1
|
Xie K, Tan X, Chen Z, Yao Y, Luo J, Ma H, Feng Y, Jiang W. Exploring the Mechanisms and Preventive Strategies for the Progression from Idiopathic Pulmonary Fibrosis to Lung Cancer: Insights from Transcriptomics and Genetic Factors. Biomedicines 2024; 12:2382. [PMID: 39457694 PMCID: PMC11504276 DOI: 10.3390/biomedicines12102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) leads to excessive fibrous tissue in the lungs, increasing the risk of lung cancer (LC) due to heightened fibroblast activity. Advances in nucleotide point mutation studies offer insights into fibrosis-to-cancer transitions. Methods: A two-sample Mendelian randomization (TSMR) approach was used to explore the causal relationship between IPF and LC. A weighted gene co-expression network analysis (WGCNA) identified shared gene modules related to immunogenic cell death (ICD) from transcriptomic datasets. Machine learning selected key genes, and a multi-layer perceptron (MLP) model was developed for IPF prediction and diagnosis. SMR and PheWAS were used to assess the expression of key genes concerning IPF risk. The impact of core genes on immune cells in the IPF microenvironment was explored, and in vivo experiments were conducted to examine the progression from IPF to LC. Results: The TSMR approach indicated a genetic predisposition for IPF progressing to LC. The predictive model, which includes eight ICD key genes, demonstrated a strong predictive capability (AUC = 0.839). The SMR analysis revealed that the elevated expression of MS4A4A was associated with an increased risk of IPF (OR = 1.275, 95% CI: 1.029-1.579; p = 0.026). The PheWAS did not identify any significant traits linked to MS4A4A expression. The rs9265808 locus in MS4A4A was identified as a susceptibility site for the progression of IPF to LC, with mutations potentially reprogramming lung neutrophils and increasing the LC risk. In vivo studies suggested MS4A4A as a promising therapeutic target. Conclusions: A causal link between IPF and LC was established, an effective prediction model was developed, and MS4A4A was highlighted as a therapeutic target to prevent IPF from progressing to LC.
Collapse
Affiliation(s)
- Kai Xie
- Department of Thoracic and Cardiovascular Surgery, Medical Center of Soochow University, Suzhou 215000, China; (K.X.); (X.T.); (Z.C.); (H.M.)
| | - Xiaoyan Tan
- Department of Thoracic and Cardiovascular Surgery, Medical Center of Soochow University, Suzhou 215000, China; (K.X.); (X.T.); (Z.C.); (H.M.)
| | - Zhe Chen
- Department of Thoracic and Cardiovascular Surgery, Medical Center of Soochow University, Suzhou 215000, China; (K.X.); (X.T.); (Z.C.); (H.M.)
| | - Yu Yao
- Department of Respiratory Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China;
| | - Jing Luo
- Department of Cardiothoracic Surgery, Medical School of Nanjing University, Nanjing 210002, China;
| | - Haitao Ma
- Department of Thoracic and Cardiovascular Surgery, Medical Center of Soochow University, Suzhou 215000, China; (K.X.); (X.T.); (Z.C.); (H.M.)
- Department of The First Clinical, Medical College of Soochow University, Suzhou 215006, China
| | - Yu Feng
- Department of The First Clinical, Medical College of Soochow University, Suzhou 215006, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, Medical Center of Soochow University, Suzhou 215000, China; (K.X.); (X.T.); (Z.C.); (H.M.)
| |
Collapse
|
2
|
Dai SL, Pan JQ, Su ZR. Multi-omics features of immunogenic cell death in gastric cancer identified by combining single-cell sequencing analysis and machine learning. Sci Rep 2024; 14:21751. [PMID: 39294296 PMCID: PMC11410816 DOI: 10.1038/s41598-024-73071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy with high mortality rates. Immunogenic cell death (ICD) is a unique form of programmed cell death that is closely linked to antitumor immunity and plays a critical role in modulating the tumor microenvironment (TME). Nevertheless, elucidating the precise effect of ICD on GC remains a challenging endeavour. ICD-related genes were identified in single-cell sequencing datasets and bulk transcriptome sequencing datasets via the AddModuleScore function, weighted gene co-expression network (WGCNA), and differential expression analysis. A robust signature associated with ICD was constructed using a machine learning computational framework incorporating 101 algorithms. Furthermore, multiomics analysis, including single-cell sequencing analysis, bulk transcriptomic analysis, and proteomics analysis, was conducted to verify the correlation of these hub genes with the immune microenvironment features of GC and with GC invasion and metastasis. We screened 59 genes associated with ICD and developed a robust ICD-related gene signature (ICDRS) via a machine learning computational framework that integrates 101 different algorithms. Furthermore, we identified five key hub genes (SMAP2, TNFAIP8, LBH, TXNIP, and PIK3IP1) from the ICDRS. Through single-cell analysis of GC tumor s, we confirmed the strong correlations of the hub genes with immune microenvironment features. Among these five genes, LBH exhibited the most significant associations with a poor prognosis and with the invasion and metastasis of GC. Finally, our findings were validated through immunohistochemical staining of a large clinical sample set, and the results further supported that LBH promotes GC cell invasion by activating the epithelial-mesenchymal transition (EMT) pathway.
Collapse
Affiliation(s)
- Shu-Long Dai
- Department of General Surgery, Deqing People's Hospital, Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 120 South Yingxi Road, Deqing, 313200, Zhejiang, P. R. China.
| | - Jian-Qiang Pan
- Department of Pathology, Deqing People's Hospital, Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 120 South Yingxi Road, Deqing, 313200, Zhejiang, P. R. China
| | - Zhen-Rong Su
- Department of General Surgery, Deqing People's Hospital, Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 120 South Yingxi Road, Deqing, 313200, Zhejiang, P. R. China
| |
Collapse
|
3
|
Li X, Pan YF, Chen YB, Wan QQ, Lin YK, Shang TY, Xu MY, Jiang TY, Pei MM, Tan YX, Dong LW, Wan XY. Arsenic trioxide augments immunogenic cell death and induces cGAS-STING-IFN pathway activation in hepatocellular carcinoma. Cell Death Dis 2024; 15:300. [PMID: 38684648 PMCID: PMC11058202 DOI: 10.1038/s41419-024-06685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The treatment of hepatocellular carcinoma (HCC) is particularly challenging due to the inherent tumoral heterogeneity and easy resistance towards chemotherapy and immunotherapy. Arsenic trioxide (ATO) has emerged as a cytotoxic agent effective for treating solid tumors, including advanced HCC. However, its effectiveness in HCC treatment remains limited, and the underlying mechanisms are still uncertain. Therefore, this study aimed to characterize the effects and mechanisms of ATO in HCC. By evaluating the susceptibilities of human and murine HCC cell lines to ATO treatment, we discovered that HCC cells exhibited a range of sensitivity to ATO treatment, highlighting their inherent heterogeneity. A gene signature comprising 265 genes was identified to distinguish ATO-sensitive from ATO-insensitive cells. According to this signature, HCC patients have also been classified and exhibited differential features of ATO response. Our results showed that ATO treatment induced reactive oxygen species (ROS) accumulation and the activation of multiple cell death modalities, including necroptosis and ferroptosis, in ATO-sensitive HCC cells. Meanwhile, elevated tumoral immunogenicity was also observed in ATO-sensitive HCC cells. Similar effects were not observed in ATO-insensitive cells. We reported that ATO treatment induced mitochondrial injury and mtDNA release into the cytoplasm in ATO-sensitive HCC tumors. This subsequently activated the cGAS-STING-IFN axis, facilitating CD8+ T cell infiltration and activation. However, we found that the IFN pathway also induced tumoral PD-L1 expression, potentially antagonizing ATO-mediated immune attack. Additional anti-PD1 therapy promoted the anti-tumor response of ATO in ATO-sensitive HCC tumors. In summary, our data indicate that heterogeneous ATO responses exist in HCC tumors, and ATO treatment significantly induces immunogenic cell death (ICD) and activates the tumor-derived mtDNA-STING-IFN axis. These findings may offer a new perspective on the clinical treatment of HCC and warrant further study.
Collapse
Affiliation(s)
- Xin Li
- Department of Integrated Chinese and Western Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yu-Fei Pan
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Yi-Bin Chen
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Qian-Qian Wan
- Department of Integrated Chinese and Western Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Tai-Yu Shang
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meng-You Xu
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- Peking University Cancer Hospital, Beijing, China
| | - Tian-Yi Jiang
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Meng-Miao Pei
- Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ye-Xiong Tan
- National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Li-Wei Dong
- National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Xu-Ying Wan
- Department of Integrated Chinese and Western Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Ma Y, Zhao X, Tian P, Xu K, Luo J, Li H, Yuan M, Liu X, Zhong Y, Wei P, Song J, Wen L, Lu C. Laser-Ignited Lipid Peroxidation Nanoamplifiers for Strengthening Tumor Photodynamic Therapy Through Aggravating Ferroptotic Propagation and Sustainable High Immunogenicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306402. [PMID: 37992239 DOI: 10.1002/smll.202306402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Photodynamic therapy (PDT) is extensively investigated for tumor therapy in the clinic. However, the efficacy of PDT is severely limited by the tissue penetrability of light, short effective half-life and radius of reactive oxygen species (ROS), and the weak immunostimulatory effect. In this study, a glutathione (GSH)-activatable nano-photosensitizer is developed to load with arachidonic acid (AA) and camouflage by erythrocyte membrane, which serves as a laser-ignited lipid peroxidation nanoamplifier (MAR). The photosensitive effect of MAR is recovered accompanied by the degradation in the tumor microenvironment and triggers the peroxidation of AA upon laser excitation. Interestingly, it aggravates the propagation of ferroptosis among cancer cells by driving the continuous lipid peroxidation chain reactions with the participation of the degradation products, ferrous ions (Fe2+), and AA. Consequently, even the deep-seated tumor cells without illumination also undergo ferroptosis owing to the propagation of ferroptotic signal. Moreover, the residual tumor cells undergoing ferroptosis still maintain high immunogenicity after PDT, thus continuously triggering sufficient tumor-associated antigens (TAAs) release to remarkably promote the anti-tumor immune response. Therefore, this study will provide a novel "all-in-one" nano-photosensitizer that not only amplifies the damaging effect and expands the effective range of PDT but also improves the immunostimulatory effect after PDT.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Xi Zhao
- Medical College, Guangxi University, Nanning, 530004, China
| | - Peilin Tian
- Medical College, Guangxi University, Nanning, 530004, China
| | - Kexin Xu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical College, Guangxi University, Nanning, 530004, China
| | - Honghui Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Mingqing Yuan
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xu Liu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Yanping Zhong
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Pingzhen Wei
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| |
Collapse
|
5
|
Yi Q, He S, Liao K, Yue Z, Mei L. Nanoparticles integrated with mild photothermal therapy and oxaliplatin for tumor chemotherapy and immunotherapy. Nanomedicine (Lond) 2024; 19:841-854. [PMID: 38436253 DOI: 10.2217/nnm-2023-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Aims: Preparation and evaluation of nanoparticles for tumor chemotherapy and immunotherapy mild photothermal therapy and oxaliplatin. Methods: The double emulsion method was used for nanoparticle preparations. Polydopamine was deposited on the surface, which was further modified with folic acid. Cytotoxicity assays were carried out by cell counting kit-8. In vivo antitumor assays were carried out on 4T1 tumor-bearing mice. Results: The nanoparticles exhibited a 190 nm-diameter pomegranate-like sphere, which could increase temperature to 43-46°C. In vivo distribution showed enhanced accumulation. The nanoparticles generated stronger immunogenic cell death effects. By stimulating the maturation of dendritic cells, mild photothermal therapy combined with oxaliplatin significantly increased the antitumor effect by a direct killing effect and activation of immunotherapy. Conclusion: This study provided a promising strategy of combination therapy for tumors.
Collapse
Affiliation(s)
- Qiong Yi
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China
| | - Shumin He
- Affiliated Meishan Hospital of Chengdu University of TCM, Meishan, 620010, China
| | - Kai Liao
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zongxiang Yue
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China
| | - Ling Mei
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
6
|
Qiao X, Sun J, Ren P, Guo H, Xu H, Bao C, Jiang C. Integrated single-cell sequencing, spatial transcriptome sequencing and bulk RNA sequencing highlights the molecular characteristics of parthanatos in gastric cancer. Aging (Albany NY) 2024; 16:5471-5500. [PMID: 38499384 PMCID: PMC11006479 DOI: 10.18632/aging.205658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Parthanatos is a novel programmatic form of cell death based on DNA damage and PARP-1 dependency. Nevertheless, its specific role in the context of gastric cancer (GC) remains uncertain. METHODS In this study, we integrated multi-omics algorithms to investigate the molecular characteristics of parthanatos in GC. A series of bioinformatics algorithms were utilized to explore clinical heterogeneity of GC and further predict the clinical outcomes. RESULTS Firstly, we conducted a comprehensive analysis of the omics features of parthanatos in various human tumors, including genomic mutations, transcriptome expression, and prognostic relevance. We successfully identified 7 cell types within the GC microenvironment: myeloid cell, epithelial cell, T cell, stromal cell, proliferative cell, B cell, and NK cell. When compared to adjacent non-tumor tissues, single-cell sequencing results from GC tissues revealed elevated scores for the parthanatos pathway across multiple cell types. Spatial transcriptomics, for the first time, unveiled the spatial distribution characteristics of parthanatos signaling. GC patients with different parthanatos signals often exhibited distinct immune microenvironment and metabolic reprogramming features, leading to different clinical outcomes. The integration of parthanatos signaling and clinical indicators enabled the creation of novel survival curves that accurately assess patients' survival times and statuses. CONCLUSIONS In this study, the molecular characteristics of parthanatos' unicellular and spatial transcriptomics in GC were revealed for the first time. Our model based on parthanatos signals can be used to distinguish individual heterogeneity and predict clinical outcomes in patients with GC.
Collapse
Affiliation(s)
- Xiuli Qiao
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaao Sun
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pingping Ren
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hua Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chongchan Bao
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Molecular Pathology in Tumors of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chunmeng Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Mianowska M, Zaremba-Czogalla M, Zygmunt A, Mahmud M, Süss R, Gubernator J. Dual Role of Vitamin C-Encapsulated Liposomal Berberine in Effective Colon Anticancer Immunotherapy. Pharmaceuticals (Basel) 2023; 17:5. [PMID: 38275991 PMCID: PMC10819181 DOI: 10.3390/ph17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
The aim of the study was to achieve effective colon anticancer immunotherapy using the alkaloid berberine. In the presented paper we attempt to develop a formulation of berberine loaded into liposomal carriers using the vitamin C gradient method, characterized by efficient drug encapsulation, high stability during long-term storage, low drug release in human plasma with specific cytotoxicity towards colon cancer cells. Liposomal berberine was responsible for the induction of oxidative stress, the presence of Ca2+ ions in the cytosol, the reduction of Δψm, and ATP depletion with a simultaneous lack of caspase activity. Moreover, treatment with liposomal berberine led to CRT exposure on the surface of cancer cells, extracellular ATP, and HMGB1 release. The above-described mechanism of action was most likely associated with ICD induction, contributing to the increased number of phagocytic cancer cells. We have shown that cancer cells treated with liposomal berberine were phagocytosed more frequently by macrophages compared to the untreated cancer cells. What is more, we have shown that macrophage pre-treatment with liposomal berberine led to a 3-fold change in the number of phagocytosed SW620 cancer cells. The obtained results provide new insights into the role of berberine in maintaining the immune response against colorectal cancer.
Collapse
Affiliation(s)
- Martyna Mianowska
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Mohamed Mahmud
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
- Department of Medical Genetics, Faculty of Health Sciences, University of Misurata, Misurata 2478, Libya
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Albert Ludwig University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany;
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| |
Collapse
|
8
|
Xu G, Jiang Y, Li Y, Ge J, Xu X, Chen D, Wu J. A novel immunogenic cell death-related genes signature for predicting prognosis, immune landscape and immunotherapy effect in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:16261-16277. [PMID: 37698679 DOI: 10.1007/s00432-023-05370-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Immunogenic cell death (ICD) has emerged as a promising strategy to activate the adaptive immune response, modulate the tumor microenvironment (TME) and enhance the efficacy of immune therapy. However, the relationship between ICD and TME reprogramming in hepatocellular carcinoma (HCC) remains poorly understood. METHODS Transcriptional profiles and clinical spectrum of 486 HCC patients were obtained from TCGA and GEO databases. We utilized consensus clustering analysis to construct two distinct molecular subtypes and established an ICD-based scoring system (named ICD score) via WGCNA and LASSO Cox regression to predict the prognosis of the HCC cohort. Then we employed CIBERSORT and ESTIMATE methods to analyze the immune landscape of ICD score in HCC. Subsequently, the immunophenoscore (IPS) and tumor immune dysfunction and rejection (TIDE) analyses were performed to determine whether the ICD score could influence the immune therapeutic effect. Based on the ICD scoring system, a novel nomogram was generated to provide a numerical probability of HCC patients' overall survival (OS). RESULTS We identified two independent ICD clusters (cluster A/B), and cluster B possessed a worse prognosis and higher immune cell infiltration. Using ICD scoring system, the HCC patients were divided into high- and low-ICD-score groups. Through integrative analyses, the high-ICD cohort owned advanced TNM stage, high pathologic grade and increased suppressive immune cell enrichment. We developed a nomogram containing the ICD score, demonstrating a high predictive accuracy with a C-index of 0.703. We further discovered that PSMD2 and PSMD14 could serve as ICD-associated prognostic biomarkers and therapeutic targets in HCC. CONCLUSION The ICD score exhibits a high degree of reliability for predicting prognosis and may provide valuable guidance for the selection of immunotherapy for HCC patients. This novel scoring system enables the estimation of clinical immunotherapy response for HCC patients, offering new opportunities for personalized immunotherapy.
Collapse
Affiliation(s)
- Guangming Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, China
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, China
| | - Jiangzhen Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, China
| | - Xiaofeng Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Zhejiang Province, Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed Pharmacother 2023; 168:115627. [PMID: 37812894 DOI: 10.1016/j.biopha.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; School of Nursing, Jilin University, Changchun, China
| | - Hao-Yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - Jun-Feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Chen L, Lin J, Wen Y, Chen Y, Chen CB. Development and validation of a model based on immunogenic cell death related genes to predict the prognosis and immune response to bladder urothelial carcinoma. Front Oncol 2023; 13:1291720. [PMID: 38023241 PMCID: PMC10676223 DOI: 10.3389/fonc.2023.1291720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunogenic cell death (ICD) has been categorized as a variant of regulated cell death that is capable of inducing an adaptive immune response. A growing body of evidence has indicated that ICD can modify the tumor immune microenvironment by releasing danger signals or damage-associated molecular patterns (DAMPs), potentially enhancing the efficacy of immunotherapy. Consequently, the identification of biomarkers associated with ICD that can classify patients based on their potential response to ICD immunotherapy would be highly advantageous. Therefore the goal of the study is to better understand and identify what patients with bladder urothelial carcinoma (BLCA) will respond to immunotherapy by analyzing ICD signatures and investigate ICD-related prognostic factors in the context of BLCA. Methods The data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases regarding BLCA and normal samples was categorized based on ICD-related genes (IRGs). Specifically, we conducted an immunohistochemical (IHC) experiment to validate the expression levels of Calreticulin (CALR) in both tumor and adjacent tissues, and evaluated its prognostic significance using the Kaplan-Meier (KM) curve. Subsequently, the samples from TCGA were divided into two subtypes using consensus clustering. To obtain a more comprehensive comprehension of the biological functions, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The calculation of immune landscape between two subtypes was performed through ESTIMATE and CIBERSORT. Risk models were constructed using Cox and Lasso regression and their prognosis predictive ability was evaluated using nomogram, receiver operating characteristic (ROC), and calibration curves. Finally, Tumor Immune Dysfunction and Exclusion (TIDE) algorithms was utilized to predict the response to immunotherapy. Results A total of 34 IRGs were identified, with most of them exhibiting upregulation in BLCA samples. The expression of CALR was notably higher in BLCA compared to the adjacent tissue, and this increase was associated with an unfavorable prognosis. The differentially expressed genes (DEGs) associated with ICD were linked to various immune-related pathways. The ICD-high subtypes exhibited an immune-activated tumor microenvironment (TME) compared to the ICD-low subtypes. Utilizing three IRGs including CALR, IFNB1, and IFNG, a risk model was developed to categorize BLCA patients into high- and low-risk groups. The overall survival (OS) was considerably greater in the low-risk group compared to the high-risk group, as evidenced by both the TCGA and GEO cohorts. The risk score was identified as an independent prognostic parameter (all p < 0.001). Our model demonstrated good predictive ability (The area under the ROC curve (AUC), AUC1-year= 0.632, AUC3-year= 0.637, and AUC5-year =0.653). Ultimately, the lower risk score was associated with a more responsive immunotherapy group. Conclusion The potential of the ICD-based risk signature to function as a marker for evaluating the prognosis and immune landscape in BLCA suggests its usefulness in identifying the suitable population for effective immunotherapy against BLCA.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jiexiang Lin
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaoming Wen
- Drug Development, Fujian Institute of Microbiology, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Chuan-ben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Zhang X, Shang C, Qiao X, Guo Y. Role and clinical significance of immunogenic cell death biomarkers in chemoresistance and immunoregulation of head and neck squamous cell carcinoma. Biomed Pharmacother 2023; 167:115509. [PMID: 37722193 DOI: 10.1016/j.biopha.2023.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in the whole world, with little improvement in the 5-year survival rate due to the occurrence of chemoresistance. With the increasing interests in tumor immune microenvironment, immunogenic cell death (ICD)-induced chemotherapy has shown promising results in enhancing sensitivity to immune checkpoint inhibitors (ICI) and improving the efficiency of tumor immunotherapy. This review summarizes the role of key ICD biomarkers and their underlying molecular mechanisms in HNSCC chemoresistance. The results showed that ICD initiation could significantly improve the survival and prognosis of patients. ICD and its biomarker could also serve as molecular markers for tumor diagnosis and prognosis. Moreover, key components of DAMPs including CALR, HGMB1, and ATP are involved in the regulation of HNSCC chemo-sensitivity, confirming that the key biomarkers of ICD can also be developed into new targets for regulating HNSCC chemoresistance. This review clearly illustrates the theoretical basis for the hypothesis that ICD biomarkers are therapeutic targets involved in HNSCC progression, chemoresistance, and even immune microenvironment regulation. The compilation and investigation may provide new insights into the molecular therapy of HNSCC.
Collapse
Affiliation(s)
- Xuanyu Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Chao Shang
- Department of Neurobiology, China Medical University, Shenyang, Liaoning, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| | - Yan Guo
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Gong J, Yu R, Hu X, Luo H, Gao Q, Li Y, Tan G, Luo H, Qin B. Development and Validation of a Novel Prognosis Model Based on a Panel of Three Immunogenic Cell Death-Related Genes for Non-Cirrhotic Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1609-1628. [PMID: 37781718 PMCID: PMC10540790 DOI: 10.2147/jhc.s424545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose The accurate prediction of non-cirrhotic hepatocellular carcinoma (NCHCC) risk facilitates improved surveillance strategy and decreases cancer-related mortality. This study aimed to explore the correlation between immunogenic cell death (ICD) and NCHCC prognosis using The Cancer Genome Atlas (TCGA) datasets, and the potential prognostic value of ICD-related genes in NCHCC. Methods Clinical and transcriptomic data of patients with NCHCC patients were retrieved from TCGA database. Weighted gene co-expression network analysis was performed to obtain the NCHCC phenotype-related module genes. Consensus clustering analysis was performed to classify the patients into two clusters based on intersection genes among differentially expressed genes (DEGs) between cancer and adjacent tissues, NCHCC phenotype-related genes, and ICD-related genes. NCHCC-derived tissue microarray was used to evaluate the correlation of the expression levels of key genes with NCHCC prognosis using immunohistochemical staining. Results Cox regression analyses were performed to construct a prognostic risk score model comprising three genes (TMC7, GRAMD1C, and GNPDA1) based on DEGs between two clusters. The model stratified patients with NCHCC into two risk groups. The overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group. Univariable and multivariable Cox regression analyses revealed that these signature genes are independent predictors of OS. Functional analysis revealed differential immune status between the two risk groups. Next, a nomogram was constructed, which demonstrated the potent distinguishing ability of the developed model based on receiver operating characteristic curves. In vitro functional validation revealed that the migration and invasion abilities of HepG2 and Huh7 cells were upregulated upon GRAMD1C knockdown but downregulated upon TMC7 knockdown. Conclusion This study developed a prognostic model comprising three genes, which can aid in predicting the survival of patients with NCHCC and guide the selection of drugs and molecular markers for NCHCC.
Collapse
Affiliation(s)
- Jiaojiao Gong
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Renjie Yu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huating Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qingzhu Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
13
|
Qing X, Jiang J, Yuan C, Xie K, Wang K. Expression patterns and immunological characterization of PANoptosis -related genes in gastric cancer. Front Endocrinol (Lausanne) 2023; 14:1222072. [PMID: 37664853 PMCID: PMC10471966 DOI: 10.3389/fendo.2023.1222072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background Accumulative studies have demonstrated the close relationship between tumor immunity and pyroptosis, apoptosis, and necroptosis. However, the role of PANoptosis in gastric cancer (GC) is yet to be fully understood. Methods This research attempted to identify the expression patterns of PANoptosis regulators and the immune landscape in GC by integrating the GSE54129 and GSE65801 datasets. We analyzed GC specimens and established molecular clusters associated with PANoptosis-related genes (PRGs) and corresponding immune characteristics. The differentially expressed genes were determined with the WGCNA method. Afterward, we employed four machine learning algorithms (Random Forest, Support Vector Machine, Generalized linear Model, and eXtreme Gradient Boosting) to select the optimal model, which was validated using nomogram, calibration curve, decision curve analysis (DCA), and two validation cohorts. Additionally, this study discussed the relationship between infiltrating immune cells and variables in the selected model. Results This study identified dysregulated PRGs and differential immune activities between GC and normal samples, and further identified two PANoptosis-related molecular clusters in GC. These clusters demonstrated remarkable immunological heterogeneity, with Cluster1 exhibiting abundant immune infiltration. The Support Vector Machine signature was found to have the best discriminative ability, and a 5-gene-based SVM signature was established. This model showed excellent performance in the external validation cohorts, and the nomogram, calibration curve, and DCA indicated its reliability in predicting GC patterns. Further analysis confirmed that the 5 selected variables were remarkably related to infiltrating immune cells and immune-related pathways. Conclusion Taken together, this work demonstrates that the PANoptosis pattern has the potential as a stratification tool for patient risk assessment and a reflection of the immune microenvironment in GC.
Collapse
Affiliation(s)
- Xin Qing
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Junyi Jiang
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Chunlei Yuan
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Kunke Xie
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Ke Wang
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| |
Collapse
|
14
|
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211130. [PMID: 36881527 DOI: 10.1002/adma.202211130] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy has made remarkable strides in cancer therapy over the past decade. However, such emerging therapy still suffers from the low response rates and immune-related adverse events. Various strategies have been developed to overcome these serious challenges. Therein, sonodynamic therapy (SDT), as a non-invasive treatment, has received ever-increasing attention especially in the treatment of deep-seated tumors. Significantly, SDT can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response, termed sonodynamic immunotherapy. The rapid development of nanotechnology has revolutionized SDT effects with robust immune response induction. As a result, more and more innovative nanosonosensitizers and synergistic treatment modalities are established with superior efficacy and safe profile. In this review, the recent advances in cancer sonodynamic immunotherapy are summarized with a particular emphasis on how nanotechnology can be explored to harness SDT for amplifying anti-tumor immune response. Moreover, the current challenges in this field and the prospects for its clinical translation are also presented. It is anticipated that this review can provide rational guidance and facilitate the development of nanomaterials-assisted sonodynamic immunotherapy, helping to pave the way for next-generation cancer therapy and eventually achieve a durable response in patients.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Chen XJ, Wei CZ, Lin J, Zhang RP, Chen GM, Li YF, Nie RC, Chen YM. Prognostic Significance of PD-L1 Expression in Gastric Cancer Patients with Peritoneal Metastasis. Biomedicines 2023; 11:2003. [PMID: 37509642 PMCID: PMC10377298 DOI: 10.3390/biomedicines11072003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Recently, many studies have explored the relationship between the expression of programmed death ligand 1 (PD-L1) and prognosis in gastric cancer, but there is still controversy. Additionally, few studies have specifically investigated the expression of PD-L1 in patients with peritoneal metastasis. METHODS Immunohistochemistry was used to analyze the expression of PD-L1 in gastric cancer patients with peritoneal metastasis. The combined positive score (CPS) was calculated to evaluate the expression of PD-L1, and the clinicopathological data were analyzed to explore prognostic significance. RESULTS In total, 147 gastric cancer patients with peritoneal metastasis were enrolled. The negative PD-L1 expression was defined as a CPS < 1, and high PD-L1 expression was defined as a CPS ≥ 10. PD-L1 expression with CPS ≥ 1 and CPS-negative was detected in 67 (45.58%) and 80 (54.42%) patients, respectively. High PD-L1 expression at PD-L1 CPS ≥ 10 was detected in 21(14.29%) patients. The median overall survival (OS) was 18.53 months in the CPS < 10 group and 27.00 months in the CPS ≥ 10 group; the OS difference between the two groups was significant (p = 0.015). Multivariate analysis demonstrated that a poor Eastern Cooperative Oncology Group performance score (ECOG PS) (p = 0.002) and severe peritoneal metastasis (p = 0.033) were significantly associated with poor survival, while palliative chemotherapy (p = 0.002) and high PD-L1 expression (p = 0.008) were independent and significantly favorable prognostic factors. CONCLUSIONS Our study demonstrated that PD-L1 expression was widely presented in gastric cancer patients with peritoneal metastasis, while a CPS no less than 10 predicted better prognosis.
Collapse
Affiliation(s)
- Xiao-Jiang Chen
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Cheng-Zhi Wei
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Jun Lin
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Ruo-Peng Zhang
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Guo-Ming Chen
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Yuan-Fang Li
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Yong-Ming Chen
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| |
Collapse
|
16
|
Tian Z, Li X, Jiang D. Analysis of immunogenic cell death in atherosclerosis based on scRNA-seq and bulk RNA-seq data. Int Immunopharmacol 2023; 119:110130. [PMID: 37075670 DOI: 10.1016/j.intimp.2023.110130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Regulated cell death plays a very important role in atherosclerosis (AS). Despite a large number of studies, there is a lack of literature on immunogenic cell death (ICD) in AS. METHOD Carotid atherosclerotic plaque single-cell RNA (scRNA) sequencing data were analyzed to define involved cells and determine their transcriptomic characteristics. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, CIBERSORT, ESTIMATE and ssGSEA (Gene Set Enrichment Analysis), consensus clustering analysis, random forest (RF), Decision Curve Analysis (DCA), and the Drug-Gene Interaction and DrugBank databases were applied for bulk sequencing data. All data were downloaded from Gene Expression Omnibus (GEO). RESULT mDCs and CTLs correlated obviously with AS occurrence and development (k2(mDCs) = 48.333, P < 0.001; k2(CTL) = 130.56, P < 0.001). In total, 21 differentially expressed genes were obtained for the bulk transcriptome; KEGG enrichment analysis results were similar to those for differentially expressed genes in endothelial cells. Eleven genes with a gene importance score > 1.5 were obtained in the training set and validated in the test set, resulting in 8 differentially expressed genes for ICD. A model to predict occurrence of AS and 56 drugs that may be used to treat AS were obtained with these 8 genes. CONCLUSION Immunogenic cell death occurs mainly in endothelial cells in AS. ICD maintains chronic inflammation in AS and plays a crucial role in its occurrence and development. ICD related genes may become drug-targeted genes for AS treatment.
Collapse
Affiliation(s)
- Zemin Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xinyang Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Delong Jiang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
17
|
Li D, Liu S, Ma Y, Liu S, Liu Y, Ding J. Biomaterials That Induce Immunogenic Cell Death. SMALL METHODS 2023; 7:e2300204. [PMID: 37116170 DOI: 10.1002/smtd.202300204] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Indexed: 05/17/2023]
Abstract
The immune system takes part in most physiological and pathological processes of the body, including the occurrence and development of cancer. Immunotherapy provides a promising modality for inhibition and even the cure of cancer. During immunotherapy, the immunogenic cell death (ICD) of tumor cells induced by chemotherapy, radiotherapy, phototherapy, bioactive materials, and so forth, triggers a series of cellular responses by causing the release of tumor-associated antigens and damage-associated molecular patterns, which ultimately activate innate and adaptive immune responses. Among them, the ICD-induced biomaterials attract increasing conditions as a benefit of biosafety and multifunctional modifications. This Review summarizes the research progress in biomaterials for inducing ICD via triggering endoplasmic reticulum oxidative stress, mitochondrial dysfunction, and cell membrane rupture and discusses the application prospects of ICD-inducing biomaterials in clinical practice for cancer immunotherapy.
Collapse
Affiliation(s)
- Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Siqi Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yang Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Shixian Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| |
Collapse
|
18
|
Relvas CM, Santos SG, Oliveira MJ, Magalhães FD, Pinto AM. Nanomaterials for Skin Cancer Photoimmunotherapy. Biomedicines 2023; 11:biomedicines11051292. [PMID: 37238966 DOI: 10.3390/biomedicines11051292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Skin cancer is one of the most common types of cancer, and its incidence continues to increase. It is divided into two main categories, melanoma and non-melanoma. Treatments include surgery, radiation therapy, and chemotherapy. The relatively high mortality in melanoma and the existing recurrence rates, both for melanoma and non-melanoma, create the need for studying and developing new approaches for skin cancer management. Recent studies have focused on immunotherapy, photodynamic therapy, photothermal therapy, and photoimmunotherapy. Photoimmunotherapy has gained much attention due to its excellent potential outcomes. It combines the advantages of photodynamic and/or photothermal therapy with a systemic immune response, making it ideal for metastatic cancer. This review critically discusses different new nanomaterials' properties and mechanisms of action for skin cancer photoimmunotherapy and the main results obtained in the field.
Collapse
Affiliation(s)
- Carlota M Relvas
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Susana G Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Artur M Pinto
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| |
Collapse
|
19
|
Peng W, Yang J, Xia L, Qian X, Long G, Zhang H, Xie J, Zhao J, Zhang L, Pan W. Immunogenic cell death-associated biomarkers classification predicts prognosis and immunotherapy efficacy in pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1178966. [PMID: 37064149 PMCID: PMC10098015 DOI: 10.3389/fonc.2023.1178966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction Immunogenic cell death (ICD) is a sort of regulated cell death (RCD) sufficient to trigger an adaptive immunological response. According to the current findings, ICD has the capacity to alter the tumor immune microenvironment by generating danger signals or damage-associated molecular patterns (DAMPs), which may contribute in immunotherapy. It would be beneficial to develop ICD-related biomarkers that classify individuals depending on how well they respond to ICD immunotherapy. Methods and results We used consensus clustering to identify two ICD-related groupings. The ICD-high subtype was associated with favorable clinical outcomes, significant immune cell infiltration, and powerful immune response signaling activity. In addition, we developed and validated an ICD-related prognostic model for PDAC survival based on the tumor immune microenvironment. We also collected clinical and pathological data from 48 patients with PDAC, and patients with high EIF2A expression had a poor prognosis. Finally, based on ICD signatures, we developed a novel PDAC categorization method. This categorization had significant clinical implications for determining prognosis and immunotherapy. Conclusion Our work emphasizes the connections between ICD subtype variations and alterations in the immune tumor microenvironment in PDAC. These findings may help the immune therapy-based therapies for patients with PDAC. We also created and validated an ICD-related prognostic signature, which had a substantial impact on estimating patients' overall survival times (OS).
Collapse
Affiliation(s)
- Wenguang Peng
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiarui Yang
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Long Xia
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Xiangjun Qian
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guojie Long
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiancong Xie
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junzhang Zhao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Zhang
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weidong Pan
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Zhang M, Lin Y, Chen R, Yu H, Li Y, Chen M, Dou C, Yin P, Zhang L, Tang P. Ghost messages: cell death signals spread. Cell Commun Signal 2023; 21:6. [PMID: 36624476 PMCID: PMC9830882 DOI: 10.1186/s12964-022-01004-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a mystery in various forms. Whichever type of cell death, this is always accompanied by active or passive molecules release. The recent years marked the renaissance of the study of these molecules showing they can signal to and communicate with recipient cells and regulate physio- or pathological events. This review summarizes the defined forms of messages cells could spread while dying, the effects of these signals on the target tissue/cells, and how these types of communications regulate physio- or pathological processes. By doing so, this review hopes to identify major unresolved questions in the field, formulate new hypothesis worthy of further investigation, and when possible, provide references for the search of novel diagnostic/therapeutics agents. Video abstract.
Collapse
Affiliation(s)
- Mingming Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yuan Lin
- grid.412463.60000 0004 1762 6325Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Ruijing Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Haikuan Yu
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yi Li
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ce Dou
- grid.410570.70000 0004 1760 6682Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Pengbin Yin
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Licheng Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Peifu Tang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| |
Collapse
|
21
|
Wang H, Niu H, Luo X, Zhu N, Xiang J, He Y, Chen Z, Li G, Hu Y. Radiosensitizing effects of pyrogallol-loaded mesoporous or-ganosilica nanoparticles on gastric cancer by amplified ferroptosis. Front Bioeng Biotechnol 2023; 11:1171450. [PMID: 37143600 PMCID: PMC10151506 DOI: 10.3389/fbioe.2023.1171450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Radiotherapy (RT) incorporated multidisciplinary treatment is producing excellent clinical results, but its efficacy in treating late-stage gastric cancer is constrained by radioresistance and RT-related toxicity. Especially, since reactive oxygen species are the pivotal effectual molecules of ionizing radiation, improving ROS production by nanoparticles and other pharmacological modulation to amplify oxidation of polyunsaturated fatty acids and subsequent ferroptotic cell death is shown to enhance cancer cell radioresponse. Herein, we constructed a nanosystem by loading Pyrogallol (PG), a polyphenol compound and ROS generator, into mesoporous organosilica nanoparticles named as MON@pG. The nanoparticles exhibit proper size distribution with amplified ROS production and substantial glutathione depletion under X-ray radiation in gastric cancer cell line. Meanwhile, MON@PG enhanced radiosensitivity of gastric cancer in xenograft tumor model by ROS-mediated accumulation of DNA damage and apoptosis. Furthermore, this augmented oxidative process induced mitochondrial dysfunction and ferroptosis. In summary, MON@PG nanoparticles show the capacity to improve RT potency in gastric cancer by disrupting redox balance and augmenting ferroptosis.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Hongyan Niu
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xi Luo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Nan Zhu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jingfeng Xiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan He
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Guoxin Li, ; Yanfeng Hu,
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Guoxin Li, ; Yanfeng Hu,
| |
Collapse
|