1
|
Long X, Chen L, Xiao X, Min X, Wu Y, Yang Z, Wen X. Structure, function, and research progress of primary cilia in reproductive physiology and reproductive diseases. Front Cell Dev Biol 2024; 12:1418928. [PMID: 38887518 PMCID: PMC11180893 DOI: 10.3389/fcell.2024.1418928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Primary cilia, serving as the central hub for cellular signal transduction, possess the remarkable ability to translate diverse extracellular signals, both chemical and mechanical, into intracellular responses. Their ubiquitous presence in the reproductive system underscores their pivotal roles in various cellular processes including development, differentiation, and migration. Emerging evidence suggests primary cilia as key players in reproductive physiology and associated pathologies. Notably, primary cilia have been identified in granulosa cells within mouse ovaries and uterine stromal cells, and perturbations in their structure and function have been implicated in a spectrum of reproductive dysfunctions and ciliary-related diseases. Furthermore, disruptions in primary cilia-mediated signal transduction pathways under pathological conditions exacerbate the onset and progression of reproductive disorders. This review provides a comprehensive overview of current research progress on primary cilia and their associated signaling pathways in reproductive physiology and diseases, with the aim of furnishing theoretical groundwork for the prevention and management of primary cilia-related structural and functional abnormalities contributing to reproductive system pathologies.
Collapse
Affiliation(s)
- Xiaochuan Long
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Li Chen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xinyao Xiao
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xiayu Min
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Yao Wu
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Zengming Yang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
- Basic Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
| | - Xin Wen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| |
Collapse
|
2
|
Mitra A, Loseva E, Peterman EJG. IFT cargo and motors associate sequentially with IFT trains to enter cilia of C. elegans. Nat Commun 2024; 15:3456. [PMID: 38658528 PMCID: PMC11043347 DOI: 10.1038/s41467-024-47807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Intraflagellar transport (IFT) orchestrates entry of proteins into primary cilia. At the ciliary base, assembled IFT trains, driven by kinesin-2 motors, can transport cargo proteins into the cilium, across the crowded transition zone. How trains assemble at the base and how proteins associate with them is far from understood. Here, we use single-molecule imaging in the cilia of C. elegans chemosensory neurons to directly visualize the entry of kinesin-2 motors, kinesin-II and OSM-3, as well as anterograde cargo proteins, IFT dynein and tubulin. Single-particle tracking shows that IFT components associate with trains sequentially, both in time and space. Super-resolution maps of IFT components in wild-type and mutant worms reveal ciliary ultrastructure and show that kinesin-II is essential for axonemal organization. Finally, imaging cilia lacking kinesin-II and/or transition zone function uncovers the interplay of kinesin-II and OSM-3 in driving efficient transport of IFT trains across the transition zone.
Collapse
Affiliation(s)
- Aniruddha Mitra
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Elizaveta Loseva
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
4
|
Fasawe AS, Adams JM, Engelke MF. KIF3A tail domain phosphorylation is not required for ciliogenesis in mouse embryonic fibroblasts. iScience 2024; 27:109149. [PMID: 38405607 PMCID: PMC10884758 DOI: 10.1016/j.isci.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Primary cilia are essential signaling organelles that protrude from most cells in the body. Heterodimeric kinesin-2 (KIF3A/KIF3B/KAP3) powers several intracellular transport processes, including intraflagellar transport (IFT), essential for ciliogenesis. A long-standing question is how a motor protein is differentially regulated for specific cargos. Since phosphorylation of the KIF3A tail domain was suggested to regulate the activity of kinesin-2 for ciliogenesis, similarly as for the cytosolic cargo N-Cadherin, we set out to map the phosphosites involved in this regulation. Using well-characterized Kif3a-/-; Kif3b-/- mouse embryonic fibroblasts, we performed ciliogenesis rescue assays with a library of phosphomimetic mutants comprising all predicted phosphosites in the KIF3A tail domain. In contrast to previous reports, we found that KIF3A tail domain phosphorylation is dispensable for ciliogenesis in mammals. Thus, mammalian kinesin-2 is differently regulated for IFT than currently thought, consistent with the idea of differential regulation for ciliary and cytosolic cargo.
Collapse
Affiliation(s)
- Ayoola S. Fasawe
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61790, USA
| | - Jessica M. Adams
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61790, USA
| | - Martin F. Engelke
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
5
|
Ren Z, Mao X, Wang S, Wang X. Cilia-related diseases. J Cell Mol Med 2023; 27:3974-3979. [PMID: 37830491 PMCID: PMC10746950 DOI: 10.1111/jcmm.17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
More and more attention is paid to diseases such as internal transfer and brain malformation which are caused by the abnormal morphogenesis of cilia. These cilia-related diseases are divided into two categories: ciliopathy resulting from defects of primary cilia and primary ciliary dyskinesia (PCD) caused by functional dysregulation of motile cilia. Cilia are widely distributed, and their related diseases can cover many human organs and tissues. Recent studies prove that primary cilia play a key role in maintaining homeostasis in the cardiovascular system. However, molecular mechanisms of cilia-related diseases remain elusive. Here, we reviewed recent research progresses on characteristics, molecular mechanisms and treatment methods of ciliopathy and PCD. Our review is beneficial to the further research on the pathogenesis and treatment strategies of cilia-related diseases.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xiaoxiao Mao
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
- School of Basic Medical SciencesXianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Siqi Wang
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xin Wang
- School of Mathematics and StatisticsHubei University of Science and TechnologyXianningP. R. China
| |
Collapse
|
6
|
Serres MP, Shaughnessy R, Escot S, Hammich H, Cuvelier F, Salles A, Rocancourt M, Verdon Q, Gaffuri AL, Sourigues Y, Malherbe G, Velikovsky L, Chardon F, Sassoon N, Tinevez JY, Callebaut I, Formstecher E, Houdusse A, David NB, Pylypenko O, Echard A. MiniBAR/GARRE1 is a dual Rac and Rab effector required for ciliogenesis. Dev Cell 2023; 58:2477-2494.e8. [PMID: 37875118 DOI: 10.1016/j.devcel.2023.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.
Collapse
Affiliation(s)
- Murielle P Serres
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Ronan Shaughnessy
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Sophie Escot
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Hussein Hammich
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Frédérique Cuvelier
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Audrey Salles
- Institut Pasteur, Université de Paris, UTechS Photonic BioImaging (UTechS PBI), Centre de Recherche et de Ressources Technologiques C2RT, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Murielle Rocancourt
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Quentin Verdon
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Anne-Lise Gaffuri
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Yannick Sourigues
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Gilles Malherbe
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Leonid Velikovsky
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Florian Chardon
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Nathalie Sassoon
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université de Paris, Image Analysis Hub, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Etienne Formstecher
- Hybrigenics Services SAS, 1 rue Pierre Fontaine 91000 Evry, Courcouronnes, France
| | - Anne Houdusse
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Nicolas B David
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Olena Pylypenko
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
7
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
8
|
Wang J, Zhou P, Zhu L, Guan H, Gou J, Liu X. Maternal protein deficiency alters primary cilia length in renal tubular and impairs kidney development in fetal rat. Front Nutr 2023; 10:1156029. [PMID: 37485393 PMCID: PMC10358357 DOI: 10.3389/fnut.2023.1156029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Intrauterine malnutrition impairs embryo kidney development and leads to kidney disease and hypertension in adulthood, yet the underlying mechanism remains unclear. Methods With a maternal protein restriction (MPR) rat model, we investigated the critical ciliogenesis factors and β-catenin pathway in FGR fetal kidneys and analyzed the impact of aberrant primary cilia on renal tubular epithelium. Results The data showed decreased nephron number and renal tubular dysgenesis in FGR fetus. FGR fetus showed deregulated expression of ciliogenesis factors including upregulation of IFT88 and downregulation of DYNLT1, accompanied with cilia elongation in renal tubular epithelial cells. Wnt7b, the key ligand for Wnt/β-catenin signaling, was downregulated and nuclear translocation of β-catenin was decreased. The proapoptotic protein was upregulated. In vitro study with HK-2 cells showed that overexpression of IFT88 lengthened the cilia, inhibited β-catenin signaling. Besides, IFT88 overexpression suppressed cell proliferation, activated autophagy, and induced cell apoptosis. Inhibition of autophagy partly restored the cilia length and cell viability. Likewise, knockdown of DYNLT1 led to cilia elongation, suppressed cell proliferation, and promoted apoptosis in HK-2 cell. However, the cilia elongation induced by DYNLT1 knockdown was not autophagy-dependent, but associated with reactive oxygen species (ROS) accumulation. Discussion We elucidated that intrauterine protein malnutrition led to deregulation of ciliogenesis factors and cilia elongation in renal tubular epithelial, inhibited β-catenin signaling, and induced cell apoptosis and ultimately, compromised kidney development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pei Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangliang Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Gou
- Department of Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Bravo-San Pedro JM. Cilia: From Mechanisms to Disease - Part A. Methods Cell Biol 2023; 175:xv-xviii. [PMID: 36967149 DOI: 10.1016/s0091-679x(23)00074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
10
|
Nachury MV. The gymnastics of intraflagellar transport complexes keeps trains running inside cilia. Cell 2022; 185:4863-4865. [PMID: 36563659 DOI: 10.1016/j.cell.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The assembly and signaling properties of cilia rely on intraflagellar transport (IFT) trains moving proteins into, within, and out of cilia. A flurry of near-atomic models of the multiprotein complexes that make up IFT trains has revealed new conformational changes, which may underlie the switch between anterograde and retrograde intraflagellar transport.
Collapse
Affiliation(s)
- Maxence V Nachury
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in Understanding the Genetic Mechanisms of Zebrafish Renal Multiciliated Cell Development. J Dev Biol 2022; 11:1. [PMID: 36648903 PMCID: PMC9844391 DOI: 10.3390/jdb11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|