN), leading to induction of type-I interferons (IFNs) and innate immune responses against viruses and bacteria. Recently, it has become clear that sensing of CDN and induction of autophagy are two evolutionarily conserved functions of MITA, predating its role in mediating type-I IFN induction. Studies have shown that MITA-mediated signaling promotes a number of autoimmune disorders caused by gene mutations in human. Here, we summarize the most recent progress on MITA-mediated signaling in a view of evolution and highlight the roles of MITA in human inflammatory disorders caused by gene mutations and in genetically modified mouse models. We also briefly introduce the chemicals targeting MITA and discuss their potential in treatment of MITA-mediated inflammatory diseases. Finally, we propose several key questions that should be addressed for targeting MITA for treatment of related autoimmune diseases.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Research Unit of Innate Immune and Inflammatory Diseases, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Research Unit of Innate Immune and Inflammatory Diseases, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
37
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
38
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
39
|
Hussain B, Xie Y, Jabeen U, Lu D, Yang B, Wu C, Shang G. Activation of STING Based on Its Structural Features. Front Immunol 2022; 13:808607. [PMID: 35928815 PMCID: PMC9343627 DOI: 10.3389/fimmu.2022.808607] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-cGAMP-STING pathway is an important innate immune signaling cascade responsible for the sensing of abnormal cytosolic double-stranded DNA (dsDNA), which is a hallmark of infection or cancers. Recently, tremendous progress has been made in the understanding of the STING activation mechanism from various aspects. In this review, the molecular mechanism of activation of STING protein based on its structural features is briefly discussed. The underlying molecular mechanism of STING activation will enable us to develop novel therapeutics to treat STING-associated diseases and understand how STING has evolved to eliminate infection and maintain immune homeostasis in innate immunity.
Collapse
Affiliation(s)
- Behzad Hussain
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, The Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Uzma Jabeen
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Defen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, The Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Guijun Shang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
- *Correspondence: Guijun Shang,
| |
Collapse
|