1
|
Gaudin C, Born-Bony M, Villeret B, Jaillet M, Faille D, Timsit JF, Tran-Dinh A, Montravers P, Crestani B, Garcia-Verdugo I, Sallenave JM. COVID-19 PBMCs are doubly harmful, through LDN-mediated lung epithelial damage and monocytic impaired responsiveness to live Pseudomonas aeruginosa exposure. Front Immunol 2024; 15:1398369. [PMID: 38835759 PMCID: PMC11148249 DOI: 10.3389/fimmu.2024.1398369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Although many studies have underscored the importance of T cells, phenotypically and functionally, fewer have studied the functions of myeloid cells in COVID disease. In particular, the potential role of myeloid cells such as monocytes and low-density neutrophils (LDNs) in innate responses and particular in the defense against secondary bacterial infections has been much less documented. Methods Here, we compared, in a longitudinal study, healthy subjects, idiopathic fibrosis patients, COVID patients who were either hospitalized/moderate (M-) or admitted to ICU (COV-ICU) and patients in ICU hospitalized for other reasons (non-COV-ICU). Results We show that COVID patients have an increased proportion of low-density neutrophils (LDNs), which produce high levels of proteases (particularly, NE, MMP-8 and MMP-9) (unlike non-COV-ICU patients), which are partly responsible for causing type II alveolar cell damage in co-culture experiments. In addition, we showed that M- and ICU-COVID monocytes had reduced responsiveness towards further live Pseudomonas aeruginosa (PAO1 strain) infection, an important pathogen colonizing COVID patients in ICU, as assessed by an impaired secretion of myeloid cytokines (IL-1, TNF, IL-8,…). By contrast, lymphoid cytokines (in particular type 2/type 3) levels remained high, both basally and post PAO1 infection, as reflected by the unimpaired capacity of T cells to proliferate, when stimulated with anti-CD3/CD28 beads. Discussion Overall, our results demonstrate that COVID circulatory T cells have a biased type 2/3 phenotype, unconducive to proper anti-viral responses and that myeloid cells have a dual deleterious phenotype, through their LDN-mediated damaging effect on alveolar cells and their impaired responsiveness (monocyte-mediated) towards bacterial pathogens such as P. aeruginosa.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Maëlys Born-Bony
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Madeleine Jaillet
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Dorothée Faille
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, LVTS, Paris, France
- Laboratoire d'Hématologie, AP-HP, Hôpital Bichat, Paris, France
| | - Jean-François Timsit
- Réanimation Médicale et des Maladies Infectieuses, Centre Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexy Tran-Dinh
- Inserm UMR1148, Laboratory for Vascular Translational Science Bichat Hospital, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Philippe Montravers
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Bruno Crestani
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Ignacio Garcia-Verdugo
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| |
Collapse
|
2
|
Roghani SA, Dastbaz M, Lotfi R, Shamsi A, Abdan Z, Rostampour R, Soleymani B, Zamanian MH, Soufivand P, Pournazari M, Taghadosi M. The development of anticyclic citrullinated peptide (anti-CCP) antibody following severe COVID-19. Immun Inflamm Dis 2024; 12:e1276. [PMID: 38780036 PMCID: PMC11112627 DOI: 10.1002/iid3.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES The dysregulated immune response is one of the cardinal features of severe coronavirus disease 2019 (COVID-19). This study was conducted to clarify the occurrence of autoantibodies (AABs) associated with systemic autoimmune rheumatic diseases (SARDs) in hospitalized patients with a moderate, severe, and critical form of COVID-19. METHODS The serum samples obtained from 176 hospitalized COVID-19 patients were investigated in this study, including patients with moderate (N = 90), severe (N = 50), and critical (N = 36) forms of COVID-19. Also, the serum samples collected from healthy subjects before the COVID-19 pandemic were used as controls (N = 176). The antinuclear antibodies (ANAs), antidouble-stranded DNA (anti-dsDNA), cytoplasmic-anti neutrophil cytoplasmic antibody (c-ANCA), perinuclear ANCA (p-ANCA), antiphospholipid antibodies (aPLs), and anticyclic citrullinated peptide (anti-CCP) occurrence was evaluated using a solid-phase enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that the occurrence of ANAs, anti-dsDNA, anti-CCP, c-ANCA, and p-ANCA was significantly higher in the COVID-19 patients compared to serum obtained from healthy subjects (p < .0001, p < .0001, p < .0001, p < .05, and p < .001, respectively). The positive number of anti-CCP tests increased significantly in severe COVID-19 compared to the moderate group (p < .01). CONCLUSION Our study further supports the development of autoantibodies related to systemic autoimmune rheumatologic diseases. To the best of our knowledge, this is the first study with a large sample size that reported the occurrence of anti-CCP in a severe form of COVID-19.
Collapse
Affiliation(s)
- Seyed Askar Roghani
- Immunology Department, Faculty of MedicineKermanshah University of Medical SciencesKermanshahIran
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
- Medical Biology Research Center, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Dastbaz
- Immunology Department, Faculty of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Ramin Lotfi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineKurdistan Regional Blood Transfusion CenterSanandajIran
- Clinical Research Development Center, Tohid HospitalKurdistan University of Medical SciencesSanandajIran
| | - Afsaneh Shamsi
- Immunology Department, Faculty of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Zahra Abdan
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Rezvan Rostampour
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
- Department of Clinical Biochemistry, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Hossein Zamanian
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Mahdi Taghadosi
- Immunology Department, Faculty of MedicineKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
3
|
Quarton S, McGee K, Cumley N, Behruznia M, Jeff C, Belchamber K, Cox M, Thickett D, Scott A, Parekh D, McNally A, Sapey E. Towards personalised anti-microbial and immune approaches to infections in acute care. Can real-time genomic-informed diagnosis of pathogens, and immune-focused therapies improve outcomes for patients? An observational, experimental study protocol. PLoS One 2024; 19:e0298425. [PMID: 38551904 PMCID: PMC10980213 DOI: 10.1371/journal.pone.0298425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 04/01/2024] Open
Abstract
INTRODUCTION Infection causes a vast burden of disease, with significant mortality, morbidity and costs to health-care systems. However, identifying the pathogen causative infection can be challenging, resulting in high use of broad-spectrum antibiotics, much of which may be inappropriate. Novel metagenomic methods have potential to rapidly identify pathogens, however their clinical utility for many infections is currently unclear. Outcome from infection is also impacted by the effectiveness of immune responses, which can be impaired by age, co-morbidity and the infection itself. The aims of this study are twofold: To compare diversity of organisms identified and time-to-result using metagenomic methods versus traditional culture -based techniques, to explore the potential clinical role of metagenomic approaches to pathogen identification in a range of infections.To characterise the ex vivo function of immune cells from patients with acute infection, exploring host and pathogen-specific factors which may affect immune function and overall outcomes. METHODS This is a prospective observational study of patients with acute infection. Patients with symptoms suggestive of an acute infection will be recruited, and blood and bodily fluid relevant to the site of infection collected (for example, sputum and naso-oropharyngeal swabs for respiratory tract infections, or urine for a suspected urinary tract infection). Metagenomic analysis of samples will be compared to traditional microbiology, alongside the antimicrobials received. Blood and respiratory samples such as bronchoalveolar lavage will be used to isolate immune cells and interrogate immune cell function. Where possible, similar samples will be collected from matched participants without a suspected infection to determine the impact of infection on both microbiome and immune cell function.
Collapse
Affiliation(s)
- Samuel Quarton
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kirsty McGee
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicola Cumley
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mahboobeh Behruznia
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte Jeff
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Kylie Belchamber
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael Cox
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Thickett
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan McNally
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Director of PIONEER: Health Data Research UK (HDRUK) Health Data Research Hub for Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Patient Safety Research Collaborative, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
4
|
Long MB, Howden AJM, Keir HR, Rollings CM, Giam YH, Pembridge T, Delgado L, Abo-Leyah H, Lloyd AF, Sollberger G, Hull R, Gilmour A, Hughes C, New BJM, Cassidy D, Shoemark A, Richardson H, Lamond AI, Cantrell DA, Chalmers JD, Brenes AJ. Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection. Eur Respir J 2024; 63:2300787. [PMID: 38097207 PMCID: PMC10918319 DOI: 10.1183/13993003.00787-2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery. METHODS Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched noninfected controls. Neutrophils were isolated from peripheral blood and analysed using mass spectrometry. COVID-19 severity and recovery were defined using the World Health Organization ordinal scale. RESULTS Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in neutrophils from COVID-19 patients compared to noninfected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon signature, but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors. CONCLUSIONS SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Andrew J M Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Thomas Pembridge
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Lilia Delgado
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hani Abo-Leyah
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amy F Lloyd
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gabriel Sollberger
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rebecca Hull
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Chloe Hughes
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Benjamin J M New
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Diane Cassidy
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Angus I Lamond
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates joint senior authorship
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates joint senior authorship
| |
Collapse
|
5
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
6
|
Charostad J, Rezaei Zadeh Rukerd M, Shahrokhi A, Aghda FA, ghelmani Y, Pourzand P, Pourshaikhali S, Dabiri S, dehghani A, Astani A, Nakhaie M, Kakavand E. Evaluation of hematological parameters alterations in different waves of COVID-19 pandemic: A cross-sectional study. PLoS One 2023; 18:e0290242. [PMID: 37624800 PMCID: PMC10456189 DOI: 10.1371/journal.pone.0290242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The occurrence of variations in routine hematological parameters is closely associated with disease progression, the development of severe illness, and the mortality rate among COVID-19 patients. This study aimed to investigate hematological parameters in COVID-19 hospitalized patients from the 1st to the 5th waves of the current pandemic. METHODS This cross-sectional study included a total of 1501 hospitalized patients with laboratory-confirmed COVID-19 based on WHO criteria, who were admitted to Shahid Sadoughi Hospital (SSH) in Yazd, Iran, from February 2020 to September 2021. Throughout, we encountered five COVID-19 surge waves. In each wave, we randomly selected approximately 300 patients and categorized them based on infection severity during their hospitalization, including partial recovery, full recovery, and death. Finally, hematological parameters were compared based on age, gender, pandemic waves, and outcomes using the Mann-Whitney U and Kruskal-Wallis tests. RESULTS The mean age of patients (n = 1501) was 61.1±21.88, with 816 (54.3%) of them being men. The highest mortality in this study was related to the third wave of COVID-19 with 21.3%. There was a significant difference in all of the hematological parameters, except PDW, PLT, and RDW-CV, among pandemic waves of COVID-19 in our population. The highest rise in the levels of MCV and RDW-CV occurred in the 1st wave, in the 2nd wave for lymphocyte count, MCHC, PLT count, and RDW-SD, in the 3rd wave for WBC, RBC, neutrophil count, MCH, and PDW, and in the 4th wave for Hb, Hct, and ESR (p < 0.01). The median level of Hct, Hb, RBC, and ESR parameters were significantly higher, while the mean level of lymphocyte and were lower in men than in women (p < 0.001). Also, the mean neutrophil in deceased patients significantly was higher than in those with full recovered or partial recovery (p < 0.001). CONCLUSION The findings of our study unveiled notable variations in hematological parameters across different pandemic waves, gender, and clinical outcomes. These findings indicate that the behavior of different strains of the COVID-19 may differ across various stages of the pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Shahrokhi
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Faezeh Afkhami Aghda
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaser ghelmani
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Clinical Research Development Center of Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Pouria Pourzand
- Department of Emergency Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Pourshaikhali
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam dehghani
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Kakavand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Li Y, Hook JS, Ding Q, Xiao X, Chung SS, Mettlen M, Xu L, Moreland JG, Agathocleous M. Neutrophil metabolomics in severe COVID-19 reveal GAPDH as a suppressor of neutrophil extracellular trap formation. Nat Commun 2023; 14:2610. [PMID: 37147288 PMCID: PMC10162006 DOI: 10.1038/s41467-023-37567-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 05/07/2023] Open
Abstract
Severe COVID-19 is characterized by an increase in the number and changes in the function of innate immune cells including neutrophils. However, it is not known how the metabolome of immune cells changes in patients with COVID-19. To address these questions, we analyzed the metabolome of neutrophils from patients with severe or mild COVID-19 and healthy controls. We identified widespread dysregulation of neutrophil metabolism with disease progression including in amino acid, redox, and central carbon metabolism. Metabolic changes in neutrophils from patients with severe COVID-19 were consistent with reduced activity of the glycolytic enzyme GAPDH. Inhibition of GAPDH blocked glycolysis and promoted pentose phosphate pathway activity but blunted the neutrophil respiratory burst. Inhibition of GAPDH was sufficient to cause neutrophil extracellular trap (NET) formation which required neutrophil elastase activity. GAPDH inhibition increased neutrophil pH, and blocking this increase prevented cell death and NET formation. These findings indicate that neutrophils in severe COVID-19 have an aberrant metabolism which can contribute to their dysfunction. Our work also shows that NET formation, a pathogenic feature of many inflammatory diseases, is actively suppressed in neutrophils by a cell-intrinsic mechanism controlled by GAPDH.
Collapse
Affiliation(s)
- Yafeng Li
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Ding
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Xiao
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen S Chung
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Mettlen
- Department of Cell Biology, Quantitative Light Microscopy Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Abstract
Mucosal tissues are constantly exposed to the outside environment. They receive signals from the commensal microbiome and tissue-specific triggers including alimentary and airborne elements and are tasked to maintain balance in the absence of inflammation and infection. Here, we present neutrophils as sentinel cells in mucosal immunity. We discuss the roles of neutrophils in mucosal homeostasis and overview clinical susceptibilities in patients with neutrophil defects. Finally, we present concepts related to specification of neutrophil responses within specific mucosal tissue microenvironments.
Collapse
Affiliation(s)
- Lakmali M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Rice CM, Lewis P, Ponce-Garcia FM, Gibbs W, Groves S, Cela D, Hamilton F, Arnold D, Hyams C, Oliver E, Barr R, Goenka A, Davidson A, Wooldridge L, Finn A, Rivino L, Amulic B. Hyperactive immature state and differential CXCR2 expression of neutrophils in severe COVID-19. Life Sci Alliance 2023; 6:6/2/e202201658. [PMID: 36622345 PMCID: PMC9748722 DOI: 10.26508/lsa.202201658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are vital in defence against pathogens, but excessive neutrophil activity can lead to tissue damage and promote acute respiratory distress syndrome. COVID-19 is associated with systemic expansion of immature neutrophils, but the functional consequences of this shift to immaturity are not understood. We used flow cytometry to investigate activity and phenotypic diversity of circulating neutrophils in acute and convalescent COVID-19 patients. First, we demonstrate hyperactivation of immature CD10- subpopulations in severe disease, with elevated markers of secondary granule release. Partially activated immature neutrophils were detectable 12 wk post-hospitalisation, indicating long term myeloid dysregulation in convalescent COVID-19 patients. Second, we demonstrate that neutrophils from moderately ill patients down-regulate the chemokine receptor CXCR2, whereas neutrophils from severely ill individuals fail to do so, suggesting an altered ability for organ trafficking and a potential mechanism for induction of disease tolerance. CD10- and CXCR2hi neutrophil subpopulations were enriched in severe disease and may represent prognostic biomarkers for the identification of individuals at high risk of progressing to severe COVID-19.
Collapse
Affiliation(s)
- Christopher M Rice
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Philip Lewis
- University of Bristol Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fernando M Ponce-Garcia
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Willem Gibbs
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah Groves
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Drinalda Cela
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fergus Hamilton
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Catherine Hyams
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rachael Barr
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Linda Wooldridge
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Laura Rivino
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Li YC, Ma Z, Zhong HY, You HL. Clinical characteristics of children with omicron SARS-CoV-2 infection in Changchun, China from march to april 2022: A retrospective study. Front Pediatr 2022; 10:990944. [PMID: 36458144 PMCID: PMC9705729 DOI: 10.3389/fped.2022.990944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Recently, there was an outbreak in China of the Omicron (B.1.1.529) variant, the corresponding clinical characteristics of Chinese children with the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were then reviewed and summarized retrospectively. METHODS From March to April 2022, a total of 134 children infected with the Omicron variant were included in the study. Data such as sex, age, clinical symptoms, laboratory examinations, and imaging features were collected for further analyses. RESULTS Half of the children were male and the median age was 5.67 years. The most SARS-CoV-2 Omicron variant was identified in mild (122, 91%), and the most three frequent symptoms were as cough (108, 80.6%), fever (75, 56%), and sore throat (38, 28.4%). Among age groups, no significant difference was observed in the distribution of symptoms, and no statistical difference was found in different clinical types among sex or age groups. Laboratory examinations revealed that white blood cells, neutrophils, and hemoglobin decreased; and monocytes, C-reactive protein (CRP), and aspartate aminotransferase (AST) increased. Further analyses showed that neutrophils, hemoglobin, CRP, and AST exhibited significant differences among age groups. Radiological abnormalities were found in nine cases, with small patchy high-density shadows. Of the 76 cured cases discharged from the hospital, the median hospital stay was 13 days (mean, 12 days). CONCLUSIONS In China, most children with Omicron SARS-CoV-2 infection have mild presentation. The findings of this study may help other districts improve the management of children with Omicron SARS-CoV-2 infection in China.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Zhen Ma
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Hua-Ying Zhong
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Hai-Long You
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|