1
|
Jermusek FA, Webb LJ. Determining the Electrostatic Contributions of GTPase-GEF Complexes on Interfacial Drug Binding Specificity: A Case Study of a Protein-Drug-Protein Complex. Biochemistry 2024; 63:3220-3235. [PMID: 39589755 DOI: 10.1021/acs.biochem.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Understanding the factors that contribute to specificity of protein-protein interactions allows for design of orthosteric small molecules. Within this environment, a small molecule requires both structural and electrostatic complementarity. While the structural contribution to protein-drug-protein specificity is well characterized, electrostatic contributions require more study. To this end, we used a series of protein complexes involving Arf1 bound to guanine nucleotide exchange factors (GEFs) that are sensitive or resistant to the small molecule brefeldin A (BFA). By comparing BFA-sensitive Arf1-Gea1p and Arf1-ARNO with different combinations of four BFA sensitizing ARNO mutations (ARNOwt, ARNO1M, ARNO3M, and ARNO4M), we describe how electrostatic environments at each interface guide BFA binding specificity. We labeled Arf1 with cyanocysteine at several interfacial sites and measured by nitrile adsorption frequencies to map changes in electric field at each interface using the linear Stark equation. Temperature dependence of nitrile vibrational spectra was used to investigate differences in hydrogen bonding environments. These comparisons showed that interfacial electric field at the surface of Arf1 varied substantially depending on the GEF. The greatest differences were seen between Arf1-ARNOwt and Arf1-ARNO4M, suggesting a greater change in electric field is required for BFA binding to Arf1-ARNO. Additionally, rigidity of the interface of the Arf1-ARNO complex correlated strongly with BFA sensitivity, indicating that flexible interfaces are sensitive to disruption upon orthosteric small molecule binding. These findings demonstrate a qualitatively consistent electrostatic environment for Arf1 binding and more subtle differences preventing BFA specificity. We discuss how these results will guide improved design of other small molecules that can target protein-protein interfaces.
Collapse
Affiliation(s)
- Frank A Jermusek
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Wen C, Wang G, Yang L, Chen T, Liu H, Gong W. Structural Basis for C2'-methoxy Recognition by DNA Polymerases and Function Improvement. J Mol Biol 2024; 436:168744. [PMID: 39147125 DOI: 10.1016/j.jmb.2024.168744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
DNA modified with C2'-methoxy (C2'-OMe) greatly enhances its resistance to nucleases, which is beneficial for the half-life of aptamers and DNA nanomaterials. Although the unnatural DNA polymerases capable of incorporating C2'-OMe modified nucleoside monophosphates (C2'-OMe-NMPs) were engineered via directed evolution, the detailed molecular mechanism by which an evolved DNA polymerase recognizes C2'-OMe-NTPs remains poorly understood. Here, we present the crystal structures of the evolved Stoffel fragment of Taq DNA polymerase SFM4-3 processing the C2'-OMe-GTP in different states. Our results reveal the structural basis for recognition of C2'-methoxy by SFM4-3. Based on the analysis of other mutated residues in SFM4-3, a new Stoffel fragment variant with faster catalytic rate and stronger inhibitor-resistance was obtained. In addition, the capture of a novel pre-insertion co-existing with template 5'-overhang stacking conformation provides insight into the catalytic mechanism of Taq DNA polymerase.
Collapse
Affiliation(s)
- Chongzheng Wen
- Division of Biological Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Lin Yang
- Division of Biological Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Haiping Liu
- Division of Biological Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| | - Weimin Gong
- Division of Biological Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
3
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
4
|
Jermusek FA, Webb LJ. Electrostatic Impact of Brefeldin A on Thiocyanate Probes Surrounding the Interface of Arf1-BFA-ARNO4M, a Protein-Drug-Protein Complex. Biochemistry 2024; 63:27-41. [PMID: 38078826 DOI: 10.1021/acs.biochem.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Protein-protein interactions regulate many cellular processes, making them ideal drug candidates. Design of such drugs, however, is hindered by a lack of understanding of the factors that contribute to the interaction specificity. Specific protein-protein complexes possess both structural and electrostatic complementarity, and while structural complementarity of protein complexes has been extensively investigated, fundamental understanding of the complicated networks of electrostatic interactions at these interfaces is lacking, thus hindering the rational design of orthosterically binding small molecules. To better understand the electrostatic interactions at protein interfaces and how a small molecule could contribute to and fit within that environment, we used a model protein-drug-protein system, Arf1-BFA-ARNO4M, to investigate how small molecule brefeldin A (BFA) perturbs the Arf1-ARNO4M interface. By using nitrile probe labeled Arf1 sites and measuring vibrational Stark effects as well as temperature dependent infrared shifts, we measured changes in the electric field and hydrogen bonding at this interface upon BFA binding. At all five probe locations of Arf1, we found that the vibrational shifts resulting from BFA binding corroborate trends found in Poisson-Boltzmann calculations of surface potentials of Arf1-ARNO4M and Arf1-BFA-ARNO4M, where BFA contributes negative electrostatic potential to the protein interface. The data also corroborate previous hypotheses about the mechanism of interfacial binding and confirm that alternating patches of hydrophobic and polar interactions lead to BFA binding specificity. These findings demonstrate the impact of BFA on this protein-protein interface and have implications for the design of other interfacial drug candidates.
Collapse
Affiliation(s)
- Frank A Jermusek
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry and Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Kumagai K, Okubo H, Amano R, Kozu T, Ochiai M, Horiuchi M, Sakamoto T. Selection of aptamers using β-1,3-glucan recognition protein-tagged proteins and curdlan beads. J Biochem 2023; 174:433-440. [PMID: 37500079 DOI: 10.1093/jb/mvad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
RNA aptamersare nucleic acids that are obtained using the systematic evolution of ligands by exponential enrichment (SELEX) method. When using conventional selection methods to immobilize target proteins on matrix beads using protein tags, sequences are obtained that bind not only to the target proteins but also to the protein tags and matrix beads. In this study, we performed SELEX using β-1,3-glucan recognition protein (GRP)-tags and curdlan beads to immobilize the acute myeloid leukaemia 1 (AML1) Runt domain (RD) and analysed the enrichment of aptamers using high-throughput sequencing. Comparison of aptamer enrichment using the GRP-tag and His-tag suggested that aptamers were enriched using the GRP-tag as well as using the His-tag. Furthermore, surface plasmon resonance analysis revealed that the aptamer did not bind to the GRP-tag and that the conjugation of the GRP-tag to RD weakened the interaction between the aptamer and RD. The GRP-tag could have acted as a competitor to reduce weakly bound RNAs. Therefore, the affinity system of the GRP-tagged proteins and curdlan beads is suitable for obtaining specific aptamers using SELEX.
Collapse
Key Words
- SELEX.Abbreviations:
AML1, acute myeloid leukaemia 1; βGRP, β-1,3-glucan recognition protein; GST, glutathione S-transferase; His-tag, poly histidine tag; HTS, high-throughput sequencing; MBP, maltose-binding protein; RD, Runt domain; RUNX1, RUNX family transcription factor 1; SELEX, systematic evolution of ligands by exponential enrichment; SPR, surface plasmon resonance
- aptamer
- curdlan
- βGRP
Collapse
Affiliation(s)
- Kazuyuki Kumagai
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Hiroki Okubo
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryo Amano
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, 780 Komuro, Ina, Kitaadachi, Saitama 362-0806, Japan
| | - Masanori Ochiai
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Masataka Horiuchi
- Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido, 1757 Kanazawa, Toubetsu, Ishikari, Hokkaido 061-0293, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|