1
|
Jadamba B, Jin Y, Lee H. Harmonising cellular conversations: decoding the vital roles of extracellular vesicles in respiratory system intercellular communications. Eur Respir Rev 2024; 33:230272. [PMID: 39537245 PMCID: PMC11558538 DOI: 10.1183/16000617.0272-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) released by various cells play crucial roles in intercellular communication within the respiratory system. This review explores the historical context and significance of research into extracellular vesicles. Categorised into exosomes (sized 30-150 nm), microvesicles (sized 50-1000 nm) and apoptotic bodies (sized 500-2000nm), based on their generation mechanisms, extracellular vesicles carry diverse cargoes of biomolecules, including proteins, lipids and nucleic acids. Respiratory ailments are the primary contributors to both mortality and morbidity across various populations globally, significantly impacting public health. Recent studies have underscored the pivotal role of extracellular vesicles, particularly their cargo content, in mediating intercellular communication between lung cells in respiratory diseases. This comprehensive review provides insights into extracellular vesicle mechanisms and emphasises their significance in major respiratory conditions, including acute lung injury, COPD, pulmonary hypertension, pulmonary fibrosis, asthma and lung cancer.
Collapse
Affiliation(s)
- Budjav Jadamba
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
2
|
Bao J, Liu C, Song H, Mao Z, Qu W, Yu F, Shen Y, Jiang J, Chen X, Wang R, Wang Q, Chen W, Zheng S, Chen Y. Cepharanthine attenuates pulmonary fibrosis via modulating macrophage M2 polarization. BMC Pulm Med 2024; 24:444. [PMID: 39261812 PMCID: PMC11391720 DOI: 10.1186/s12890-024-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix (ECM) deposition. However, current treatments are not satisfactory. Therefore, more effective therapies need to be explored. Cepharanthine (CEP) is a naturally occurring alkaloid that has recently been reported to have multiple pharmacological effects, particularly in chronic inflammation. METHODS For in vivo experiments, first, a pulmonary fibrosis murine model was generated via tracheal injection of bleomycin (BLM). Second, the clinical manifestations and histopathological changes of the mice were used to verify that treatment with CEP might significantly reduce BLM-induced fibrosis. Furthermore, flow cytometric analysis was used to analyze the changes in the number of M2 macrophages in the lung tissues before and after treatment with CEP to explore the relationship between macrophage M2 polarization and pulmonary fibrosis. In vitro, we constructed two co-culture systems (THP-1 and MRC5 cells, RAW264.7 and NIH 3T3 cells), and measured the expression of fibrosis-related proteins to explore whether CEP could reduce pulmonary fibrosis by regulating macrophage M2 polarization and fibroblast activation. RESULTS The results showed that the intranasal treatment of CEP significantly attenuated the symptoms of pulmonary fibrosis induced by BLM in a murine model. Our findings also indicated that CEP treatment markedly reduced the expression of fibrosis markers, including TGF-β1, collagen I, fibronectin and α-SMA, in the mouse lung. Furthermore, in vitro studies demonstrated that CEP attenuated pulmonary fibrosis by inhibiting fibroblast activation through modulating macrophage M2 polarization and reducing TGF-β1 expression. CONCLUSIONS This study demonstrated the potential and efficacy of CEP in the treatment of pulmonary fibrosis. In particular, this study revealed a novel mechanism of CEP in inhibiting fibroblast activation by regulating macrophage M2 polarization and reducing the expression of fibrosis-associated factors. Our findings open a new direction for future research into the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chang Liu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huafeng Song
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, No. 10, Guangqian Road, Xiangcheng District, Suzhou, 215000, China
| | - Zheying Mao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wenxin Qu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Fei Yu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingjing Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ruonan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weizhen Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shufa Zheng
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Lou Y, Zou X, Pan Z, Huang Z, Zheng S, Zheng X, Yang X, Bao M, Zhang Y, Gu J, Zhang Y. The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics. J Pharm Pharmacol 2024; 76:1018-1027. [PMID: 38776436 DOI: 10.1093/jpp/rgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aimed to reveal the anti-fibrotic effects of Botrychium ternatum (Thunb.) Sw. (BT) against idiopathic pulmonary fibrosis (IPF) and to preliminarily analyze its potential mechanism on bleomycin-induced IPF rats. METHODS The inhibition of fibrosis progression in vivo was assessed by histopathology combined with biochemical indicators. In addition, the metabolic regulatory mechanism was investigated using 1H-nuclear magnetic resonance-based metabolomics combined with multivariate statistical analysis. KEY FINDINGS Firstly, biochemical analysis revealed that BT notably suppressed the expression of hydroxyproline and transforming growth factor-β1 in the pulmonary tissue. Secondly, Masson's trichrome staining and hematoxylin and eosin showed that BT substantially improved the structure of the damaged lung and significantly inhibited the proliferation of collagen fibers and the deposition of extracellular matrix. Finally, serum metabolomic analysis suggested that BT may exert anti-fibrotic effects by synergistically regulating tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and synthesis and degradation of ketone bodies. CONCLUSIONS Our study not only clarifies the potential anti-fibrotic mechanism of BT against IPF at the metabolic level but also provides a theoretical basis for developing BT as an effective anti-fibrotic agent.
Collapse
Affiliation(s)
- Yutao Lou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Zou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zongfu Pan
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhongjie Huang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shuilian Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaowei Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiuli Yang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meihua Bao
- Academician Workstation, School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China
| | - Yuan Zhang
- Department of Pharmacy, Zhejiang Provincial People' s Hospital Bijie Hospital, Bijie, Guizhou 551799, China
| | - Jinping Gu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yiwen Zhang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
4
|
Hayek H, Rehbini O, Kosmider B, Brandt T, Chatila W, Marchetti N, Criner GJ, Bolla S, Kishore R, Bowler RP, Bahmed K. The Regulation of Fatty Acid Synthase by Exosomal miR-143-5p and miR-342-5p in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2024; 70:259-282. [PMID: 38117249 PMCID: PMC11478129 DOI: 10.1165/rcmb.2023-0232oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFβ1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.
Collapse
Affiliation(s)
- Hassan Hayek
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
| | | | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
- Department of Thoracic Medicine and Surgery
| | | | | | | | | | | | - Raj Kishore
- Center for Translational Medicine, and
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania; and
| | | | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
- Department of Thoracic Medicine and Surgery
| |
Collapse
|
5
|
Wang C, Li W, Shao L, Zhou A, Zhao M, Li P, Zhang Z, Wu J. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res 2023; 28:484. [PMID: 37932800 PMCID: PMC10626716 DOI: 10.1186/s40001-023-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesicles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomarkers, therapeutic targets, and vehicles for targeted delivery.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Linlin Shao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Anni Zhou
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mengran Zhao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Peng Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zheng Zhang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
6
|
Tseng CC, Sung YW, Chen KY, Wang PY, Yen CY, Sung WY, Wu CC, Ou TT, Tsai WC, Liao WT, Chen CJ, Lee SC, Chang SJ, Yen JH. The Role of Macrophages in Connective Tissue Disease-Associated Interstitial Lung Disease: Focusing on Molecular Mechanisms and Potential Treatment Strategies. Int J Mol Sci 2023; 24:11995. [PMID: 37569370 PMCID: PMC10419312 DOI: 10.3390/ijms241511995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a severe manifestation of CTD that leads to significant morbidity and mortality. Clinically, ILD can occur in diverse CTDs. Pathologically, CTD-ILD is characterized by various histologic patterns, such as nonspecific interstitial pneumonia, organizing pneumonia, and usual interstitial pneumonia. Abnormal immune system responses have traditionally been instrumental in its pathophysiology, and various changes in immune cells have been described, especially in macrophages. This article first briefly overviews the epidemiology, clinical characteristics, impacts, and histopathologic changes associated with CTD-ILD. Next, it summarizes the roles of various signaling pathways in macrophages or products of macrophages in ILD, helped by insights gained from animal models. In the following sections, this review returns to studies of macrophages in CTD-ILD in humans for an overall picture of the current understanding. Finally, we direct attention to potential therapies targeting macrophages in CTD-ILD in investigation or in clinical trials, as well as the future directions regarding macrophages in the context of CTD-ILD. Although the field of macrophages in CTD-ILD is still in its infancy, several lines of evidence suggest the potential of this area.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ya-Wen Sung
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pin-Yi Wang
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chang-Yi Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
7
|
Nataliya B, Mikhail A, Vladimir P, Olga G, Maksim V, Ivan Z, Ekaterina N, Georgy S, Natalia D, Pavel M, Andrey C, Maria S, Maxim K, Anastasiya T, Uliana D, Zhanna A, Vsevolod T, Natalia K, Anastasiya E. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp Mol Med 2023; 55:1399-1412. [PMID: 37394579 PMCID: PMC10393964 DOI: 10.1038/s12276-023-01017-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 07/04/2023] Open
Abstract
To date, pulmonary fibrosis remains an unmet medical need. In this study, we evaluated the potency of mesenchymal stromal cell (MSC) secretome components to prevent pulmonary fibrosis development and facilitate fibrosis resolution. Surprisingly, the intratracheal application of extracellular vesicles (MSC-EVs) or the vesicle-depleted secretome fraction (MSC-SF) was not able to prevent lung fibrosis when applied immediately after the injury caused by bleomycin instillation in mice. However, MSC-EV administration induced the resolution of established pulmonary fibrosis, whereas the vesicle-depleted fraction did not. The application of MSC-EVs caused a decrease in the numbers of myofibroblasts and FAPa+ progenitors without affecting their apoptosis. Such a decrease likely occurred due to their dedifferentiation caused by microRNA (miR) transfer by MSC-EVs. Using a murine model of bleomycin-induced pulmonary fibrosis, we confirmed the contribution of specific miRs (miR-29c and miR-129) to the antifibrotic effect of MSC-EVs. Our study provides novel insights into possible antifibrotic therapy based on the use of the vesicle-enriched fraction of the MSC secretome.
Collapse
Affiliation(s)
- Basalova Nataliya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Arbatskiy Mikhail
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Popov Vladimir
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Grigorieva Olga
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vigovskiy Maksim
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Zaytsev Ivan
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Novoseletskaya Ekaterina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sagaradze Georgy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danilova Natalia
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Clinical Pathology, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Malkov Pavel
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Clinical Pathology, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Cherniaev Andrey
- Division of Fundamental Medicine of Federal State Budgetary Institution "Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation", Moscow, Russian Federation
- Research Institute of Human Morphology, Moscow, Russian Federation
| | - Samsonova Maria
- Division of Fundamental Medicine of Federal State Budgetary Institution "Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation", Moscow, Russian Federation
- Research Institute of Human Morphology, Moscow, Russian Federation
| | - Karagyaur Maxim
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tolstoluzhinskaya Anastasiya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dyachkova Uliana
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Akopyan Zhanna
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tkachuk Vsevolod
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kalinina Natalia
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Efimenko Anastasiya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
8
|
Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12:e1036. [PMID: 36178087 PMCID: PMC9523675 DOI: 10.1002/ctm2.1036] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Emerging evidence provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), and rare anti-PF therapeutic method has promising effect in its treatment. Rho-associated coiled-coil kinases (ROCK) inhibition significantly ameliorates bleomycin-induced PF and decreases macrophage infiltration, but the mechanism remains unclear. We established bleomycin and radiation-induced PF to identify the activity of WXWH0265, a newly designed unselective ROCK inhibitor in regulating macrophages. METHODS Bleomycin-induced PF was induced by intratracheal instillation and radiation-induced PF was induced by bilateral thoracic irradiation. Histopathological techniques (haematoxylin and eosin, Masson's trichrome and immunohistochemistry) and hydroxyproline were used to evaluate PF severity. Western blot, quantitative real-time reverse transcription-polymerase chain reaction and flow cytometry were performed to explore the underlying mechanisms. Bone marrow-derived macrophages (BMDMs) were used to verify their therapeutic effect. Clodronate liposomes were applied to deplete macrophages and to identify the therapeutic effect of WXWH0265. RESULTS Therapeutic administration of ROCK inhibitor ameliorates bleomycin-induced PF by inhibiting M2 macrophages polarisation. ROCK inhibitor showed no significant anti-fibrotic effect in macrophages-depleted mice. Treatment with WXWH0265 demonstrated superior protection effect in bleomycin-induced PF compared with positive drugs. In radiation-induced PF, ROCK inhibitor effectively ameliorated PF. Fibroblasts co-cultured with supernatant from various M2 macrophages phenotypes revealed that M2 macrophages stimulated by interleukin-4 promoted extracellular matrix production. Polarisation of M2 macrophages was inhibited by ROCK inhibitor treatment in vitro. The p-signal transducer and activator of transcription 3 (STAT3) in lung tissue and BMDMs was significantly decreased in PF in vivo and vitro after treated with ROCK inhibitors. CONCLUSION Inhibiting ROCK could significantly attenuate bleomycin- and radiation-induced PF by regulating the macrophages polarisation via phosphorylation of STAT3. WXWH0265 is a kind of efficient unselective ROCK inhibitor in ameliorating PF. Furthermore, the results provide empirical evidence that ROCK inhibitor, WXWH0265 is a potential drug to prevent the development of PF.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| |
Collapse
|
9
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|