1
|
Fu L, Baranova A, Cao H, Zhang F. Exploring the causal effects of depression and antidepressants on COVID-19. J Affect Disord 2024; 359:350-355. [PMID: 38801921 DOI: 10.1016/j.jad.2024.05.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND While existing studies have suggested an increased risk of COVID-19 in patients with depression, the causal impact of MDD on the severity of COVID-19 remains to be validated. Additionally, the potential impact of antidepressant medication on the risk of COVID-19 is not known. METHODS In our study, we applied a Mendelian Randomization (MR) method, leveraging summary data from GWAS, to evaluate the potential causal effects of depression on three COVID-19 outcomes. Furthermore, we investigated the causal effects of antidepressants on COVID-19 outcomes. The COVID-19 datasets contain information on various stages of the disease, including SARS-CoV-2 infection (N = 2,597,856), hospitalized COVID-19 (N = 2,095,324), and critical COVID-19 (N = 1,086,211). Datasets for depression and antidepressants were comprised of 1,349,887 and 106,785 participants, respectively. RESULTS Employing the inverse variance-weighted (IVW) method, we show a causal association between depression and three COVID-19 outcomes. Specifically, we found that genetic liability to depression is linked to critical COVID-19 (OR: 1.28, 95 % CI: 1.13-1.46), hospitalized COVID-19 (OR: 1.23, 95 % CI: 1.13-1.34), and SARS-CoV-2 infection (OR: 1.06, 95 % CI: 1.02-1.10). Interestingly, the use of antidepressants was not associated with COVID-19, with the odds ratios for critical COVID-19 (OR: 1.05, 95 % CI: 0.88-1.26), hospitalization (OR: 1.01, 95 % CI: 0.90-1.13), and SARS-CoV-2 infection (OR: 1.03, 95 % CI: 0.99-1.08) indicating no causal impact. CONCLUSION Our study indicates that genetic liability to depression may increase the susceptibility to COVID-19 and its severe forms. The lack of causal effect of antidepressant use on COVID-19 implies antidepressant medication may counteract the detrimental effect of depression on COVID-19.
Collapse
Affiliation(s)
- Li Fu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA; Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
2
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Xu M, Qian K, Shao H, Yao Y, Nair V, Ye J, Qin A. Metabolomics analysis of CEF cells infected with avian leukosis virus subgroup J based on UHPLC-QE-MS. Poult Sci 2024; 103:103693. [PMID: 38598912 PMCID: PMC11017069 DOI: 10.1016/j.psj.2024.103693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is a retrovirus that can cause immunosuppression and tumors in chicken. However, relative pathogenesis is still not clear. At present, metabolomics has shown great potential in the screening of tumor metabolic markers, prognostic evaluation, and drug target design. In this study, we utilize an untargeted metabolomics approach based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) to analyze the metabolic changes in chicken embryo fibroblast (CEF) cells infected by ALV-J. We found that ALV-J infection significantly altered a wealth of metabolites compared with control group. Additionally, most of the differentially expressed metabolites belonged to lipid metabolism, purine nucleotide metabolism and amino acid metabolism. Among them, the proportion of lipid metabolites account for the highest proportion (around 31%). Results suggest that these changes may be conductive to the formation of virion, thereby promoting the replication of ALV-J. These data provided metabolic evidence and potential biomarkers for the cellular metabolic changes induced by ALV-J, and provided important insight for further understanding the replication needs and pathogenesis of ALV-J.
Collapse
Affiliation(s)
- Menglu Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.
| |
Collapse
|
4
|
Thümmler L, Beckmann N, Sehl C, Soddemann M, Braß P, Bormann M, Brochhagen L, Elsner C, Hoertel N, Cougoule C, Ciesek S, Widera M, Dittmer U, Lindemann M, Horn PA, Witzke O, Kadow S, Kamler M, Gulbins E, Becker KA, Krawczyk A. Fluoxetine and Sertraline Potently Neutralize the Replication of Distinct SARS-CoV-2 Variants. Viruses 2024; 16:545. [PMID: 38675888 PMCID: PMC11053511 DOI: 10.3390/v16040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.
Collapse
Affiliation(s)
- Laura Thümmler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Nadine Beckmann
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Carolin Sehl
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Matthias Soddemann
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Peer Braß
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Maren Bormann
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Leonie Brochhagen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.E.); (U.D.)
| | - Nicolas Hoertel
- Institute Psychiatry and Neuroscience de Paris, INSERM U1266, Paris Cité University, 75014 Paris, France;
- Psychiatry and Addiction Department Corentin-Celton Hospital (AP-HP), 92130 Paris, France
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), CNRS, University of Toulouse, UPS, 31000 Toulouse, France;
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (S.C.); (M.W.)
- Institute of Pharmaceutical Biology, Goethe-University, 60323 Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, 60311 Frankfurt am Main, Germany
| | - Marek Widera
- Institute of Medical Virology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (S.C.); (M.W.)
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.E.); (U.D.)
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, 45147 Essen, Germany;
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Katrin Anne Becker
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.E.); (U.D.)
| |
Collapse
|
5
|
Kriegelstein M, Nováková G, Marek A. Synthesis of [ 3 H]Org24598 using in-house prepared [ 3 H]MeI. J Labelled Comp Radiopharm 2024; 67:91-103. [PMID: 38221662 DOI: 10.1002/jlcr.4084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The synthesis of tritium-labelled glycine transporter 1 inhibitor Org24598 is reported. Because of the instability of the Org24598 skeleton under hydrogenation conditions, a synthetic approach using an in-house prepared tritium-labelled alkylating agent ([3 H]MeI, SA = 26.2 Ci/mmol) was employed. Alternative methods of labelling are discussed.
Collapse
Affiliation(s)
- Michal Kriegelstein
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Gabriela Nováková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Kim JY, Min YJ, Lee MH, An YR, Ashktorab H, Smoot DT, Kwon SW, Lee SK. Ceramide promotes lytic reactivation of Epstein-Barr virus in gastric carcinoma. J Virol 2024; 98:e0177623. [PMID: 38197630 PMCID: PMC10878077 DOI: 10.1128/jvi.01776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Epstein-Barr virus (EBV) has a lifelong latency period after initial infection. Rarely, however, when the EBV immediate early gene BZLF1 is expressed by a specific stimulus, the virus switches to the lytic cycle to produce progeny viruses. We found that EBV infection reduced levels of various ceramide species in gastric cancer cells. As ceramide is a bioactive lipid implicated in the infection of various viruses, we assessed the effect of ceramide on the EBV lytic cycle. Treatment with C6-ceramide (C6-Cer) induced an increase in the endogenous ceramide pool and increased production of the viral product as well as BZLF1 expression. Treatment with the ceramidase inhibitor ceranib-2 induced EBV lytic replication with an increase in the endogenous ceramide pool. The glucosylceramide synthase inhibitor Genz-123346 inhibited C6-Cer-induced lytic replication. C6-Cer induced extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB phosphorylation, c-JUN expression, and accumulation of the autophagosome marker LC3B. Treatment with MEK1/2 inhibitor U0126, siERK1&2, or siCREB suppressed C6-Cer-induced EBV lytic replication and autophagy initiation. In contrast, siJUN transfection had no impact on BZLF1 expression. The use of 3-methyladenine (3-MA), an inhibitor targeting class III phosphoinositide 3-kinases (PI3Ks) to inhibit autophagy initiation, resulted in reduced beclin-1 expression, along with suppressed C6-Cer-induced BZLF1 expression and LC3B accumulation. Chloroquine, an inhibitor of autophagosome-lysosome fusion, increased BZLF1 protein intensity and LC3B accumulation. However, siLC3B transfection had minimal effect on BZLF1 expression. The results suggest the significance of ceramide-related sphingolipid metabolism in controlling EBV latency, highlighting the potential use of drugs targeting sphingolipid metabolism for treating EBV-positive gastric cancer.IMPORTANCEEpstein-Barr virus remains dormant in the host cell but occasionally switches to the lytic cycle when stimulated. However, the exact molecular mechanism of this lytic induction is not well understood. In this study, we demonstrate that Epstein-Barr virus infection leads to a reduction in ceramide levels. Additionally, the restoration of ceramide levels triggers lytic replication of Epstein-Barr virus with increase in phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB. Our study suggests that the Epstein-Barr virus can inhibit lytic replication and remain latent through reduction of host cell ceramide levels. This study reports the regulation of lytic replication by ceramide in Epstein-Barr virus-positive gastric cancer.
Collapse
Affiliation(s)
- Jun Yeob Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Min-Hyeok Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yea Rim An
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Duane T. Smoot
- Department of Medicine, Howard University, Washington, DC, USA
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
7
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
8
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Fenizia S, Gaggini M, Vassalle C. The Sphingolipid-Signaling Pathway as a Modulator of Infection by SARS-CoV-2. Curr Issues Mol Biol 2023; 45:7956-7973. [PMID: 37886946 PMCID: PMC10605018 DOI: 10.3390/cimb45100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Ceramides and other related sphingolipids, important cellular components linked to metabolic homeostasis and cardiometabolic diseases, have been found to be involved in different steps of the SARS-CoV-2 life cycle. Hence, changes in their physiological levels are identified as predictors of COVID-19 severity and prognosis, as well as potential therapeutic targets. In this review, an overview of the SARS-CoV-2 life cycle is given, followed by a description of the sphingolipid metabolism and its role in viral infection, with a particular focus on those steps required to finalize the viral life cycle. Furthermore, the use and development of pharmaceutical strategies to target sphingolipids to prevent and treat severe and long-term symptoms of infectious diseases, particularly COVID-19, are reviewed herein. Finally, research perspectives and current challenges in this research field are highlighted. Although many aspects of sphingolipid metabolism are not fully known, this review aims to highlight how the discovery and use of molecules targeting sphingolipids with reliable and selective properties may offer new therapeutic alternatives to infectious and other diseases, including COVID-19.
Collapse
Affiliation(s)
- Simona Fenizia
- Istituto di Fisiologia Clinica, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Melania Gaggini
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
10
|
Diesendorf V, Roll V, Geiger N, Fähr S, Obernolte H, Sewald K, Bodem J. Drug-induced phospholipidosis is not correlated with the inhibition of SARS-CoV-2 - inhibition of SARS-CoV-2 is cell line-specific. Front Cell Infect Microbiol 2023; 13:1100028. [PMID: 37637460 PMCID: PMC10450944 DOI: 10.3389/fcimb.2023.1100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Recently, Tummino et al. reported that 34 compounds, including Chloroquine and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis, although Chloroquine failed to suppress viral replication in Calu-3 cells and patients. In contrast, Fluoxetine represses viral replication in human precision-cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds have similar mechanisms of action. Here, we analysed a subset of these compounds in the viral replication and phospholipidosis assays using the Calu-3 cells and PCLS as the patient-near system. Trimipramine and Chloroquine induced phospholipidosis but failed to inhibit SARS-CoV-2 replication in Calu-3 cells, which contradicts the reported findings and the proposed mechanism. Fluoxetine, only slightly induced phospholipidosis in Calu-3 cells but reduced viral replication by 2.7 orders of magnitude. Tilorone suppressed viral replication by 1.9 orders of magnitude in Calu-3 cells without causing phospholipidosis. Thus, induction of phospholipidosis is not correlated with the inhibition of SARS-CoV-2, and the compounds act via other mechanisms. However, we show that compounds, such as Amiodarone, Tamoxifen and Tilorone, with antiviral activity on Calu-3 cells, also inhibited viral replication in human PCLS. Our results indicate that antiviral assays against SARS-CoV-2 are cell-line specific. Data from Vero E6 can lead to non-transferable results, underlining the importance of an appropriate cell system for analysing antiviral compounds against SARS-CoV-2. We observed a correlation between the active compounds in Calu-3 cells and PCLS.
Collapse
Affiliation(s)
- Viktoria Diesendorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Valeria Roll
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nina Geiger
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sofie Fähr
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Brenner D, Geiger N, Schlegel J, Diesendorf V, Kersting L, Fink J, Stelz L, Schneider-Schaulies S, Sauer M, Bodem J, Seibel J. Azido-Ceramides, a Tool to Analyse SARS-CoV-2 Replication and Inhibition-SARS-CoV-2 Is Inhibited by Ceramides. Int J Mol Sci 2023; 24:ijms24087281. [PMID: 37108461 PMCID: PMC10138768 DOI: 10.3390/ijms24087281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication.
Collapse
Affiliation(s)
- Daniela Brenner
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Nina Geiger
- Institute of Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Viktoria Diesendorf
- Institute of Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Louise Kersting
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Linda Stelz
- Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Jochen Bodem
- Institute of Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Sayed AM, Ibrahim AH, Tajuddeen N, Seibel J, Bodem J, Geiger N, Striffler K, Bringmann G, Abdelmohsen UR. Korupensamine A, but not its atropisomer, korupensamine B, inhibits SARS-CoV-2 in vitro by targeting its main protease (M pro). Eur J Med Chem 2023; 251:115226. [PMID: 36893625 PMCID: PMC9972725 DOI: 10.1016/j.ejmech.2023.115226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
By combining docking and molecular dynamics simulations, we explored a library of 65 mostly axially chiral naphthylisoquinoline alkaloids and their analogues, with most different molecular architectures and structural analogues, for their activity against SARS-CoV-2. Although natural biaryls are often regarded without consideration of their axial chirality, they can bind to protein targets in an atroposelective manner. By combining docking results with steered molecular dynamics simulations, we identified one alkaloid, korupensamine A, that atropisomer-specifically inhibited the main protease (Mpro) activity of SARS-CoV-2 significantly in comparison to the reference covalent inhibitor GC376 (IC50 = 2.52 ± 0.14 and 0.88 ± 0.15 μM, respectively) and reduced viral growth by five orders of magnitude in vitro (EC50 = 4.23 ± 1.31 μM). To investigate the binding pathway and mode of interaction of korupensamine A within the active site of the protease, we utilized Gaussian accelerated molecular dynamics simulations, which reproduced the docking pose of korupensamine A inside the active site of the enzyme. The study presents naphthylisoquinoline alkaloids as a new class of potential anti-COVID-19 agents.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, 15 Sokoto Road Samaru, Zaria, 810107, Nigeria
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Nina Geiger
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Kathrin Striffler
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, 61111, Egypt.
| |
Collapse
|
13
|
Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors. Int J Mol Sci 2023; 24:ijms24043972. [PMID: 36835380 PMCID: PMC9959602 DOI: 10.3390/ijms24043972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner.
Collapse
|
14
|
Baranova A, Zhao Y, Cao H, Zhang F. Causal associations between major depressive disorder and COVID-19. Gen Psychiatr 2023; 36:e101006. [PMID: 37066117 PMCID: PMC10083530 DOI: 10.1136/gpsych-2022-101006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Background We aimed to evaluate whether major depressive disorder (MDD) could aggravate the outcomes of coronavirus disease 2019 (COVID-19) or whether the genetic liability to COVID-19 could trigger MDD. Aims We aimed to assess bidirectional causal associations between MDD and COVID-19. Methods We performed genetic correlation and Mendelian randomisation (MR) analyses to assess potential associations between MDD and three COVID-19 outcomes. Literature-based network analysis was conducted to construct molecular pathways connecting MDD and COVID-19. Results We found that MDD has positive genetic correlations with COVID-19 outcomes (rg: 0.10-0.15). Our MR analysis indicated that genetic liability to MDD is associated with increased risks of COVID-19 infection (odds ratio (OR)=1.05, 95% confidence interval (CI): 1.00 to 1.10, p=0.039). However, genetic liability to the three COVID-19 outcomes did not confer any causal effects on MDD. Pathway analysis identified a panel of immunity-related genes that may mediate the links between MDD and COVID-19. Conclusions Our study suggests that MDD may increase the susceptibility to COVID-19. Our findings emphasise the need to increase social support and improve mental health intervention networks for people with mood disorders during the pandemic.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
- Research Centre for Medical Genetics, Moscow
| | - Yi Zhao
- Department of Psychiatry, Nanjing Medical University Affiliated Brain Hospital, Nanjing, Jiangsu, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Fuquan Zhang
- Department of Psychiatry, Nanjing Medical University Affiliated Brain Hospital, Nanjing, Jiangsu, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|