1
|
Sun ZW, Sun ZX, Zhao Y, Zhang L, Xie F, Wang X, Li JS, Zhou MY, Feng H, Qian LJ. Rutin ameliorates stress-induced blood‒brain barrier dysfunction and cognitive decline via the endothelial HDAC1‒Claudin-5 axis. Fluids Barriers CNS 2025; 22:35. [PMID: 40176114 PMCID: PMC11967129 DOI: 10.1186/s12987-025-00639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that chronic stress compromises blood‒brain barrier (BBB) integrity by disrupting brain microvascular endothelial cells (BMECs), contributing to the development of cognitive impairments. Thus, targeting the BBB is expected to be a promising treatment strategy. The biological function of rutin has been investigated in neurological disorders; however, its regulatory role in stress-induced BBB damage and cognitive decline and the underlying mechanisms remain elusive. METHODS In a chronic unpredictable mild stress (CUMS) mouse model, a fluorescent dye assay and behavioral tests, including a novel object recognition test and Morris water maze, were performed to evaluate the protective effects of rutin on BBB integrity and cognition. The effects of rutin on BMEC function were also investigated in hCMEC/D3 cells (a human brain microvascular endothelial cell line) in vitro. Furthermore, the molecular mechanisms by which rutin restores BBB endothelium dysfunction were explored via RNA-seq, quantitative real-time PCR, western blotting, immunofluorescence and chromatin immunoprecipitation. Finally, biotinylated tumor necrosis factor-α (TNF-α) was employed to test the influence of rutin on the ability of circulating TNF-α to cross the BBB. RESULTS We identified that rutin attenuated BBB hyperpermeability and cognitive impairment caused by the 8-week CUMS procedure. Moreover, rutin promoted the proliferation, migration and angiogenesis ability of BMECs, and the integrity of the cellular monolayer through positively regulating the expression of genes involved. Furthermore, rutin impeded histone deacetylase 1 (HDAC1) recruitment and stabilized H3K27ac to increase Claudin-5 protein levels. Ultimately, normalization of the hippocampal HDAC1‒Claudin-5 axis by rutin blocked the infiltration of circulating TNF-α into the brain parenchyma and alleviated neuroinflammation. CONCLUSIONS This work establishes a protective role of rutin in regulating BMEC function and BBB integrity, and reveals that rutin is a potential drug candidate for curing chronic stress-induced cognitive deficits.
Collapse
Affiliation(s)
- Zhao-Wei Sun
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhao-Xin Sun
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ling Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jin-Shan Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Mao-Yang Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong Feng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Ling-Jia Qian
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
2
|
Bai S, Zhang G, Chen S, Wu X, Li J, Wang J, Chen D, Liu X, Wang J, Li Y, Tang Y, Tang Z. MicroRNA-451 Regulates Angiogenesis in Intracerebral Hemorrhage by Targeting Macrophage Migration Inhibitory Factor. Mol Neurobiol 2024; 61:10481-10499. [PMID: 38743209 PMCID: PMC11584486 DOI: 10.1007/s12035-024-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with the highest fatality and disability rate. Up to now, commonly used first-line therapies have limited value in improving prognosis. Angiogenesis is essential to neurological recovery after ICH. Recent studies have shown that microRNA-451(miR-451) plays an important role in angiogenesis by regulating the function of vascular endothelial cells. We found miR-451 was significantly decreased in the peripheral blood of ICH patients in the acute stage. Based on the clinical findings, we conducted this study to investigate the potential regulatory effect of miR-451 on angiogenesis after ICH. The expression of miR-451 in ICH mouse model and in a hemin toxicity model of human brain microvascular endothelial cells (hBMECs) was decreased the same as in ICH patients. MiR-451 negatively regulated the proliferation, migration, and tube formation of hBMECs in vitro. MiR-451 negatively regulated the microvessel density in the perihematoma tissue and affected neural functional recovery of ICH mouse model. Knockdown of miR-451 could recovered tight junction and protect the integrity of blood-brain barrier after ICH. Based on bioinformatic programs, macrophage migration inhibitory factor (MIF) was predicted to be the target gene and identified to be regulated by miR-451 inhibiting the protein translation. And p-AKT and p-ERK were verified to be downstream of MIF in angiogenesis. These results all suggest that miR-451 will be a potential target for regulating angiogenesis in ICH.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingxuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Chen B, de Launoit E, Meseguer D, Garcia Caceres C, Eichmann A, Renier N, Schneeberger M. The interactions between energy homeostasis and neurovascular plasticity. Nat Rev Endocrinol 2024; 20:749-759. [PMID: 39054359 DOI: 10.1038/s41574-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Food intake and energy expenditure are sensed and processed by multiple brain centres to uphold energy homeostasis. Evidence from the past decade points to the brain vasculature as a new critical player in regulating energy balance that functions in close association with the local neuronal networks. Nutritional imbalances alter many properties of the neurovascular system (such as neurovascular coupling and blood-brain barrier permeability), thus suggesting a bidirectional link between the nutritional milieu and neurovascular health. Increasing numbers of people are consuming a Western diet (comprising ultra-processed food with high-fat and high-sugar content) and have a sedentary lifestyle, with these factors contributing to the current obesity epidemic. Emerging pharmacological interventions (for example, glucagon-like peptide 1 receptor agonists) successfully trigger weight loss. However, whether these approaches can reverse the detrimental effects of long-term exposure to the Western diet (such as neurovascular uncoupling, neuroinflammation and blood-brain barrier disruption) and maintain stable body weight in the long-term needs to be clarified in addition to possible adverse effects. Lifestyle interventions revert the nutritional trigger for obesity and positively affect our overall health, including the cardiovascular system. This Perspective examines how lifestyle interventions affect the neurovascular system and neuronal networks.
Collapse
Affiliation(s)
- Bandy Chen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Elisa de Launoit
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina Garcia Caceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France
| | - Nicolas Renier
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Zhang C, Xiao Z, Yang D. Association Between the Expression of T Helper Type 17 Cell-Related Cytokines and Valve Damage in Rheumatic Heart Disease. Mol Biotechnol 2024:10.1007/s12033-024-01321-4. [PMID: 39576560 DOI: 10.1007/s12033-024-01321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/07/2024] [Indexed: 03/17/2025]
Abstract
The study aimed to clarify the association between Th17 cell-related cytokine expressions and valve damage in rheumatic heart disease (RHD). Twenty RHD patients undergoing mitral valve replacement surgery were selected as the observation group (Group O), and 20 non-rheumatic valve disease patients undergoing mitral valve replacement surgery (degenerative mitral valve prolapse) were recruited as the control group (Group C). Histopathological examination with hematoxylin and eosin (H&E) staining was conducted to observe inflammatory cell infiltration, fibrosis, and neovascularization. Immunohistochemical staining was performed to analyze Th17 cell-related cytokines (interleukin (IL)-17, IL-6, IL-23, IL-21) in patients' cardiac valve tissues. Spearman correlation analysis was employed to investigate the correlation between Th17-related cytokines and inflammatory cell infiltration, fibrosis, and neovascularization. compared to the Group C, the Group O exhibited significantly higher proportions of IL-17, IL-21, IL-6, and IL-23 positive cells and immunohistochemical scores in valve tissues (P < 0.05). Additionally, inflammatory cell infiltration scores, tissue fibrosis scores, and neovascularization scores in valve tissues were significantly higher in the Group O compared to the Group C (P < 0.05). The expression of Th17-related cytokines IL-17, IL-21, IL-6, and IL-23 in valve tissues showed a positive correlation with inflammatory cell infiltration, fibrosis, and neovascularization (P < 0.05). Conclusion: The results demonstrate a notable association between Th17 cell-related cytokine expressions in the heart valves of RHD patients and valve damage, providing a potential target for the treatment and prevention of RHD.
Collapse
Affiliation(s)
- Caiyun Zhang
- Department of Cardiovascular Surgery of West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery of West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dongmei Yang
- Department of Clinical Pharmacy (Pharmacy), West China Hospital of Sichuan UniversityWest China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Cen K, Huang Y, Xie Y, Liu Y. The guardian of intracranial vessels: Why the pericyte? Biomed Pharmacother 2024; 176:116870. [PMID: 38850658 DOI: 10.1016/j.biopha.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.
Collapse
Affiliation(s)
- Kuan Cen
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YinFei Huang
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YuMin Liu
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China.
| |
Collapse
|
6
|
Ya D, Xiang W, Jiang Y, Zhang Y, Zhou Z, Li X, Deng J, Chen M, Yang B, Lin X, Liao R. Leptin combined with withaferin A boost posthemorrhagic neurogenesis via activation of STAT3/SOCS3 pathway. Exp Neurol 2024; 377:114809. [PMID: 38714285 DOI: 10.1016/j.expneurol.2024.114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Neurogenesis as a potential strategy to improve the consequences of intracerebral hemorrhage (ICH). The current study investigates the effects of withaferin A (WFA) in combination with leptin (LEP) on ICH and neurogenesis mechanisms. LEP levels were dramatically reduced on days 7 and 14 following ICH insults in mice, but continuous WFA therapy significantly improved the potency of intrinsic LEP on day 14 after ICH. Furthermore, WFA combined with LEP enhances intrinsic neurogenesis and lessen motor deficits and long-term cognitive outcomes after ICH. In parallel, leptin deficiency in ob/ob mice limits enhancement of neurogenesis following ICH in response to WFA combined with LEP treatment. Importantly, the functional recovery conferred by WFA combined with LEP after ICH was inhibited by neurogenesis suppression. Mechanistically, this study unveiled that the signal transducer and activator of transcription-3 (STAT3) / suppressor of cytokine signaling-3 (SOCS3) pathway is a critical signaling pathway through which WFA combined with LEP treatment promotes intrinsic neurogenesis after ICH. Collectively, the results of this study elucidate the neuroprotective effects of WFA and LEP in ICH, and highlight a potential approach for ICH cell therapy.
Collapse
Affiliation(s)
- Dongshan Ya
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Wenjing Xiang
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Yanlin Jiang
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Yingmei Zhang
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Zixian Zhou
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Xiaoxia Li
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Jungang Deng
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Meiling Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Bin Yang
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Xiaohui Lin
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Rujia Liao
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
7
|
Jia P, Peng Q, Fan X, Zhang Y, Xu H, Li J, Sonita H, Liu S, Le A, Hu Q, Zhao T, Zhang S, Wang J, Zille M, Jiang C, Chen X, Wang J. Immune-mediated disruption of the blood-brain barrier after intracerebral hemorrhage: Insights and potential therapeutic targets. CNS Neurosci Ther 2024; 30:e14853. [PMID: 39034473 PMCID: PMC11260770 DOI: 10.1111/cns.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
AIMS Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.
Collapse
Affiliation(s)
- Peijun Jia
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qinfeng Peng
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yumeng Zhang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Hanxiao Xu
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Houn Sonita
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Simon Liu
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Anh Le
- George Washington School of Medicine and Health SciencesWashingtonDCUSA
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouHenanChina
| | - Ting Zhao
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shijie Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Zhang Y, Ya D, Yang J, Jiang Y, Li X, Wang J, Tian N, Deng J, Yang B, Li Q, Liao R. EAAT3 impedes oligodendrocyte remyelination in chronic cerebral hypoperfusion-induced white matter injury. CNS Neurosci Ther 2024; 30:e14487. [PMID: 37803915 PMCID: PMC10805396 DOI: 10.1111/cns.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion-induced demyelination causes progressive white matter injury, although the pathogenic pathways are unknown. METHODS The Single Cell Portal and PanglaoDB databases were used to analyze single-cell RNA sequencing experiments to determine the pattern of EAAT3 expression in CNS cells. Immunofluorescence (IF) was used to detect EAAT3 expression in oligodendrocytes and oligodendrocyte progenitor cells (OPCs). EAAT3 levels in mouse brains were measured using a western blot at various phases of development, as well as in traumatic brain injury (TBI) and intracerebral hemorrhage (ICH) mouse models. The mouse bilateral carotid artery stenosis (BCAS) model was used to create white matter injury. IF, Luxol Fast Blue staining, and electron microscopy were used to investigate the effect of remyelination. 5-Ethynyl-2-Deoxy Uridine staining, transwell chamber assays, and IF were used to examine the effects of OPCs' proliferation, migration, and differentiation in vivo and in vitro. The novel object recognition test, the Y-maze test, the rotarod test, and the grid walking test were used to examine the impact of behavioral modifications. RESULTS A considerable amount of EAAT3 was expressed in OPCs and mature oligodendrocytes, according to single-cell RNA sequencing data. During multiple critical phases of mouse brain development, there were no substantial changes in EAAT3 levels in the hippocampus, cerebral cortex, or white matter. Furthermore, neither the TBI nor ICH models significantly affected the levels of EAAT3 in the aforementioned brain areas. The chronic white matter injury caused by BCAS, on the other hand, resulted in a strikingly high level of EAAT3 expression in the oligodendroglia and white matter. Correspondingly, blocking EAAT3 assisted in the recovery of cognitive and motor impairment as well as the restoration of cerebral blood flow following BCAS. Furthermore, EAAT3 suppression was connected to improved OPCs' survival and proliferation in vivo as well as faster OPCs' proliferation, migration, and differentiation in vitro. Furthermore, this study revealed that the mTOR pathway is implicated in EAAT3-mediated remyelination. CONCLUSIONS Our findings provide the first evidence that abnormally high levels of oligodendroglial EAAT3 in chronic cerebral hypoperfusion impair OPCs' pro-remyelination actions, hence impeding white matter repair and functional recovery. EAAT3 inhibitors could be useful in the treatment of ischemia demyelination.
Collapse
Affiliation(s)
- Yingmei Zhang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Dongshan Ya
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiaxin Yang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Yanlin Jiang
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Xiaoxia Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiawen Wang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Ning Tian
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jungang Deng
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Bin Yang
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Qinghua Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Rujia Liao
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| |
Collapse
|
10
|
Wang NN, Tang M, Zhang HY, Yang QZ, Yang GL. Association between leptin receptor polymorphisms and polycystic ovary syndrome risk: a meta-analysis based on 11 studies. Gynecol Endocrinol 2023; 39:2279565. [PMID: 37935245 DOI: 10.1080/09513590.2023.2279565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVE Published evidence indicated that the leptin receptor (LEPR) gene polymorphisms are associated with polycystic ovary syndrome (PCOS) risk. However, studies on the association between the polymorphisms of LEPR gene are inconsistent or even controversial. MATERIAL AND METHODS We conducted this meta-analysis to explore the more precise relationship between LEPR polymorphisms and PCOS risk. Relevant articles were searched with five online databases up to March 1 2023. Odds ratios (OR) with 95% confidence intervals (CI) were selected to examine the statistical strength of each genetic model. Moreover, RNA secondary structure and variant effects of these loci were examined with in silico analysis. RESULTS Overall, 11 publications were analyzed, and the pooled results did not present any significant association between rs1137101 A/G polymorphism and PCOS risk in general population and some subgroup analysis. But the significant association were observed in Asian population (AG vs. AA: OR = 0.51, 95%CI = 0.32-0.81, p = .01, I2=0%; AG + GG vs. AA: OR = 0.41, 95%CI = 0.26-0.65, p < .01, I2=25.9%). Moreover, similar positive associations were also observed in rs1805096 polymorphism with PCOS risk. CONCLUSION In summary, our meta-analysis suggested that the LEPR gene polymorphisms might be associated with PCOS susceptibility. Owing to the limited studies and small sample size in our meta-analysis, more well-designed studies from different races were needed to be conducted to verify the current results.
Collapse
Affiliation(s)
- Na-Na Wang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Min Tang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Han-Yu Zhang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Qiao-Zhen Yang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Gong-Li Yang
- Department of Gastroenterology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, P. R. China
| |
Collapse
|
11
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
12
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
13
|
Datta A, Saha C, Godse P, Sharma M, Sarmah D, Bhattacharya P. Neuroendocrine regulation in stroke. Trends Endocrinol Metab 2023; 34:260-277. [PMID: 36922255 DOI: 10.1016/j.tem.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023]
Abstract
The neuroendocrine system, a crosstalk between the central nervous system and endocrine glands, balances and controls hormone secretion and their functions. Neuroendocrine pathways and mechanisms often get dysregulated following stroke, leading to altered hormone secretion and aberrant receptor expression. Dysregulation of the hypothalamus-pituitary-thyroid (HPT) axis and hypothalamus-pituitary-adrenal (HPA) axis often led to severe stroke outcomes. Post-stroke complications such as cognitive impairment, depression, infection etc. are directly or indirectly influenced by the altered neuroendocrine activity that plays a crucial role in stroke vulnerability and susceptibility. Therefore, it is imperative to explore various neurohormonal inter-relationships in regulating stroke, its outcome, and prognosis. Here, we review the biology of different hormones associated with stroke and explore their regulation with a view towards prospective therapeutics.
Collapse
Affiliation(s)
- Aishika Datta
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Chandrima Saha
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Pratiksha Godse
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Muskaan Sharma
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Deepaneeta Sarmah
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Pallab Bhattacharya
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
14
|
Shan Y, Chen Y, Gu H, Wang Y, Sun Y. Regulatory Basis of Adipokines Leptin and Adiponectin in Epilepsy: from Signaling Pathways to Glucose Metabolism. Neurochem Res 2023; 48:2017-2028. [PMID: 36797447 PMCID: PMC10181973 DOI: 10.1007/s11064-023-03891-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Epilepsy is a common and severe neurological disorder in which impaired glucose metabolism leads to changes in neuronal excitability that slow or promote the development of epilepsy. Leptin and adiponectin are important mediators regulating glucose metabolism in the peripheral and central nervous systems. Many studies have reported a strong association between epilepsy and these two adipokines involved in multiple signaling cascades and glucose metabolism. Due to the complex regulatory mechanisms between them and various signal activation networks, their role in epilepsy involves many aspects, including the release of inflammatory mediators, oxidative damage, and neuronal apoptosis. This paper aims to summarize the signaling pathways involved in leptin and adiponectin and the regulation of glucose metabolism from the perspective of the pathogenesis of epilepsy. In particular, we discuss the dual effects of leptin in epilepsy and the relationship between antiepileptic drugs and changes in the levels of these two adipokines. Clinical practitioners may need to consider these factors in evaluating clinical drugs. Through this review, we can better understand the specific involvement of leptin and adiponectin in the pathogenesis of epilepsy, provide ideas for further exploration, and bring about practical significance for the treatment of epilepsy, especially for the development of personalized treatment according to individual metabolic characteristics.
Collapse
Affiliation(s)
- Yisi Shan
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China.,Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yeting Chen
- Department of Acupuncture, Zhangjiagang Second People's Hospital, Zhangjiagang, 215600, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yadong Wang
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yaming Sun
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China.
| |
Collapse
|
15
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|