1
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Luan X, Chen P, Miao L, Yuan X, Yu C, Di G. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies. Mol Cell Biochem 2025; 480:19-41. [PMID: 38556592 DOI: 10.1007/s11010-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
Ferroptosis is a newly discovered type of regulated cell death participated in multiple diseases. Different from other classical cell death programs such as necrosis and apoptosis, ferroptosis involving iron-catalyzed lipid peroxidation is characterized by Fe2+ accumulation and mitochondria alterations. The phenomenon of oxidative stress following organ ischemia-reperfusion (I/R) has recently garnered attention for its connection to the onset of ferroptosis and subsequent reperfusion injuries. This article provides a comprehensive overview underlying the mechanisms of ferroptosis, with a further focus on the latest research progress regarding interference with ferroptotic pathways in organ I/R injuries, such as intestine, lung, heart, kidney, liver, and brain. Understanding the links between ferroptosis and I/R injury may inform potential therapeutic strategies and targeted agents.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Yu W, Lu J, Huang X, Zhuang H, An Y, Zhang M. Exendin-4 promotes ischemia-reperfusion flap survival by upregulating Gpx4 to inhibit ferroptosis. Eur J Pharmacol 2024; 984:177029. [PMID: 39366501 DOI: 10.1016/j.ejphar.2024.177029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Effective drugs for preventing or treating skin flap necrosis remain elusive. In this study, we investigated the potential protective effect of exendin-4 against skin flap ischemia-reperfusion injury (IRI) through the inhibition of ferroptosis. METHOD A rat abdomen was constructed with an island skin flap, and the superficial vascular pedicle of the abdominal wall was closed using a vascular clamp, which was removed after 8 h. Before surgery, RSL3 and ferrostatin-1 solutions were intraperitoneally injected. After the surgery, subcutaneous injections of exendin-4 were administered daily. The number of inflammatory cells, mean vascular density, collagen fiber content, and apoptosis and ferroptosis indicators were quantified 24 h after reperfusion. Survival, contraction rate, and blood perfusion of the skin flap were evaluated on days 1, 3, 5, and 7 after reperfusion. RESULTS The flap survival rate was significantly higher in the exendin-4 group than that in the injury group, whereas the contraction rate was lower. Compared with the injury group, the exendin-4 group showed less inflammatory cell infiltration, higher vascular density, and less collagen fiber loss. At the molecular level, the exendin-4 group demonstrated opposite or elevated expression of apoptosis and ferroptosis indicators than those in the injury group, with significantly increased glutathione peroxidase 4 (Gpx4). Ferroptosis inhibitors and agonists enhanced and reversed the protective effects of exendin-4, respectively. CONCLUSION Exendin-4 alleviates skin flap IRI by upregulating Gpx4 expression to inhibit ferroptosis. Therefore, exendin-4 may serve as a novel clinical treatment for skin flap IRI.
Collapse
Affiliation(s)
- Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jianghuiwen Lu
- Department of Medical Aesthetic, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Xinqi Huang
- Institute of Forensic Sciences, School of Basic Medicine, Soochow University, Suzhou, 215000, China
| | - Huiru Zhuang
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yumei An
- Institute of Forensic Sciences, School of Basic Medicine, Soochow University, Suzhou, 215000, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, School of Basic Medicine, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Fan Q, Chang H, Tian L, Zheng B, Liu R, Li Z. Methane saline suppresses ferroptosis via the Nrf2/HO-1 signaling pathway to ameliorate intestinal ischemia-reperfusion injury. Redox Rep 2024; 29:2373657. [PMID: 39023011 PMCID: PMC11259071 DOI: 10.1080/13510002.2024.2373657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVES Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.
Collapse
Affiliation(s)
- Qingrui Fan
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Xi’an Medical University, Xi’an, People’s Republic of China
| | - Hulin Chang
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Bobo Zheng
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| |
Collapse
|
5
|
Pei J, Wei Y, Lv L, Tao H, Zhang H, Ma Y, Han L. Preliminary evidence for the presence of programmed cell death in pressure injuries. J Tissue Viability 2024; 33:720-725. [PMID: 39095251 DOI: 10.1016/j.jtv.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Pressure injuries (PIs) are a common healthcare problem worldwide and are considered to be the most expensive chronic wounds after arterial ulcers. Although the gross factors including ischemia-reperfusion (I/R) have been identified in the etiology of PIs, the precise cellular and molecular mechanisms contributing to PIs development remain unclear. Various forms of programmed cell death including apoptosis, autophagy, pyroptosis, necroptosis and ferroptosis have been identified in PIs. In this paper, we present a detailed overview on various forms of cell death; discuss the recent advances in the roles of cell death in the occurrence and development of PIs and found much of the evidence is novel and based on animal experiments. Herein, we also state critical evaluation of the existing data and future perspective in the field. A better understanding of the programmed cell death mechanism in PIs may have important implications in driving the development of new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Juhong Pei
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yuting Wei
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxia Tao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - HongYan Zhang
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - YuXia Ma
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; School of Nursing, Lanzhou University, Lanzhou, Gansu, China; Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Fan CH, Zeng XQ, Feng RM, Yi HW, Xia R. Comprehensive review of perioperative factors influencing ferroptosis. Biomed Pharmacother 2024; 179:117375. [PMID: 39278186 DOI: 10.1016/j.biopha.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The perioperative period encompasses all phases of patient care from the decision to perform surgery until full recovery. Ferroptosis, a newly identified type of regulated cell death, influences a wide array of diseases, including those affecting the prognosis and regression of surgical patients, such as ischemia-reperfusion injury and perioperative cognitive dysfunction. This review systematically examines perioperative factors impacting ferroptosis such as surgical trauma-induced stress, tissue hypoxia, anesthetics, hypothermia, and blood transfusion. By analyzing their intrinsic relationships, we aim to improve intraoperative management, enhance perioperative safety, prevent complications, and support high-quality postoperative recovery, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Cheng-Hui Fan
- Department of Anaesthesiology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China
| | - Xiao-Qin Zeng
- Department of Anaesthesiology, The Second People's Hospital of Jingzhou, Jingzhou 434020, PR China
| | - Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China.
| | - Rui Xia
- Department of Anaesthesiology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China.
| |
Collapse
|
7
|
Zhou M, Jia X, Liu H, Xue Y, Wang Y, Li Z, Wu Y, Rui Y. Bibliometric analysis of skeletal muscle ischemia/reperfusion (I/R) research from 1986 to 2022. Heliyon 2024; 10:e37492. [PMID: 39309867 PMCID: PMC11416534 DOI: 10.1016/j.heliyon.2024.e37492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Tissue damage due to ischemia and reperfusion is a critical medical problem worldwide. Studies in this field have made remarkable advances in understanding the pathogenesis of ischemia/reperfusion (I/R) injury and its treatment with new and known drugs. However, no bibliometric analysis exists in this area of research. Methods Research articles and reviews related to skeletal muscle I/R from 1986 to 2022 were retrieved from the Web of Science Core Collection. Bibliometric analysis was performed using Microsoft Excel 2019, VOSviewer (version 1.6.19), Bibliometrix (R-Tool for R-Studio), and CiteSpace (version 6.1.R5). Results A total of 3682 research articles and reviews from 2846 institutions in 83 countries were considered in this study. Most studies were conducted in the USA. Hobson RW (UMDNJ-New Jersey Medical School) had the highest publication, and Korthuis RJ (Louisiana State University) had the highest co-citations. Our analysis showed that, though the Journal of Surgical Research was most favored, the Journal of Biological Chemistry had the highest number of co-citations. The pathophysiology, interventions, and molecular mechanisms of skeletal muscle I/R injury emerged as the primary research areas, with "apoptosis," "signaling pathway," and "oxidative stress" as the main keywords of research hotspots. Conclusions This study provides a thorough overview of research trends and focal points in skeletal muscle I/R injury by applying bibliometric and visualization techniques. The insights gained from our findings offer a profound understanding of the evolving landscape of skeletal muscle I/R injury research, thereby functioning as a valuable reference and roadmap for future investigations.
Collapse
Affiliation(s)
| | | | | | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Zeqing Li
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongwei Wu
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongjun Rui
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| |
Collapse
|
8
|
Camargo CP. Discussion: The Effect of Botulinum Toxin A on the NADPH Oxidase System and Ischemia-Reperfusion Injury. Plast Reconstr Surg 2024; 154:112e-113e. [PMID: 38923926 DOI: 10.1097/prs.0000000000011101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Cristina Pires Camargo
- From the Department of Microsurgery and Plastic Surgery, School of Medicine, Universidade de São Paulo
| |
Collapse
|
9
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
10
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
11
|
Zhao X, Wang Z, Wu G, Yin L, Xu L, Wang N, Peng J. Apigenin-7-glucoside-loaded nanoparticle alleviates intestinal ischemia-reperfusion by ATF3/SLC7A11-mediated ferroptosis. J Control Release 2024; 366:182-193. [PMID: 38145659 DOI: 10.1016/j.jconrel.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Intestinal ischemia reperfusion injury (II/R injury) is a common and intractable pathophysiological process in critical patients, for which exploring new treatments and mechanisms is of great importance to improve treatment outcomes. Apigenin-7-O-Glucoside (AGL) is a sugar derivative of apigenin natural product with various pharmacological activities to protect against intestinal diseases. In this study, we synthesized two amphiphilic molecules, namely DTPA-N10-10 and mPEG-TK-DA, which can scavenge free radicals and reactive oxygen species (ROS). They were successfully encapsulated AGL through self-assembly, resulting in the formation of multi-site ROS scavenging nanoparticles called PDN@AGL. In vitro and in vivo experiments demonstrated that PDN@AGL could protect intestinal tissues by reducing lipid peroxidation, lowering ROS levels and inhibiting ferroptosis during II/R injury. Furthermore, our study revealed, for the first time, that the regulation of the ATF3/SLC7A11 pathway by PDN@AGL may play a crucial role in mitigating II/R injury. In conclusion, our study confirmed the beneficial effects of PDN@AGL in combating II/R injury through the ATF3/SLC7A11-mediated regulation of ferroptosis and oxidative stress. These findings lay the groundwork for the potential application of PDN@AGL in the treatment of II/R injury.
Collapse
Affiliation(s)
- Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhuoya Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ning Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology and Laboratory of Applied Pharmacology, College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
12
|
Hu Y, Li Q, Wang Y. Serum ACSL4 levels in patients with ST-segment elevation myocardial infarction (STEMI) and its association with one-year major adverse cardiovascular events (MACE): A prospective cohort study. Medicine (Baltimore) 2024; 103:e36870. [PMID: 38215103 PMCID: PMC10783377 DOI: 10.1097/md.0000000000036870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024] Open
Abstract
In the present prospective cohort research, we aimed to explore the serum levels of Acyl-CoA synthetase long-chain family member 4 (ACSL4) in patients with ST-segment elevation myocardial infarction (STEMI) and its association with 1-year major adverse cardiovascular events (MACE). This prospective cohort study recruited 507 patients who underwent percutaneous coronary intervention for the treatment of STEMI at our hospital during August 2019 to July 2022. The serum ACSL4, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and C-reactive protein levels were measured by enzyme-linked immunosorbent assay. Demographic and clinical statistics were also collected. In addition, all patients were followed up for 1 year, and patients with MACE were defined as poor prognosis group. All data used SPSS 26.0 to statistical analyses. The poor prognosis group had significantly higher age and low-density leptin cholesterol (LDLC) levels compared to the favorable prognosis group (P < .05). STEMI patients exhibited significantly elevated serum levels of ACSL4, tumor necrosis factor-α, IL-6, IL-1β, and C-reactive protein (P < .05). Serum ACSL4 and IL-1β levels in the poor prognosis group were remarkably enhanced compared to the favorable prognosis group. Curvilinear regression analysis demonstrated that ACSL4 was associated with LDLC and IL-1β. Moreover, ACSL4 (B = 0.138, 95% CI 1.108-1.189, P < .001), LDLC (B = 2.317, 95% CI 5.253-19.603, P < .001), and IL-1β (B = 0.061, 95%CI 1.008-1.122, P = .025) levels were the risk factors for STEMI patients with 1-year MACE. This study showed that the serum ACSL4 levels was remarkably elevated in STEMI patients. This study might provide new targets and a comprehensive approach to cardiovascular protection in STEMI patients.
Collapse
Affiliation(s)
- Yun Hu
- Emergency Department, Wuhan Dongxihu District People’s Hospital, Wuhan, China
| | - Qingye Li
- Emergency Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yinglin Wang
- Emergency Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Zuo HL, Huang HY, Lin YCD, Liu KM, Lin TS, Wang YB, Huang HD. Effects of Natural Products on Enzymes Involved in Ferroptosis: Regulation and Implications. Molecules 2023; 28:7929. [PMID: 38067658 PMCID: PMC10708253 DOI: 10.3390/molecules28237929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis is a form of regulated cell death that is characterized by the accumulation of iron-dependent lipid peroxides. The regulation of ferroptosis involves both non-enzymatic reactions and enzymatic mechanisms. Natural products have demonstrated potential effects on various enzymes, including GPX4, HO-1, NQO1, NOX4, GCLC, and GCLM, which are mainly involved in glutathione metabolic pathway or oxidative stress regulation, and ACSL3 and ACSL4, which mainly participate in lipid metabolism, thereby influencing the regulation of ferroptosis. In this review, we have provided a comprehensive overview of the existing literature pertaining to the effects of natural products on enzymes involved in ferroptosis and discussed their potential implications for the prevention and treatment of ferroptosis-related diseases. We also highlight the potential challenge that the majority of research has concentrated on investigating the impact of natural products on the expression of enzymes involving ferroptosis while limited attention is given to the regulation of enzyme activity. This observation underscores the considerable potential and scope for exploring the influence of natural products on enzyme activity.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Kun-Meng Liu
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Ting-Syuan Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yi-Bing Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
14
|
Wang F, Qi Y, Gao Y, Wang Z, Shen X, Wu H. Syringic acid suppresses ferroptosis of skeletal muscle cells to alleviate lower limb ischemia/reperfusion injury in mice via the HMGB1 pathway. Chem Biol Drug Des 2023; 102:1387-1398. [PMID: 37604776 DOI: 10.1111/cbdd.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Ischemia/reperfusion (I/R) of skeletal muscle in the lower limbs is an important factor affecting the outcome of lower limbs ischemia patients, with no effective preventive or therapeutic approaches available. The study was to investigate the effect of syringic acid (SA) on I/R skeletal muscle in the lower limbs injury. Mice femoral artery I/R models and C2C12 cell hypoxia/reoxygenation (H/R) models was establish, tissue damage, inflammatory status, and high mobility group box 1 (HMGB1) pathway were evaluated using histological analysis, enzyme-linked immunosorbent assay, and western blotting. Further, the study detected the effect of SA on cell apoptosis, lipid peroxidation, Fe2+ level, and ferroptosis-related proteins expression. Finally, the effect of HMGB1 expression on SA in H/R stimulation was studied. SA alleviated pathological damage and reduced levels of IL-1β, IL-6, and TNF-α in muscle tissues from femoral artery I/R mouse models. SA upregulated Bcl-2 and SOD as well as downregulated Bax, MDA, TBARS content, and Fe2+ level in H/R-induced cells. SA inhibited HMGB1 expression and promoted Nrf2, HO-1, GPX4, and SLC7A11 expressions in the injured tissues and cells. Such effects of SA on H/R-induced cells were rescued by HMGB1 overexpression. SA suppressed ferroptosis of skeletal muscle cells to alleviate lower limb I/R injury in mice by blocking the HMGB1 pathway, providing new insights for the treatment of lower limb ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fengdan Wang
- Cardiovascular Surgery Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yanqing Qi
- Cardiovascular Surgery Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yakun Gao
- Cardiovascular Surgery Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhifang Wang
- Cardiovascular Surgery Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaowei Shen
- Cardiovascular Surgery Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hongyu Wu
- Cardiovascular Surgery Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Hu T, Yu WP, Zou HX, Chai ZH, Le SY, Hu FJ, Wang YC, Huang H, Lai SQ, Liu JC. Role of dysregulated ferroptosis‑related genes in cardiomyocyte ischemia‑reperfusion injury: Experimental verification and bioinformatics analysis. Exp Ther Med 2023; 26:534. [PMID: 37869642 PMCID: PMC10587876 DOI: 10.3892/etm.2023.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 10/24/2023] Open
Abstract
Acute myocardial infarction is a life-threatening condition with high mortality and complication rates. Although myocardial reperfusion can preserve ischemic myocardial tissue, it frequently exacerbates tissue injury, a phenomenon known as ischemia-reperfusion injury (IRI). However, the underlying pathological mechanisms of IRI remain to be completely understood. Ferroptosis is a novel type of regulated cell death that is associated with various pathological conditions, including angiocardiopathy. The purpose of this article was to elucidate the possible mechanistic role of ferroptosis in IRI through bioinformatics analysis and experimental validation. Healthy and IRI heart samples were screened for differentially expressed ferroptosis-related genes and functional enrichment analysis was performed to determine the potential crosstalk and pathways involved. A protein-protein interaction network was established for IRI, and 10 hub genes that regulate ferroptosis, including HIF1A, EGFR, HMOX1, and ATF3 were identified. In vitro, an anoxia/reoxygenation (A/R) injury model was established using H9c2 cardiomyoblasts to validate the bioinformatics analysis results, and extensive ferroptosis was detected. A total of 4 key hub genes and 3 key miRNAs were also validated. It was found that IRI was related to the aberrant infiltration of immune cells and the small-molecule drugs that may protect against IRI by preventing ferroptosis were identified. These results provide novel insights into the role of ferroptosis in IRI, which can help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua-Xi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Hao Chai
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu-Yu Le
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fa-Jia Hu
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi-Cheng Wang
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Yu HY, Li Y, Zhang M, Zou ZB, Hao YJ, Xie MM, Li LS, Meng DL, Yang XW. Chemical Constituents of the Deep-sea Gammarid Shrimp-Derived Fungus Penicillium citrinum XIA-16. Chem Biodivers 2023; 20:e202301507. [PMID: 37847218 DOI: 10.1002/cbdv.202301507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
One new alkaloid, (S)-2-acetamido-4-(2-(methylamino)phenyl)-4-oxobutanoic acid (1), was isolated from the deep-sea-derived Penicillium citrinum XIA-16, together with 25 known compounds including ten polyketones (2-11), eight alkaloids (12-19), six steroids (20-25), and a fatty acid (26). Their planar and relative structures were determined by an analysis of 1D and 2D nuclear magnetic resonance (NMR) as well as high resolution electrospray ionization mass spectroscopy (HR-ESI-MS) data. The absolute configuration of 1 was determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. Penicitrinol B (6) significantly inhibited RSL3-induced ferroptosis (EC50 =2.0 μM) by reducing lipid peroxidation and heme oxygenase 1 (HMOX1) expression. Under the concentration of 10 μM, penicitrinol A (7) was able to inhibit cuproptosis with the cell viabilities of 68.2 % compared to the negative control (copper and elesclomol) with the cell viabilities of 14.8 %.
Collapse
Affiliation(s)
- Hao-Yu Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yan Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350122, China
| | - Meng Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Li-Sheng Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350122, China
| | - Da-Li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
17
|
Han L, Pei J, Tao H, Guo X, Wei Y, Yang Z, Zhang H. The potential role of ferroptosis in the physiopathology of deep tissue injuries. Int Wound J 2023; 21:e14466. [PMID: 37905685 PMCID: PMC10828531 DOI: 10.1111/iwj.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
Deep tissue injuries (DTIs) are a serious type of pressure injuries that mainly occur at the bony prominences and can develop rapidly, making prevention and treatment more difficult. Although consistent research efforts have been made over the years, the cellular and molecular mechanisms contributing to the development of DTIs remain unclear. More recently, ferroptosis, a novel regulatory cell death (RCD) type, has been identified that is morphological, biochemical and genetic criteria distinct from apoptosis, autophagy and other known cell death pathways. Ferroptosis is characterized by iron overload, iron-dependent lipid peroxidation and shrunken mitochondria. We also note that some of the pathological features of DTI are known to be key features of the ferroptosis pathway. Numerous studies have confirmed that ferroptosis may be involved in chronic wounds, including DTIs. Here, we elaborate on the basic pathological features of ferroptosis. We also present the evidence that ferroptosis is involved in the pathology of DTIs and highlight a future perspective on this emerging field, desiring to provide more possibilities for the prevention and treatment of DTIs.
Collapse
Affiliation(s)
- Lin Han
- Department of NursingGansu Provincial HospitalLanzhouChina
- School of NursingLanzhou UniversityLanzhouChina
| | - Juhong Pei
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Hongxia Tao
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | | | - Yuting Wei
- School of NursingLanzhou UniversityLanzhouChina
| | - Zhuang Yang
- School of NursingLanzhou UniversityLanzhouChina
| | - Hongyan Zhang
- Department of NursingGansu Provincial HospitalLanzhouChina
| |
Collapse
|
18
|
Liao W, Wen Y, Yang S, Duan Y, Liu Z. Research progress and perspectives of N-methyl-D-aspartate receptor in myocardial and cerebral ischemia-reperfusion injury: A review. Medicine (Baltimore) 2023; 102:e35490. [PMID: 37861505 PMCID: PMC10589574 DOI: 10.1097/md.0000000000035490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
There is an urgent need to find common targets for precision therapy, as there are no effective preventive therapeutic measures for combined clinical heart-brain organ protection and common pathways associated with glutamate receptors are involved in heart-brain injury, but current glutamate receptor-related clinical trials have failed. Ischemia-reperfusion injury (IRI) is a common pathological condition that occurs in multiple organs, including the heart and brain, and can lead to severe morbidity and mortality. N-methyl-D-aspartate receptor (NMDAR), a type of ionotropic glutamate receptor, plays a crucial role in the pathogenesis of IRI. NMDAR activity is mainly regulated by endogenous activators, agonists, antagonists, and voltage-gated channels, and activation leads to excessive calcium influx, oxidative stress, mitochondrial dysfunction, inflammation, apoptosis, and necrosis in ischemic cells. In this review, we summarize current research advances regarding the role of NMDAR in myocardial and cerebral IRI and discuss potential therapeutic strategies to modulate NMDAR signaling to prevent and treat IRI.
Collapse
Affiliation(s)
- Wei Liao
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuehui Wen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyu Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ziyou Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
19
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
20
|
Zheng X, Zhang C. The Regulation of Ferroptosis by Noncoding RNAs. Int J Mol Sci 2023; 24:13336. [PMID: 37686142 PMCID: PMC10488123 DOI: 10.3390/ijms241713336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and lipid peroxide accumulation, which is different from other regulated cell death forms morphologically, biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism, and antioxidant defense systems as well as various transcription factors and related signal pathways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs, can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferroptosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate ferroptosis in different physiological and pathological conditions, which will deepen our understanding of ferroptosis regulation by noncoding RNAs and provide new insights into employing noncoding RNAs in ferroptosis-associated therapeutic strategies.
Collapse
Affiliation(s)
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| |
Collapse
|
21
|
Laukaitiene J, Gujyte G, Kadusevicius E. Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options. Int J Mol Sci 2023; 24:12846. [PMID: 37629039 PMCID: PMC10454599 DOI: 10.3390/ijms241612846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that "time is muscle", which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics.
Collapse
Affiliation(s)
- Jolanta Laukaitiene
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania;
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Greta Gujyte
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Edmundas Kadusevicius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
22
|
Chen W, Zheng D, Yang C. The Emerging Roles of Ferroptosis in Neonatal Diseases. J Inflamm Res 2023; 16:2661-2674. [PMID: 37396013 PMCID: PMC10312340 DOI: 10.2147/jir.s414316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death involved in many diseases' pathological processes. Ferroptosis is characterized by lipid peroxidation, reactive oxygen species accumulation, and iron metabolism disorder. Newborns are susceptible to ferroptosis due to their special physiological state, which is prone to abnormal iron metabolism and the accumulation of reactive oxygen species. Recent studies have linked ferroptosis to a variety of diseases in the neonatal period (including hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, and necrotizing enterocolitis). Ferroptosis may become an effective target for the treatment of neonatal-related diseases. In this review, the ferroptosis molecular mechanism, metabolism characteristics of iron and reactive oxygen species in infants, the relationship between ferroptosis and common infant disorders, and the treatment of infant diseases targeted for ferroptosis are systematically summarized.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changyi Yang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
23
|
Wang Y, Guo L, Zhang Z, Fu S, Huang P, Wang A, Liu M, Ma X. A bibliometric analysis of myocardial ischemia/reperfusion injury from 2000 to 2023. Front Cardiovasc Med 2023; 10:1180792. [PMID: 37383699 PMCID: PMC10293770 DOI: 10.3389/fcvm.2023.1180792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Background Myocardial ischemia/reperfusion injury (MIRI) refers to the more severe damage that occurs in the previously ischemic myocardium after a short-term interruption of myocardial blood supply followed by restoration of blood flow within a certain period of time. MIRI has become a major challenge affecting the therapeutic efficacy of cardiovascular surgery. Methods A scientific literature search on MIRI-related papers published from 2000 to 2023 in the Web of Science Core Collection database was conducted. VOSviewer was used for bibliometric analysis to understand the scientific development and research hotspots in this field. Results A total of 5,595 papers from 81 countries/regions, 3,840 research institutions, and 26,202 authors were included. China published the most papers, but the United States had the most significant influence. Harvard University was the leading research institution, and influential authors included Lefer David J., Hausenloy Derek J., Yellon Derek M., and others. All keywords can be divided into four different directions: risk factors, poor prognosis, mechanisms and cardioprotection. Conclusion Research on MIRI is flourishing. It is necessary to conduct an in-depth investigation of the interaction between different mechanisms and multi-target therapy will be the focus and hotspot of MIRI research in the future.
Collapse
Affiliation(s)
- Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangqing Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
24
|
Zheng X, Liang Y, Zhang C. Ferroptosis Regulated by Hypoxia in Cells. Cells 2023; 12:cells12071050. [PMID: 37048123 PMCID: PMC10093394 DOI: 10.3390/cells12071050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Ferroptosis is an oxidative damage-related, iron-dependent regulated cell death with intracellular lipid peroxide accumulation, which is associated with many physiological and pathological processes. It exhibits unique features that are morphologically, biochemically, and immunologically distinct from other regulated cell death forms. Ferroptosis is regulated by iron metabolism, lipid metabolism, anti-oxidant defense systems, as well as various signal pathways. Hypoxia, which is found in a group of physiological and pathological conditions, can affect multiple cellular functions by activation of the hypoxia-inducible factor (HIF) signaling and other mechanisms. Emerging evidence demonstrated that hypoxia regulates ferroptosis in certain cell types and conditions. In this review, we summarize the basic mechanisms and regulations of ferroptosis and hypoxia, as well as the regulation of ferroptosis by hypoxia in physiological and pathological conditions, which may contribute to the numerous diseases therapies.
Collapse
Affiliation(s)
- Xiangnan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
25
|
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells 2023; 12:cells12060867. [PMID: 36980208 PMCID: PMC10047059 DOI: 10.3390/cells12060867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the principal cause of disease burden and death worldwide. Ferroptosis is a new form of regulated cell death mainly characterized by altered iron metabolism, increased polyunsaturated fatty acid peroxidation by reactive oxygen species, depletion of glutathione and inactivation of glutathione peroxidase 4. Recently, a series of studies have indicated that ferroptosis is involved in the death of cardiac and vascular cells and has a key impact on the mechanisms leading to CVDs such as ischemic heart disease, ischemia/reperfusion injury, cardiomyopathies, and heart failure. In this article, we reviewed the molecular mechanism of ferroptosis and the current understanding of the pathophysiological role of ferroptosis in ischemic heart disease and in some cardiomyopathies. Moreover, the comprehension of the machinery governing ferroptosis in vascular cells and cardiomyocytes may provide new insights into preventive and therapeutic strategies in CVDs.
Collapse
|