1
|
Bonni S, Brindley DN, Chamberlain MD, Daneshvar-Baghbadorani N, Freywald A, Hemmings DG, Hombach-Klonisch S, Klonisch T, Raouf A, Shemanko CS, Topolnitska D, Visser K, Vizeacoumar FJ, Wang E, Gibson SB. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers (Basel) 2024; 16:911. [PMID: 38473273 DOI: 10.3390/cancers16050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Dean Chamberlain
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Nima Daneshvar-Baghbadorani
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology, Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Carrie Simone Shemanko
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Diana Topolnitska
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kaitlyn Visser
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Spencer B Gibson
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
2
|
Petersen-Cherubini CL, Liu Y, Deffenbaugh JL, Murphy SP, Xin M, Rau CN, Yang Y, Lovett-Racke AE. Dysregulated autotaxin expression by T cells in multiple sclerosis. J Neuroimmunol 2024; 387:578282. [PMID: 38183947 PMCID: PMC10923181 DOI: 10.1016/j.jneuroim.2023.578282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by infiltration of autoreactive T cells into the central nervous system (CNS). In order to understand how activated, autoreactive T cells are able to cross the blood brain barrier, the unique molecular characteristics of pathogenic T cells need to be more thoroughly examined. In previous work, our laboratory found autotaxin (ATX) to be upregulated by activated autoreactive T cells in the mouse model of MS. ATX is a secreted glycoprotein that promotes T cell chemokinesis and transmigration through catalysis of lysophoshphatidic acid (LPA). ATX is elevated in the serum of MS patients during active disease phases, and we previously found that inhibiting ATX decreases severity of neurological deficits in the mouse model. In this study, ATX expression was found to be lower in MS patient immune cells during rest, but significantly increased during early activation in a manner not seen in healthy controls. The ribosomal binding protein HuR, which stabilizes ATX mRNA, was also increased in MS patients in a similar pattern to that of ATX, suggesting it may be helping regulate ATX levels after activation. The proinflammatory cytokine interleukin-23 (IL-23) was shown to induce prolonged ATX expression in MS patient Th1 and Th17 cells. Finally, through ChIP, re-ChIP analysis, we show that IL-23 may be signaling through pSTAT3/pSTAT4 heterodimers to induce expression of ATX. Taken together, these findings elucidate cell types that may be contributing to elevated serum ATX levels in MS patients and identify potential drivers of sustained expression in encephalitogenic T cells.
Collapse
Affiliation(s)
- Cora L Petersen-Cherubini
- The Ohio State University, Neuroscience Graduate Program, 460 West 12th Avenue, Biomedical Research Tower 6894, Columbus, OH 43210, USA; The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Yue Liu
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Joshua L Deffenbaugh
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Shawn P Murphy
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Matthew Xin
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Christina N Rau
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Yuhong Yang
- The Ohio State University, Wexner Medical Center, Department of Neurology, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Amy E Lovett-Racke
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA; The Ohio State University, Wexner Medical Center, Department of Neuroscience, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Petersen-Cherubini CL, Murphy SP, Xin M, Liu Y, Deffenbaugh JL, Jahan I, Rau CN, Yang Y, Lovett-Racke AE. Autotaxin in encephalitogenic CD4 T cells as a therapeutic target for multiple sclerosis. Eur J Immunol 2024; 54:e2350561. [PMID: 37850588 PMCID: PMC10843518 DOI: 10.1002/eji.202350561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the CNS. A defining characteristic of MS is the ability of autoreactive T lymphocytes to cross the blood-brain barrier and mediate inflammation within the CNS. Previous work from our lab found the gene Enpp2 to be highly upregulated in murine encephalitogenic T cells. Enpp2 encodes for the protein autotaxin, a secreted glycoprotein that catalyzes the production of lysophosphatidic acid and promotes transendothelial migration of T cells from the bloodstream into the lymphatic system. The present study sought to characterize autotaxin expression in T cells during CNS autoimmune disease and determine its potential therapeutic value. Myelin-activated CD4 T cells upregulated expression of autotaxin in vitro, and ex vivo analysis of CNS-infiltrating CD4 T cells showed significantly higher autotaxin expression compared with cells from healthy mice. In addition, inhibiting autotaxin in myelin-specific T cells reduced their encephalitogenicity in adoptive transfer studies and decreased in vitro cell motility. Importantly, using two mouse models of MS, treatment with an autotaxin inhibitor ameliorated EAE severity, decreased the number of CNS infiltrating T and B cells, and suppressed relapses, suggesting autotaxin may be a promising therapeutic target in the treatment of MS.
Collapse
Affiliation(s)
- Cora L. Petersen-Cherubini
- The Ohio State University – Neuroscience Graduate Program
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Shawn P. Murphy
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Matthew Xin
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Yue Liu
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Joshua L. Deffenbaugh
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Ishrat Jahan
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Christina N. Rau
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Yuhong Yang
- The Ohio State University – Wexner Medical Center – Department of Neurology
| | - Amy E. Lovett-Racke
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
- The Ohio State University – Wexner Medical Center – Department of Neuroscience
| |
Collapse
|
4
|
Chattopadhyay A, Reddy ST, Fogelman AM. The multiple roles of lysophosphatidic acid in vascular disease and atherosclerosis. Curr Opin Lipidol 2023; 34:196-200. [PMID: 37497844 DOI: 10.1097/mol.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
PURPOSE OF REVIEW To explore the multiple roles that lysophosphatidic acid (LPA) plays in vascular disease and atherosclerosis. RECENT FINDINGS A high-fat high-cholesterol diet decreases antimicrobial activity in the small intestine, which leads to increased levels of bacterial lipopolysaccharide in the mucus of the small intestine and in plasma that increase systemic inflammation, and enhance dyslipidemia and aortic atherosclerosis. Decreasing LPA production in enterocytes reduces the impact of the diet. LPA signaling inhibits glucagon-like peptide 1 secretion, promotes atherosclerosis, increases vessel permeability and infarct volume in stroke, but protects against abdominal aortic aneurysm formation and rupture. Acting through the calpain system in lymphatic endothelial cells, LPA reduces the trafficking of anti-inflammatory Treg lymphocytes, which enhances atherosclerosis. Acting through LPA receptor 1 in cardiac lymphatic endothelial cells and fibroblasts, LPA enhances hypertrophic cardiomyopathy. SUMMARY LPA plays multiple roles in vascular disease and atherosclerosis that is cell and context dependent. In some settings LPA promotes these disease processes and in others it inhibits the disease process. Because LPA is so ubiquitous, therapeutic approaches targeting LPA must be as specific as possible for the cells and the context in which the disease process occurs.
Collapse
Affiliation(s)
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
5
|
Tang X, Morris AJ, Deken MA, Brindley DN. Autotaxin Inhibition with IOA-289 Decreases Breast Tumor Growth in Mice Whereas Knockout of Autotaxin in Adipocytes Does Not. Cancers (Basel) 2023; 15:2937. [PMID: 37296899 PMCID: PMC10251959 DOI: 10.3390/cancers15112937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer cells produce negligible quantities of autotaxin. Instead, previous work indicated that adipocytes in the inflamed adipose tissue adjacent to breast tumors are a major source of autotaxin secretion that drives breast tumor growth, metastasis, and the loss of efficacy for chemotherapy and radiotherapy. To test this hypothesis, we used mice with an adipocyte-specific knock out of autotaxin. The lack of autotaxin secretion from adipocytes failed to decrease the growth of orthotopic E0771 breast tumors in syngeneic C57BL/6 mice and the growth and lung metastasis of spontaneous breast tumors in MMTV-PyMT mice. However, the inhibition of autotaxin with IOA-289 decreased the growth of E0771 tumors, indicating that another source of autotaxin is responsible for tumor growth. Tumor-associated fibroblasts and leukocytes produce the majority of autotoxin transcripts in the E0771 breast tumors, and we hypothesize that they are the main sources of ATX that drive breast tumor growth. Autotaxin inhibition with IOA-289 increased the numbers of CD8α+-T-cells in the tumors. This was accompanied by decreases in the concentrations of CXCL10, CCL2, and CXCL9 in the plasma and LIF, TGFβ1, TGFβ2, and prolactin in the tumors. Bioinformatics analysis of human breast tumor databases showed that autotaxin (ENPP2) is expressed mainly in endothelial cells and fibroblasts. Autotaxin expression correlated significantly with increases in IL-6 cytokine receptor ligand interactions, signaling by LIF, TGFβ, and prolactin. This confirms the relevance of results from autotaxin inhibition in the mouse model. We propose that inhibiting autotaxin activity that is derived from cells presenting breast tumors such as fibroblasts, leukocytes, or endothelial cells changes the tumor micro-environment in such a way as to inhibit tumor growth.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Andrew J. Morris
- Central Arkansas Veterans Affairs Healthcare System and University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA;
| | - Marcel A. Deken
- iOnctura BV, Gustav Mahlerplein 102, 1082 MA Amsterdam, The Netherlands;
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
6
|
Magkrioti C, Kaffe E, Aidinis V. The Role of Autotaxin and LPA Signaling in Embryonic Development, Pathophysiology and Cancer. Int J Mol Sci 2023; 24:ijms24098325. [PMID: 37176032 PMCID: PMC10179533 DOI: 10.3390/ijms24098325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Autotaxin (ATX) or Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a secreted enzyme with lysophospholipase D activity, with its primary function being the extracellular hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid [...].
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Eleanna Kaffe
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| |
Collapse
|