1
|
Freed BH, Thenappan T. Echocardiographic Endophenotypes of Chronic Obstructive Pulmonary Disease: A Step toward Personalized Medicine. Am J Respir Crit Care Med 2025; 211:426-427. [PMID: 39879550 PMCID: PMC11936148 DOI: 10.1164/rccm.202412-2461ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
- Benjamin H Freed
- Department of Medicine Northwestern University School of Medicine Chicago, Illinois
| | - Thenappan Thenappan
- Department of Medicine University of Minnesota School of Medicine Minneapolis, Minnesota
| |
Collapse
|
2
|
Brady B, Brown A, Barrett M, Maraj V, Lawler F, Murphy R, Walsh D. Cardiac dysfunction in solid tumours: scoping review. BMJ Support Palliat Care 2025; 15:168-177. [PMID: 38050023 DOI: 10.1136/spcare-2023-004440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023]
Abstract
Cardio-oncology is a dynamic field. Research has suggested that cancer itself can damage the heart, independent of cancer treatment-related cardiac dysfunction (CTRCD). The aim of this study was to establish the nature of cardiovascular abnormalities reported in cancer, excluding CTRCD. Scoping review search included cardiovascular abnormalities in adults with solid tumour malignancies, and excluded CTRCD and thrombotic events. Three databases (CINAHL, Embase, Medline) were searched, supplemented by a handsearch. All screening and data extraction was done by two researchers with consensus reached for any conflicts. Given the heterogeneous nature of the studies identified, data synthesis was narrative. The search identified 42 366 studies. Following deduplication and title/abstract screening, 195 studies were assessed for full-text eligibility. Forty-four studies are included in the final analysis. There are 19 prospective observational studies, 13 retrospective studies, 9 case reports and 3 cross-sectional studies. Types of abnormality identified include cardiomyopathy (16, including Takotsubo (9)), autonomic nervous system (ANS) dysfunction (10), biomarker disturbances (9), reduced myocardial strain (6) and others (3). Due to variable study design, the prevalence was not determined. Cardiovascular abnormalities were associated with morbidity (chest pain, dyspnoea, fatigue) and shortened prognosis. In conclusion: (1) There is evidence for cardiovascular dysfunction in patients with solid tumour malignancies, distinct from CTRCD. People with solid tumours have higher rates of cardiac disease, even when newly diagnosed and treatment naïve. (2) Abnormalities manifest mainly as cardiomyopathies, ANS dysfunction and raised biomarker levels and are associated with significant symptoms. (3) Treatment plans need to take account of these risks, and widen criteria for screening.
Collapse
Affiliation(s)
- Bernadette Brady
- Academic Department of Palliative Medicine, Our Lady's Hospice & Care Services, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Brown
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Michelle Barrett
- Academic Department of Palliative Medicine, Our Lady's Hospice & Care Services, Dublin, Ireland
| | | | - Fiona Lawler
- Education & Research Department, Our Lady's Hospice & Care Services, Dublin, Ireland
| | - Ross Murphy
- Institute of Cardiovascular Science, St James's Hospital, Dublin, Ireland
| | - Declan Walsh
- Academic Department of Palliative Medicine, Our Lady's Hospice & Care Services, Dublin, Ireland
- Supportive Oncology, Levine Cancer Institute, Charlotte, North Carolina, USA
| |
Collapse
|
3
|
Silva J, Azevedo T, Ferreira R, Neuparth MJ, Seixas F, Ginja M, Pires MJ, Faustino-Rocha AI, Duarte JA, Oliveira PA. The Impact of a Western Diet and Resistance Training in a Rat Model of Mammary Cancer. Life (Basel) 2025; 15:250. [PMID: 40003658 PMCID: PMC11856199 DOI: 10.3390/life15020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the impact of a Western diet and resistance training on cardiac remodeling in a rat model of chemically induced mammary cancer. Fifty-six female Wistar rats were randomly assigned to one of eight experimental groups, evaluating the impact of Western and standard diets, exercise and sedentarism, and the induction of mammary cancer. Mammary cancer was induced via the intraperitoneal administration of N-methyl-N-nitrosourea (MNU) (50 mg/kg) at seven weeks of age. The resistance training protocol consisted of ladder climbing three times per week for an 18-week period, with a gradual increase in load over time. At the end of the 20-week experimental period, the animals were anesthetized and underwent echocardiography. Subsequently, the animals were euthanized, and organs and visceral adipose tissue (VAT) were collected and analyzed. A histopathological examination was performed on the mammary tumors. The Western diet increased relative VAT and contributed to cardiovascular and tumor-related changes, including an increase in interventricular septum thickness (IVS) and left ventricle posterior wall thickness (LVPW) at end-systole. Exercise reduced fat accumulation, improved cardiac performance, and helped regulate cardiovascular function, as indicated by a higher eccentricity index (EI) in the WD+EX group compared to the WD group. The WD was associated with increased VAT accumulation and initially delayed tumor initiation; however, over time, it contributed to bigger tumor aggressiveness. This diet also delayed tumor initiation but increased LVPW. Exercise, when combined with a WD, accelerated tumorigenesis, malignant transformation and invasiveness, resulted in the higher prevalence of invasive tumors. These findings underscore the complex and potentially compounding effects of diet and exercise on cancer progression.
Collapse
Affiliation(s)
- Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (M.J.P.); (P.A.O.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (M.J.P.); (P.A.O.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science-AL4AnimalS, UTAD, 5000-801 Vila Real, Portugal;
- Mountain Research Center (CIMO), Associated Laboratory for Sustainability and Technology in Inland Regions (SusTEC), Polytechnique Institute of Bragança (IPB), 5300-253 Bragança, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria J. Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports—University of Porto (FADEUP), 4200-450 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, CESPU, 4585-116 Gandra, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science-AL4AnimalS, UTAD, 5000-801 Vila Real, Portugal;
| | - Mário Ginja
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (M.J.P.); (P.A.O.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science-AL4AnimalS, UTAD, 5000-801 Vila Real, Portugal;
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria J. Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (M.J.P.); (P.A.O.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (M.J.P.); (P.A.O.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7004-516 Évora, Portugal
| | - José Alberto Duarte
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (M.J.P.); (P.A.O.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Stelter K, Alabssi A, Bonaterra GA, Schwarzbach H, Fendrich V, Slater EP, Kinscherf R, Hildebrandt W. Increased Myocardial MAO-A, Atrogin-1, and IL-1β Expression in Transgenic Mice with Pancreatic Carcinoma-Benefit of MAO-A Inhibition for Cardiac Cachexia. Biomedicines 2024; 12:2009. [PMID: 39335522 PMCID: PMC11428447 DOI: 10.3390/biomedicines12092009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer cachexia (CC) continues to challenge clinicians by massively impairing patients' prognosis, mobility, and quality of life through skeletal muscle wasting. CC also includes cardiac cachexia as characterized by atrophy, compromised metabolism, innervation and function of the myocardium through factors awaiting clarification for therapeutic targeting. Because monoamine oxidase-A (MAO-A) is a myocardial source of H2O2 and implicated in myofibrillar protein catabolism and heart failure, we presently studied myocardial MAO-A expression, inflammatory cells, and capillarization together with transcripts of pro-inflammatory, -angiogenic, -apoptotic, and -proteolytic signals (by qRT-PCR) in a 3x-transgenic (LSL-KrasG12D/+; LSL-TrP53R172H/+; Pdx1-Cre) mouse model of orthotopic pancreatic ductal adenoarcinoma (PDAC) compared to wild-type (WT) mice. Moreover, we evaluated the effect of MAO-A inhibition by application of harmine hydrochloride (HH, 8 weeks, i.p., no sham control) on PDAC-related myocardial alterations. Myocardial MAO-A protein content was significantly increased (1.69-fold) in PDAC compared to WT mice. PDAC was associated with an increased percentage of atrogin-1+ (p < 0.001), IL-1β+ (p < 0.01), COX2+ (p < 0.001), and CD68+ (p > 0.05) cells and enhanced transcripts of pro-inflammatory IL-1β (2.47-fold), COX2 (1.53-fold), TNF (1.87-fold), and SOCS3 (1.64-fold). Moreover, PDAC was associated with a reduction in capillary density (-17%, p < 0.05) and transcripts of KDR (0.46-fold) but not of VEGFA, Notch1, or Notch3. Importantly, HH treatment largely reversed the PDAC-related increases in atrogin-1+, IL-1β+, and TNF+ cell fraction as well as in COX2, IL-1β, TNF, and SOCS3 transcripts, whereas capillary density and KDR transcripts failed to improve. In mice with PDAC, increased myocardial pro-atrophic/-inflammatory signals are attributable to increased expression of MAO-A, because they are significantly improved with MAO-A inhibition as a potential novel therapeutic option. The PDAC-related loss in myocardial capillary density may be due to other mechanisms awaiting evaluation with consideration of cardiomyocyte size, cardiac function and physical activity.
Collapse
Affiliation(s)
- Kira Stelter
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Annalena Alabssi
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Gabriel Alejandro Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Hans Schwarzbach
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Volker Fendrich
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps-University of Marburg, 35032 Marburg, Germany; (V.F.); (E.P.S.)
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps-University of Marburg, 35032 Marburg, Germany; (V.F.); (E.P.S.)
| | - Ralf Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Wulf Hildebrandt
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| |
Collapse
|
5
|
Zhou L, Nishimura A, Umezawa K, Kato Y, Mi X, Ito T, Urano Y, Akaike T, Nishida M. Supersulfide catabolism participates in maladaptive remodeling of cardiac cells. J Pharmacol Sci 2024; 155:121-130. [PMID: 38880546 DOI: 10.1016/j.jphs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.
Collapse
Affiliation(s)
- Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Keitaro Umezawa
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Wang L, Wang X, Chen J, Liu Y, Wang G, Chen L, Ni W, Jia Y, Dai C, Shao W, Liu B. Low-intensity exercise training improves systolic function of heart during metastatic melanoma-induced cachexia in mice. Heliyon 2024; 10:e25562. [PMID: 38370171 PMCID: PMC10874746 DOI: 10.1016/j.heliyon.2024.e25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Collapse
Affiliation(s)
- Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang 110032, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yijia Jia
- Zhoukou Central Hospital, Renmin Road 26, Zhoukou, 466000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
7
|
Diba P, Sattler AL, Korzun T, Habecker BA, Marks DL. Unraveling the lost balance: Adrenergic dysfunction in cancer cachexia. Auton Neurosci 2024; 251:103136. [PMID: 38071925 PMCID: PMC10883135 DOI: 10.1016/j.autneu.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Cancer cachexia, characterized by muscle wasting and widespread inflammation, poses a significant challenge for patients with cancer, profoundly impacting both their quality of life and treatment management. However, existing treatment modalities remain very limited, accentuating the necessity for innovative therapeutic interventions. Many recent studies demonstrated that changes in autonomic balance is a key driver of cancer cachexia. This review consolidates research findings from investigations into autonomic dysfunction across cancer cachexia, spanning animal models and patient cohorts. Moreover, we explore therapeutic strategies involving adrenergic receptor modulation through receptor blockers and agonists. Mechanisms underlying adrenergic hyperactivity in cardiac and adipose tissues, influencing tissue remodeling, are also examined. Looking ahead, we present a perspective for future research that delves into autonomic dysregulation in cancer cachexia. This comprehensive review highlights the urgency of advancing research to unveil innovative avenues for combatting cancer cachexia and improving patient well-being.
Collapse
Affiliation(s)
- Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| | - Tetiana Korzun
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA; Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
8
|
Tichy L, Parry TL. The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies: A narrative review. Cancer Med 2023; 12:17706-17717. [PMID: 37654192 PMCID: PMC10524052 DOI: 10.1002/cam4.6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
SIGNIFICANCE Two of the leading causes of death worldwide are cancer and cardiovascular diseases. Most cancer patients suffer from a metabolic wasting syndrome known as cancer-induced cardiac cachexia, resulting in death in up to 30% of cancer patients. Main symptoms of this disease are severe cardiac muscle wasting, cardiac remodeling, and cardiac dysfunction. Metabolic alterations, increased inflammation, and imbalance of protein homeostasis contribute to the progression of this multifactorial syndrome, ultimately resulting in heart failure and death. Cancer-induced cardiac cachexia is associated with decreased quality of life, increased fatiguability, and decreased tolerance to therapeutic interventions. RECENT ADVANCES While molecular mechanisms of this disease are not fully understood, researchers have identified different stages of progression of this disease, as well as potential biomarkers to detect and monitor the development. Preclinical and clinical studies have shown positive results when implementing certain pharmacological and non-pharmacological therapy interventions. CRITICAL ISSUES There are still no clear diagnostic criteria for cancer-mediated cardiac cachexia and the condition remains untreated, leaving cancer patients with irreversible effects of this syndrome. While traditional cardiovascular therapy interventions, such as beta-blockers, have shown some positive results in preclinical and clinical research studies, recent preclinical studies have shown more successful results with certain non-traditional treatment options that have not been further evaluated yet. There is still no clinical standard of care or approved FDA drug to aid in the prevention or treatment of cancer-induced cardiac cachexia. This review aims to revisit the still not fully understood pathophysiological mechanisms of cancer-induced cardiac cachexia and explore recent studies using novel treatment strategies. FUTURE DIRECTIONS While research has progressed, further investigations might provide novel diagnostic techniques, potential biomarkers to monitor the progression of the disease, as well as viable pharmacological and non-pharmacological treatment options to increase quality of life and reduce cancer-induced cardiac cachexia-related mortality.
Collapse
Affiliation(s)
- Louisa Tichy
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Traci L. Parry
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
9
|
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022; 10:2819. [PMID: 36359339 PMCID: PMC9687767 DOI: 10.3390/biomedicines10112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2023] Open
Abstract
This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.
Collapse
Affiliation(s)
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| |
Collapse
|