1
|
Dai Q, Cheng L, Wang C. The Effectiveness of Early Treatment With Intense Pulsed Light Combined With Fractional Erbium Laser in Preventing Post-traumatic Hypertrophic Scar Formation. J Craniofac Surg 2024:00001665-990000000-02251. [PMID: 39641906 DOI: 10.1097/scs.0000000000010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Once scars form and begin to proliferate, treatment becomes challenging. Traditional methods of scar treatment often provide suboptimal results. Therefore, early intervention has become widely accepted, with a focus on prevention during the wound-healing phase rather than later treatment. Here, the authors evaluate the effectiveness of early treatment with intense pulsed light (IPL) combined with fractional erbium laser in preventing the formation of post-traumatic hypertrophic scars. METHODS A total of 120 patients who underwent emergency cosmetic suture surgery for facial trauma between January 2019 and December 2021 were selected for the study. The control group received conventional antiscar therapy (pressure therapy or antiscar medication), while the observation group received IPL combined with fractional erbium laser in addition to the conventional treatment. The specific treatment doses were adjusted based on the patient's age, scar color, texture, and thickness. A treatment course consisted of 3 to 5 sessions, with 4-week intervals between treatments. Follow-up was conducted within 1 year after treatment to assess the improvement in scar appearance before and after therapy. RESULTS After IPL combined with fractional erbium laser treatment, patients in the observation group showed significantly lower scores in color, thickness, vascular distribution, softness, and total scores on the Vancouver Scar Scale (VSS) compared with the control group. During the follow-up, 3 complications were observed: 2 cases of skin blisters and 1 case of pigmentation. No immediate skin lesions, depigmentation, infections, ulcers, or other adverse reactions were reported. CONCLUSIONS For patients with early-stage superficial scars following trauma surgery, early treatment with IPL combined with fractional erbium laser not only leads to significant improvements in appearance and effectively prevents hypertrophic scar formation but also promotes rapid recovery with few complications. This approach has clinical value.
Collapse
Affiliation(s)
- Qiang Dai
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
2
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
3
|
Zhong C, Shi K, Li P, Qiu X, Wu X, Chen S, Liu Y, Li F, Zhao Z, Zhou J, Liang G, Xu D. Single-cell sequencing analysis and bulk-seq identify IGFBP6 and TNFAIP6 as novel differential diagnosis markers for postburn pathological scarring. Burns 2024; 50:107255. [PMID: 39317554 DOI: 10.1016/j.burns.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND If not accurately diagnosed and treated, postburn pathological scars, such as keloids and hypertrophic scars, can lead to negative clinical outcomes. However, differential diagnosis at the molecular level for postburn pathological scars remains limited. Using single-cell sequencing analysis, we investigated the genetic nuances of pathological scars at the cellular level. This study aimed to identify molecular diagnostic biomarkers to distinguish between postburn keloids and hypertrophic scars. METHODS Single-cell sequencing, differential expression, and weighted co-expression network analyses were performed to identify potential key genes for discriminating between keloids and hypertrophic scars. Postburn clinical samples were collected from our centre to validate the expression levels of the identified key genes. RESULTS Single-cell sequencing analysis unveiled 29 and 30 cell clusters in keloids and hypertrophic scars, respectively, predominantly composed of fibroblasts. Bulk differential gene analysis showed 96 highly expressed genes and 69 lowly expressed genes in keloids compared to hypertrophic scars. By incorporating previous research, Gene Set Enrichment Analysis was conducted to select fibroblasts as the focus of research. According to the single-cell data, 301 genes were stably expressed in fibroblasts from both types of pathological scars. Consistently, Weighted Gene Co-expression Network Analysis revealed that the blue module genes were mostly hub genes associated with fibroblasts. After intersecting fibroblast-related genes in single-cell data, Weighted Gene Co-expression Network Analysis-hub module genes, and bulk differential expression genes, insulin-like growth factor binding protein 6 and tumour necrosis factor alpha-induced protein 6 were identified as key genes to distinguish keloids from hypertrophic scars, resulting in diagnostic accuracies of 1.0 and 0.75, respectively. Immunohistochemical Staining and Quantitative Reverse Transcription PCR revealed that the expression levels of tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6 were significantly lower in postburn keloids than in hypertrophic scars- CONCLUSIONS: Tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6, exhibiting high diagnostic accuracy, provide valuable guidance for the differential diagnosis and treatment of postburn pathological scars.
Collapse
Affiliation(s)
- Chi Zhong
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Ke Shi
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Peiting Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xiaohui Qiu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xianrui Wu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Shuyue Chen
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Yang Liu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Fuying Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Zitong Zhao
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Jianda Zhou
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Geao Liang
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Dan Xu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| |
Collapse
|
4
|
韩 建, 李 芳, 邓 呈. [Effect of different degrees of wound eversion sutures on scar formation at donor site of anterolateral thigh flaps: A prospective randomized controlled study]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1386-1390. [PMID: 39542632 PMCID: PMC11563735 DOI: 10.7507/1002-1892.202406028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
Objective To investigate the effect of different degrees of wound eversion on scar formation at the donor site of anterolateral thigh flaps by a prospective clinical randomized controlled study. Methods According to the degree of wound eversion, the clinical trial was designed with groups of non-eversion (group A), eversion of 0.5 cm (group B), and eversion of 1.0 cm (group C). Patients who underwent anterolateral femoral flap transplantation between September 2021 and March 2023 were collected as study subjects, and a total of 36 patients were included according to the selection criteria. After resected the anterolateral thigh flaps during operation, the wound at donor site of each patient was divided into two equal incisions, and the random number table method was used to group them ( n=24) and perform corresponding treatments. Thirty of these patients completed follow-up and were included in the final study (group A n=18, group B n=23, and group C n=29). There were 26 males and 4 females with a median age of 53 years (range, 35-62 years). The body mass index was 17.88-29.18 kg/m 2 (mean, 23.09 kg/m 2). There was no significant difference in the age and body mass index between groups ( P>0.05). The incision healing and scar quality of three groups were compared, as well as the Patient and Observer Scar Assessment Scale (POSAS) score [including the observer component of the POSAS (OSAS) and the patient component of the POSAS (PSAS)], Vancouver Scar Scale (VSS) score, scar width, and patient satisfaction score [visual analogue scale (VAS) score]. Results In group C, 1 case had poor healing of the incision after operation, which healed after debridement and dressing change; 1 case had incision necrosis at 3 months after operation, which healed by second intention after active dressing change and suturing again. The other incisions in all groups healed by first intention. At 6 months after operation, the PSAS, OSAS, and patient satisfaction scores were the lowest in group B, followed by group A, and the highest in group C. The differences between the groups were significant ( P<0.05). There was no significant difference between the groups in the VSS scores and scar widths ( P>0.05). Conclusion Moderate everted closure may reduce the formation of hypertrophic scars at the incision site of the anterior lateral thigh flap to a certain extent.
Collapse
Affiliation(s)
- 建素 韩
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P. R. China
| | - 芳 李
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P. R. China
| | - 呈亮 邓
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P. R. China
| |
Collapse
|
5
|
Mahjoubin-Tehran M, Rezaei S, Karav S, Kesharwani P, Sahebkar A. Decoy oligodeoxynucleotides: A promising therapeutic strategy for inflammatory skin disorders. Hum Immunol 2024; 85:111161. [PMID: 39454315 DOI: 10.1016/j.humimm.2024.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Chronic inflammatory skin conditions such as psoriasis and atopic dermatitis (AD) impose a significant burden on both the skin and the overall well-being of individuals, leading to a diminished quality of life. Despite the use of conventional treatments like topical steroids, there remains a need for more effective and safer therapeutic options to improve the lives of patients with severe skin conditions. Molecular therapy has emerged as a promising approach to address disorders such as atopic dermatitis, psoriasis, and contact hypersensitivity. One strategy to counteract the disease processes involves targeting the transcriptional process. A novel form of gene therapy utilizes double-stranded oligodeoxynucleotides (ODNs), also known as decoys, that contain cis-elements. By introducing these decoy ODNs through transfection, the cis-trans interactions are disrupted, leading to the inhibition of trans-factors from binding to the intrinsic cis-elements and thus regulating gene expression. In this review, we have summarized studies investigating the therapeutic effects of decoy ODNs on inflammatory skin diseases. Various transcription factors, including NF-kB, STAT6, HIF-1α/STAT5, STAT1, and Smad, have been targeted and inhibited using designed decoy ODNs for the treatment of atopic dermatitis, psoriasis, hypertrophic scarring, and contact hypersensitivity. The findings of these studies confirm the significant potential of the decoy approach in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
| | - Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Brito S, Baek M, Bin BH. Skin Structure, Physiology, and Pathology in Topical and Transdermal Drug Delivery. Pharmaceutics 2024; 16:1403. [PMID: 39598527 PMCID: PMC11597055 DOI: 10.3390/pharmaceutics16111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Several industries are increasingly focused on enhancing the delivery of active ingredients through the skin to optimize therapeutic outcomes. By facilitating the penetration of active ingredients through the skin barrier, these enhancers can significantly improve the efficacy of various formulations, ranging from skincare products to therapeutic agents targeting systemic circulation. As the understanding of skin physiology and the mechanisms of drug absorption deepen, these industries are adopting permeation enhancers more widely, ultimately leading to better patient outcomes and expanded treatment options. However, the structure and physiological function of the skin can vary according to different factors, such as the area of the body and between individuals. These variations, along with external environmental exposures, aging and pathological conditions, introduce complexities that must be carefully considered when designing effective delivery systems. Considering the intricacies of skin structure and physiology, tailoring systems to account for regional differences, individual variability, and changes induced by environmental factors or disease is critical to optimizing therapeutic outcomes. This review discusses the features of skin structure, physiology, and pathologies, as well as the application of permeation enhancers in these contexts. Furthermore, it addresses the use of animal skin models in transdermal delivery and dermatological studies, along with the latest developments in this field.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moonki Baek
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Jin Y, He Y, Wu Y, Wang X, Lyu L, Zhang K, Ao C, Xu L. CircRNA_SLC8A1 alleviates hypertrophic scar progression by mediating the Nrf2-ARE pathway. Mol Biol Rep 2024; 51:1067. [PMID: 39422836 DOI: 10.1007/s11033-024-10018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Hypertrophic scar (HS) is associated with cosmetic defects, mobility, and functional impairments, pruritus, and pain. Previous circRNA microarray analysis identified reduced expression of circRNA_SLC8A1 in HS tissues. Therefore, this study aims to investigate the role of circRNA_SLC8A1 in modulating the abnormal behavior of HS-derived fibroblasts (HSFs) in vitro. METHODS RT-qPCR and FISH assays were used to assess the differential expression and localization of circRNA_SLC8A1 in normal and HS tissues. Following modulation of circRNA_SLC8A1 expression, CCK-8, flow cytometry, Transwell, and wound healing assays were employed to evaluate the effects of circRNA_SLC8A1 on the biological behaviors of HSFs. The Starbase database, dual-luciferase reporter assays, and Ago2-RIP assays were utilized to predict and validate the interaction between circRNA_SLC8A1 and downstream miRNAs. RESULTS CircRNA_SLC8A1 was found to be downregulated in HS tissues and was primarily localized in the cytoplasm. Overexpression of circRNA_SLC8A1 reduced cell viability, cell invasion, wound healing, and the expression of Vimentin, N-cadherin, Col I, and Col III, while enhancing apoptosis and E-cadherin expression in HSFs. CircRNA_SLC8A1 activates the Nrf2-ARE pathway by competitively binding to miRNA-27a-3p. miRNA-27a-3p and Nrf2 exhibited high and low expression, respectively in HS tissues, with an inverse correlation between their levels. Overexpression of miRNA-27a-3p counteracted the effects of circRNA_SLC8A1 in HSF proliferation, apoptosis, migration, EMT, collagen deposition, and Nrf2-ARE pathway activity. CONCLUSION CircRNA_SLC8A1 inhibits the proliferation, migration, EMT, and collagen deposition of HSF through competitive binding with miRNA-27a-3p, thereby activating the Nrf2-ARE pathway. The circRNA_SLC8A1/miRNA-27a-3p/Nrf2-ARE axis may offer a promising molecular target for HS therapy.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongjing He
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lechun Lyu
- Technology Transfer Center, Kunming Medical University, Kunming, Yunnan, China
| | - Ke Zhang
- Department of Urinary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Urinary Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chunping Ao
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Liangheng Xu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
9
|
Alomari O, Mokresh ME, Hamam M, Teker AU, Caliskan CS, Sadigova S, Ertan SN, Wojtara M, Filinte G. Combined Stromal Vascular Fraction and Fractional CO2 Laser Therapy for Hypertrophic Scar Treatment: A Systematic Review and Meta-Analysis. Aesthetic Plast Surg 2024:10.1007/s00266-024-04359-6. [PMID: 39333369 DOI: 10.1007/s00266-024-04359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Hypertrophic scars (HTSs) result from aberrant wound healing processes, leading to raised, thickened tissue with functional discomfort and cosmetic concerns. Current treatments, including corticosteroid injections and laser therapy, have limitations. Stromal vascular fraction (SVF) therapy and CO2 laser treatment offer promising avenues, with SVF therapy showing regenerative potential and CO2 laser therapy promoting precise tissue removal and wound healing. This study aims to investigate the combined application of SVF therapy and CO2 laser treatment for HTS, aiming to enhance treatment efficacy, tissue remodeling, and aesthetic outcomes, ultimately improving patient satisfaction in HTS management. METHOD PubMed, Scopus, Embase, and Web of Science databases have been searched for relevant studies. The "R" software (version 4.3.1) along with the "tidyverse" and "meta" statistical packages utilized to analyze data related to the efficiency of this combined method. A random-effects model was fitted to the data. For each study, continuous outcomes were pooled by calculating the standardized mean difference, along with their 95% confidence intervals. The assessment of heterogeneity utilized the I2 and chi-squared tests, applying the random effect model. RESULTS Six articles fulfilled our inclusion criteria and were included in our review. Results from the pooled analysis of Vancouver Scar Scale (VSS) scores across three included studies indicated a significant impact of the SVF+CO2 method on VSS scores post-treatment (SMD=-3.0144; 95% CI:-4.3706 to -1.6583, p<0.0001). However, analysis of transepidermal water loss levels before and after treatment showed no significant difference (SMD=-2.7603; 95% CI: -6.8729 to 1.3522; p=0.1883). Comparatively, in a pooled analysis of two studies, the combined SVF+CO2 method demonstrated superior efficacy in VSS scores compared to other methods (SMD= -1.3573; 95% CI: -2.2475 to -0.4672, p = 0.0028), with moderate heterogeneity across studies (I^2=23.0%, p = 0.2545). CONCLUSION The combined application of SVF and CO2 laser treatment shows significant promise in improving hypertrophic scars' appearance and texture. The SVF+CO2 method demonstrates superior efficacy compared to other modalities, suggesting its potential as a valuable therapeutic approach for hypertrophic scar management. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Omar Alomari
- Hamidiye International Faculty of Medicines, Hamidiye International School of Medicine, University of Health Sciences, 3400, 34668, Istanbul, Turkey.
| | - Muhammed Edib Mokresh
- Hamidiye International Faculty of Medicines, Hamidiye International School of Medicine, University of Health Sciences, 3400, 34668, Istanbul, Turkey
| | - Meryem Hamam
- Hamidiye International Faculty of Medicines, Hamidiye International School of Medicine, University of Health Sciences, 3400, 34668, Istanbul, Turkey
| | - Asude Ukba Teker
- Hamidiye International Faculty of Medicines, Hamidiye International School of Medicine, University of Health Sciences, 3400, 34668, Istanbul, Turkey
| | - Cagla Sumeyye Caliskan
- Hamidiye International Faculty of Medicines, Hamidiye International School of Medicine, University of Health Sciences, 3400, 34668, Istanbul, Turkey
| | - Seljan Sadigova
- Hamidiye International Faculty of Medicines, Hamidiye International School of Medicine, University of Health Sciences, 3400, 34668, Istanbul, Turkey
| | - Sinem Nur Ertan
- Hamidiye International Faculty of Medicines, Hamidiye International School of Medicine, University of Health Sciences, 3400, 34668, Istanbul, Turkey
| | - Magda Wojtara
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA
| | - Gaye Filinte
- Department of Plastic, Reconstructive and Aesthetic Surgery, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Farokh Forghani S, Ahmadi F, Moghimi HR, Naderi Gharahgheshlagh S, Hedayatyanfard K, Montazer F, Barati M, Esfandyari-Manesh M, Varshochian R, Irilouzadian R. Losartan in Situ Forming Gel as a New Treatment for Hypertrophic Scars. Aesthetic Plast Surg 2024:10.1007/s00266-024-04385-4. [PMID: 39317863 DOI: 10.1007/s00266-024-04385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Hypertrophic scars are defined as visible lesions formed by excessive wound healing that cause cosmetic and, in some cases, functional challenges in patients. This study aimed to assess the efficacy of intralesional injections of losartan-loaded in situ forming gel and compare it with the common treatment (triamcinolone) in preventing scar formation. The formulation was prepared using a thermosensitive PLGA-PEG-PLGA triblock copolymer. Ear scar tissue in rabbits represented the hypertrophic scar, and the animals were treated with three treatments in three groups. Nine weeks following the single treatment, images of the scars were obtained and quantitatively analyzed using ImageJ and light microscopy was used to evaluate the fibroblast cell number, vascularization, inflammation and collagen deposition and fibrosis in H&E-stained sample tissue. According to the results based on the ImageJ and the Vancouver criteria, the losartan in situ forming gel (F-LG) indicated significantly higher improving effects on decreased vascularity and pigmentation in comparison with triamcinolone (F-TA) and placebo as a control (F-Ctl), although the effect F-LG was almost similar to F-TA on pliability and scar height, and they were better than the control. Histological findings showed F-LG and F-TA have less inflammatory and fibroblast cells compared to F-Ctl. Also, results indicated the dermal layers of the F-TA and F-LG groups' scar were thinner, and the deposition of collagens was reduced compared to the control. Consequently, F-LG was found to be an effective treatment in reducing scarring and promoting wound healing.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Siamak Farokh Forghani
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farham Ahmadi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Keshvad Hedayatyanfard
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Montazer
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maedeh Barati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reyhaneh Varshochian
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rana Irilouzadian
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Bitterman D, Wang JY, Collins A, Zafar K, Kabakova M, Patel P, Joerg L, Cohen M, Austin E, Jagdeo J. The role of IL-17 and Th17 cells in keloid pathogenesis. Arch Dermatol Res 2024; 316:626. [PMID: 39276195 DOI: 10.1007/s00403-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024]
Abstract
Keloids are characterized histologically by excessive fibroblast proliferation and connective tissue deposition, and clinically by scar tissue extending beyond the original site of skin injury. These scars can cause pruritus, pain, physical disfigurement, anxiety, and depression. As a result, keloid patients often have a diminished quality of life with a disproportionate burden on ethnic minorities. Despite advances in understanding keloid pathology, there is no effective Food and Drug Administration (FDA)-approved pharmacotherapy. Recent studies have highlighted the possible pathologic role of T helper (Th)17 cells and interleukin (IL)-17 in keloid formation, as well as their implication in other inflammatory disorders. This systematic review characterizes the role of Th17 cells and IL-17 in keloid pathogenesis, highlighting this pathway as a potential therapeutic target. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive search on PubMed, Embase, MEDLINE, and Web of Science databases on June 5, 2024. The search included terms related to Th17 cells, IL-17, and keloids. Thirteen studies met the inclusion criteria, comprising basic science and bioinformatic studies focusing on Th17 cells and IL-17. Key findings include increased Th17 cell infiltration and IL-17 expression in keloids, IL-17's role in amplifying the inflammatory and fibrotic response via the promotion of IL-6 expression, and IL-17's involvement in upregulating fibrotic markers via SDF-1 and HIF-1α pathways. IL-17 also activates the transforming growth factor beta (TGF-β)/Smad pathway in keloid fibroblasts. Th17 cells and IL-17 significantly contribute to the inflammatory and fibrotic processes in keloid pathogenesis. Therefore, targeting the IL-17 pathway offers a potential new therapeutic target to improve keloid patients' outcomes. Future research could further elucidate the role of Th17 cells and IL-17 in keloid pathogenesis and assess the safety and efficacy of targeting this pathway in human studies.
Collapse
Affiliation(s)
- David Bitterman
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- New York Medical College, Valhalla, NY, USA
| | - Jennifer Y Wang
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexia Collins
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Kayla Zafar
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- St. George's University School of Medicine, Grenada, West Indies, True Blue, Grenada
| | - Margaret Kabakova
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Lucie Joerg
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Albany Medical College, Albany, NY, USA
| | - Marc Cohen
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Evan Austin
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jared Jagdeo
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA.
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
12
|
Wu KA, Anastasio AT, Mitra K, O'Neill CN, Nunley JA, Easley ME, DeOrio JK, Adams SB. Younger age correlates with increased gutter impingement rates after total ankle arthroplasty. Foot Ankle Surg 2024:S1268-7731(24)00188-7. [PMID: 39242236 DOI: 10.1016/j.fas.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND While total ankle arthroplasty (TAA) has evolved over the years with improved designs and enhanced bony fixation methods, it remains a technically demanding procedure with a risk of early postoperative complications. One of the most common complications associated with TAA is medial and lateral gutter ankle impingement, which can lead to issues such as increased pain and decreased range of motion (ROM). However, there is a paucity of information in the literature discussing the impact of certain risk factors on gutter impingement complications. METHODS A retrospective analysis was conducted on a cohort of patients who underwent a TAA at a single institution from 2003 to 2019 with a minimum of 2-year follow-up. Patient were identified as having gutter impingement based on diagnostic imaging and/or clinical examination. Data collection included demographics, implant type, follow-up time, and co-morbidities. Multivariate odds ratios (OR) of experiencing gutter impingement were calculated for perioperative variables. RESULTS The study included a total of 908 patients who underwent TAA with a minimum of 2 year follow up and 121 patients (13.3 %) who subsequently experienced gutter impingement. The average follow-up time was 5.84 + /- 3.07 years. There were 178 patients under 55 years old, 495 patients aged 55 to 70, and 235 patients over 70 years old. A higher rate of gutter impingement was observed in patients under 55 years of age compared to those aged 55 to 70 and over 70 (20.8 % vs. 13.5 % vs. 7.2 %; p < 0.01). Multivariable logistic regression revealed that patient age was significantly correlated with gutter impingement following TAA, with an OR of 0.94 (CI: 0.91-0.98; p < 0.01). CONCLUSION This study demonstrated increased incidence of gutter impingement in younger patients who underwent TAA. Propensity for scar tissue formation may be higher in this population. Scar tissue deposition following TAA can cause narrowing of the medial and lateral clear spaces, potentially leading to gutter impingement. Additionally, younger patients may have increased activity demands, which subsequently may cause higher rates of symptomatic impingement. As increased impingement after TAA may require the need for additional debridement surgeries, it is important to understand the intricate relationship between age and gutter impingement for managing patient expectations following TAA. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Kevin A Wu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Albert T Anastasio
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kishen Mitra
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Conor N O'Neill
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - James A Nunley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mark E Easley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - James K DeOrio
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Samuel B Adams
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Zhang E, Yan Q, Sun Y, Li J, Chen L, Zou J, Zeng S, Jiang J, Li J. Integrative Analysis of Lactylome and Proteome of Hypertrophic Scar To Identify Pathways or Proteins Associated with Disease Development. J Proteome Res 2024; 23:3367-3382. [PMID: 39012622 DOI: 10.1021/acs.jproteome.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lactylation (Kla), a recently discovered post-translational modification derived from lactate, plays crucial roles in various cellular processes. However, the specific influence of lactylation on the biological processes underlying hypertrophic scar formation remains unclear. In this study, we present a comprehensive profiling of the lactylome and proteome in both hypertrophic scars and adjacent normal skin tissues. A total of 1023 Kla sites originating from 338 nonhistone proteins were identified based on lactylome analysis. Proteome analysis in hypertrophic scar and adjacent skin samples revealed the identification of 2008 proteins. It is worth noting that Kla exhibits a preference for genes associated with ribosome function as well as glycolysis/gluconeogenesis in both normal skin and hypertrophic scar tissues. Furthermore, the functional enrichment analysis demonstrated that differentially lactyled proteins are primarily involved in proteoglycans, HIF-1, and AMPK signaling pathways. The combined analysis of the lactylome and proteome data highlighted a significant upregulation of 14 lactylation sites in hypertrophic scar tissues. Overall, our investigation unveiled the significant involvement of protein lactylation in the regulation of ribosome function as well as glycolysis/gluconeogenesis, potentially contributing to the formation of hypertrophic scars.
Collapse
Affiliation(s)
- Enyuan Zhang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Qiyue Yan
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Yue Sun
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Siqi Zeng
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingbin Jiang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jun Li
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| |
Collapse
|
14
|
Neto AE, Foltz KM, Fuchs T, Gamba LK, Denk MA, Silveira PCL, do Nascimento TG, Clemencia AM, Francisco JC, de Noronha L, Guarita-Souza LC. Decellularized Wharton's Jelly and Amniotic Membrane Demonstrate Potential Therapeutic Implants in Tracheal Defects in Rabbits. Life (Basel) 2024; 14:782. [PMID: 38929764 PMCID: PMC11204711 DOI: 10.3390/life14060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Tracheal grafts have been investigated for over a century, aiming to replace various lesions. However, tracheal reconstruction surgery remains a challenge, primarily due to anatomical considerations, intraoperative airway management, the technical complexity of reconstruction, and the potential postoperative morbidity and mortality. Due to research development, the amniotic membrane (AM) and Wharton's Jelly (WJ) arise as alternatives within the new set of therapeutic alternatives. These structures hold significant therapeutic potential for tracheal defects. This study analyzed the capacity of tracheal tissue regeneration after 60 days of decellularized WJ and AM implantation in rabbits submitted to conventional tracheostomy. METHODS An in vivo experimental study was carried out using thirty rabbits separated into three groups (Control, AM, and WJ) (n = 10). The analyses were performed 60 days after surgery through immunohistochemistry. RESULTS Different immunomarkers related to scar regeneration, such as aggrecan, TGF-β1, and α-SMA, were analyzed. However, they highlighted no significant difference between the groups. Collagen type I, III, and Aggrecan also showed no significant difference between the groups. CONCLUSIONS Both scaffolds appeared to be excellent frameworks for tissue engineering, presenting biocompatibility and a desirable microenvironment for cell survival; however, they did not display histopathological benefits in trachea tissue regeneration.
Collapse
Affiliation(s)
- Aloysio Enck Neto
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (K.M.F.); (L.K.G.); (T.G.d.N.); (J.C.F.); (L.d.N.); (L.C.G.-S.)
| | - Katia Martins Foltz
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (K.M.F.); (L.K.G.); (T.G.d.N.); (J.C.F.); (L.d.N.); (L.C.G.-S.)
| | - Thiago Fuchs
- Veterinary Medicine Undergraduated Program, University of Contestado (UNC), Mafra 89300-000, SC, Brazil;
| | - Luize Kremer Gamba
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (K.M.F.); (L.K.G.); (T.G.d.N.); (J.C.F.); (L.d.N.); (L.C.G.-S.)
| | - Marcos Antonio Denk
- Biomedicine Undergraduate Program, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil;
| | - Paulo Cesar Lock Silveira
- Program of Postgraduate in Science of Health, Laboratory of Experimental Physiopathology, Universidade do Extremo Sul Catarinense (UNESC), Criciúma 88806-000, SC, Brazil; (P.C.L.S.); (A.M.C.)
| | - Thatyanne Gradowski do Nascimento
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (K.M.F.); (L.K.G.); (T.G.d.N.); (J.C.F.); (L.d.N.); (L.C.G.-S.)
| | - Alice Machado Clemencia
- Program of Postgraduate in Science of Health, Laboratory of Experimental Physiopathology, Universidade do Extremo Sul Catarinense (UNESC), Criciúma 88806-000, SC, Brazil; (P.C.L.S.); (A.M.C.)
| | - Julio César Francisco
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (K.M.F.); (L.K.G.); (T.G.d.N.); (J.C.F.); (L.d.N.); (L.C.G.-S.)
| | - Lucia de Noronha
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (K.M.F.); (L.K.G.); (T.G.d.N.); (J.C.F.); (L.d.N.); (L.C.G.-S.)
| | - Luiz César Guarita-Souza
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (K.M.F.); (L.K.G.); (T.G.d.N.); (J.C.F.); (L.d.N.); (L.C.G.-S.)
| |
Collapse
|
15
|
Guo Q, Ji J, Chen F, Shi J, Liu H, Zhu C. Effect of black cloth ointment on hypertrophic scar formation: An investigation using integrated network pharmacology and animal assay. Skin Res Technol 2024; 30:e13791. [PMID: 38895902 PMCID: PMC11187852 DOI: 10.1111/srt.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Hypertrophic scars (HS) are a common disfiguring condition in daily clinical encounters which brings a lot of anxieties and concerns to patients, but the treatment options of HS are limited. Black cloth ointment (BCO), as a cosmetic ointment applicable to facial scars, has shown promising therapeutic effects for facial scarring. However, the molecular mechanisms underlying its therapeutic effects remain unclear. MATERIAL AND METHODS Network pharmacology was first applied to analyze the major active components of BCO and the related signaling pathways. Subsequently, rabbit ear scar model was successfully established to determine the pharmacological effects of BCO and its active component β-elemene on HS. Finally, the molecular mechanism of BCO and β-elemene was analyzed by Western blot. RESULTS Through the network pharmacology, it showed that β-elemene was the main active ingredient of BCO, and it could significantly improve the pathological structure of HS and reduce collagen deposition. BCO and β-elemene could increase the expression of ER stress-related markers and promote the increase of apoptotic proteins in the Western blot experiment and induce the apoptosis of myofibroblasts. CONCLUSIONS Our findings indicate that the material basis for the scar-improving effects of the BCO is β-elemene, and cellular apoptosis is the key mechanism through which the BCO and β-elemene exert their effects.
Collapse
Affiliation(s)
- Qin Guo
- Department of DermatologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Jin Ji
- Department of DermatologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Fang Chen
- Department of DermatologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Jianxin Shi
- Department of DermatologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Huaxu Liu
- Hospital for Skin DiseasesShandong First Medical UniversityJinanChina
| | - Changle Zhu
- Department of PathologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
16
|
Wang M, Zhao J, Li J, Meng M, Zhu M. Insights into the role of adipose-derived stem cells and secretome: potential biology and clinical applications in hypertrophic scarring. Stem Cell Res Ther 2024; 15:137. [PMID: 38735979 PMCID: PMC11089711 DOI: 10.1186/s13287-024-03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.
Collapse
Affiliation(s)
- Menglin Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Meng
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
17
|
Hameedi SG, Saulsbery A, Olutoye OO. The Pathophysiology and Management of Pathologic Scarring-a Contemporary Review. Adv Wound Care (New Rochelle) 2024. [PMID: 38545753 DOI: 10.1089/wound.2023.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Significance: Pathologic scarring occurs secondary to imbalances in the cellular mechanisms of wound healing and affects millions of people annually. This review article aims to provide a concise overview of the pathophysiology and management of pathologic scarring for clinicians and scientists alike. Recent Advances: Contemporary research in the field has identified aberrations in transforming growth factor-β/small mothers against decapentaplegic (TGF-β/SMAD) signaling pathways as key drivers of pathologic scar formation; indeed, this pathway is targeted by many treatment modalities and translational investigations currently underway. Although intralesional injection of corticosteroids has been the gold standard in the treatment of pathologic scarring, studies show greater treatment efficacy with the use of combination injections such as triamcinolone/5-fluorouracil and triamcinolone/botulinum toxin. Adjunctive therapies including ablative fractional carbon dioxide/erbium-doped yttrium aluminum garnet and non-ablative pulsed-dye lasers, microneedling, and carboxytherapy have shown encouraging results in small cohort studies. Translational investigations involving the use of nanogels, RNA interference, and small molecules targeting TGF-β/SMAD pathways are also currently underway and hold promise for the future. Critical Issues: The heterogeneous nature of hypertrophic scars and keloids poses significant challenges in formulating standardized treatment and assessment protocols, thereby limiting the conclusions that can be drawn. Future Directions: Rigorous clinical trials into the individual and synergistic effects of these therapies would be ideal before any definitive conclusions or evidence-based treatment recommendations can be made. Owing to the heterogeneity of the pathology and patient population, well-conducted cohort studies may be the next best option.
Collapse
Affiliation(s)
- Sophia G Hameedi
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Angela Saulsbery
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Oluyinka O Olutoye
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Ma F, Liu H, Xia T, Zhang Z, Ma S, Hao Y, Shen J, Jiang Y, Li N. HSFAS mediates fibroblast proliferation, migration, trans-differentiation and apoptosis in hypertrophic scars via interacting with ADAMTS8. Acta Biochim Biophys Sin (Shanghai) 2024; 56:440-451. [PMID: 38006215 PMCID: PMC10984868 DOI: 10.3724/abbs.2023274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertrophic scar (HS) is one of the most common sequelae of patients, especially after burns and trauma. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating HS remain underexplored. Human hypertrophic scar-derived fibroblasts (HSFBs) have been shown to exert more potent promoting effects on extracellular matrix (ECM) accumulation than normal skin-derived fibroblasts (NSFBs) and are associated with enhanced HS formation. The purpose of this study is to search for lncRNAs enriched in HSFBs and investigate their roles and mechanisms. LncRNA MSTRG.59347.16 is one of the most highly expressed lncRNAs in HS detected by lncRNA-seq and qRT-PCR and named as hypertrophic scar fibroblast-associated lncRNA (HSFAS). HSFAS overexpression significantly induces fibroblast proliferation, migration, and myofibroblast trans-differentiation and inhibits apoptosis in HSFBs, while knockdown of HSFAS results in augmented apoptosis and attenuated proliferation, migration, and myofibroblast trans-differentiation of HSFBs. Mechanistically, HSFAS suppresses the expression of A disintegrin and metalloproteinase with thrombospondin motifs 8 (ADAMTS8). ADAMTS8 knockdown rescues downregulated HSFAS-mediated fibroblast proliferation, migration, myofibroblast trans-differentiation and apoptosis. Thus, our findings uncover a previously unknown lncRNA-dependent regulatory pathway for fibroblast function. Targeted intervention in the HSFAS-ADAMTS8 pathway is a potential therapy for HS.
Collapse
Affiliation(s)
- Fang Ma
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Honglin Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Clinical Medical SchoolNingxia Medical UniversityYinchuan750004China
| | - Tongtong Xia
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Zhenghao Zhang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Clinical Medical SchoolNingxia Medical UniversityYinchuan750004China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Jiangyong Shen
- General Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yideng Jiang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Nan Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
19
|
Robin W, Shuichiro K, Leeni K, Rana T, Reginaldo G, Lari H, Larjava H. Delayed centrifugation weakens the in vitro biological properties of platelet-rich fibrin membranes. Clin Oral Investig 2024; 28:225. [PMID: 38514526 DOI: 10.1007/s00784-024-05617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To investigate how delayed blood centrifugation affects the composition of the resultant platelet rich fibrin membrane (PRF, a concentrated growth factor preparation) and its biological effects towards gingival fibroblasts. MATERIALS AND METHODS Blood samples were collected from 18 healthy individuals and centrifuged immediately (T-0), or after a 1-6-minute delay (T-1-6, respectively), to generate PRF. Each PRF membrane was weighed. T-0 and T-6 membranes were incubated for 48 h in cell culture medium at 37 °C to create PRF "releasates" (soluble factors released from the PRF). Human gingival fibroblasts were incubated for 48 h with or without the releasates, followed by RNA isolation and real-time polymerase chain reaction to measure expression of select genes associated with granulation tissue formation, angiogenesis and wound contraction. Additional T-0 and T-6 membranes were used for visualization of leucocyte nuclei and platelets by immunostaining. RESULTS Immediate centrifugation (T-0) resulted in the largest membranes, T-6 membranes being on average 29% smaller. Leucocytes and platelets were significantly more abundant in T-0 than in T-6 samples. Majority of the fibroblast genes studied were consistently either upregulated or downregulated by the T-0 PRF releasates. However, centrifugation after a 6-minute delay significantly weakened the fibroblast responses. CONCLUSIONS Delayed centrifugation resulted in smaller PRF membranes with fewer leucocytes and platelets and also significantly reduced on the expression of a set of healing-related gingival fibroblast genes. CLINICAL RELEVANCE The higher expression of wound healing-related genes in gingival fibroblasts by the immediately-centrifuged PRF membranes may increase their biological properties in clinical use.
Collapse
Affiliation(s)
- Wintermute Robin
- Division of Periodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Kobayashi Shuichiro
- Division of Periodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Koivisto Leeni
- Division of Periodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Tarzemany Rana
- Division of Periodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Goncalves Reginaldo
- Division of Periodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Häkkinen Lari
- Division of Periodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Hannu Larjava
- Division of Periodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Jibing C, Weiping L, Yuwei Y, Bingzheng F, Zhiran X. Exosomal microRNA-Based therapies for skin diseases. Regen Ther 2024; 25:101-112. [PMID: 38178928 PMCID: PMC10765304 DOI: 10.1016/j.reth.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
Based on engineered cell/exosome technology and various skin-related animal models, exosomal microRNA (miRNA)-based therapies derived from natural exosomes have shown good therapeutic effects on nine skin diseases, including full-thickness skin defects, diabetic ulcers, skin burns, hypertrophic scars, psoriasis, systemic sclerosis, atopic dermatitis, skin aging, and hair loss. Comparative experimental research showed that the therapeutic effect of miRNA-overexpressing exosomes was better than that of their natural exosomes. Using a dual-luciferase reporter assay, the targets of all therapeutic miRNAs in skin cells have been screened and confirmed. For these nine types of skin diseases, a total of 11 animal models and 21 exosomal miRNA-based therapies have been developed. This review provides a detailed description of the animal models, miRNA therapies, disease evaluation indicators, and treatment results of exosomal miRNA therapies, with the aim of providing a reference and guidance for future clinical trials. There is currently no literature on the merits or drawbacks of miRNA therapies compared with standard treatments.
Collapse
Affiliation(s)
| | | | | | - Feng Bingzheng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xu Zhiran
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
21
|
Park JG, Lim DC, Park JH, Park S, Mok J, Kang KW, Park J. Benzbromarone Induces Targeted Degradation of HSP47 Protein and Improves Hypertrophic Scar Formation. J Invest Dermatol 2024; 144:633-644. [PMID: 37838329 DOI: 10.1016/j.jid.2023.09.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Fibrotic diseases are characterized by the abnormal accumulation of collagen in the extracellular matrix, leading to the functional impairment of various organs. In the skin, excessive collagen deposition manifests as hypertrophic scars and keloids, placing a substantial burden on patients and the healthcare system worldwide. HSP47 is essential for proper collagen assembly and contributes to fibrosis. However, identifying clinically applicable HSP47 inhibitors has been a major pharmaceutical challenge. In this study, we identified benzbromarone (BBR) as an HSP47 inhibitor for hypertrophic scarring treatment. BBR inhibited collagen production and secretion in fibroblasts from patients with keloid by binding to HSP47 and inhibiting the interaction between HSP47 and collagen. Interestingly, BBR not only inhibits HSP47 but also acts as a molecular glue degrader that promotes its proteasome-dependent degradation. Through these molecular mechanisms, BBR effectively reduced hypertrophic scarring in mini pigs and rats with burns and/or excisional skin damage. Thus, these findings suggest that BBR can be used to clinically treat hypertrophic scars and, more generally, fibrotic diseases.
Collapse
Affiliation(s)
- Jung Gyu Park
- Innovo Therapeutics, Daejeon, Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | - Jeong Hwan Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Seoah Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Jongsoo Mok
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Joonghoon Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea.
| |
Collapse
|
22
|
Minoretti P, Gómez Serrano M, Santiago Sáez A, Liaño Riera M, García Martín Á. Successful Management of Chronic Wounds by an Autophagy-Activating Magnetized Water-Based Gel in Elderly Patients: A Case Series. Cureus 2024; 16:e55937. [PMID: 38601405 PMCID: PMC11005079 DOI: 10.7759/cureus.55937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic wounds pose a significant threat to human health, particularly for the elderly, and require extensive healthcare resources globally. Autophagy, a key molecular player in wound healing, not only offers a defense against infections but also contributes to the deposition of the extracellular matrix during the proliferative phase. Additionally, it promotes the proliferation and differentiation of endothelial cells, fibroblasts, and keratinocytes. We have recently shown that applying magnetized saline water topically can trigger autophagy in intact skin. In this case series, we document the successful management of five non-infected, difficult-to-heal wounds in elderly patients using a topical autophagy-stimulating gel containing 95% magnetized saline water. The treated wounds included pressure ulcers, venous ulcers, and trauma-related injuries that had shown minimal or no improvement with standard wound therapies over a prolonged period. Application of the autophagy-stimulating gel promoted wound healing, as indicated by reduced fibrous and necrotic tissue, granulation tissue formation, re-epithelialization, and partial or complete wound closure. These preliminary case studies suggest that a topical gel containing magnetized saline water, which promotes autophagy, may aid healing of chronic wounds in elderly patients. Further investigation is warranted to explore the potential of this novel approach, as it may offer a valuable addition to the existing arsenal of wound care treatments for the aging population, particularly in addressing difficult-to-heal wounds.
Collapse
Affiliation(s)
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Ángel García Martín
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| |
Collapse
|
23
|
Tan Y, Zhang M, Kong Y, Zhang F, Wang Y, Huang Y, Song W, Li Z, Hou L, Liang L, Guo X, Liu Q, Feng Y, Zhang C, Fu X, Huang S. Fibroblasts and endothelial cells interplay drives hypertrophic scar formation: Insights from in vitro and in vivo models. Bioeng Transl Med 2024; 9:e10630. [PMID: 38435816 PMCID: PMC10905555 DOI: 10.1002/btm2.10630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
Hypertrophic scar formation is influenced by the intricate interplay between fibroblasts and endothelial cells. In this study, we investigated this relationship using in vitro and in vivo models. Clinical observations revealed distinct morphological changes and increased vascularity at pathological scar sites. Further analysis using OCTA, immunohistochemistry, and immunofluorescence confirmed the involvement of angiogenesis in scar formation. Our indirect co-culture systems demonstrated that endothelial cells enhance the proliferation and migration of fibroblasts through the secretion of cytokines including VEGF, PDGF, bFGF, and TGF-β. Additionally, a suspended co-culture multicellular spheroid model revealed molecular-level changes associated with extracellular matrix remodeling, cellular behaviors, inflammatory response, and pro-angiogenic activity. Furthermore, KEGG pathway analysis identified the involvement of TGF-β, IL-17, Wnt, Notch, PI3K-Akt, and MAPK pathways in regulating fibroblasts activity. These findings underscore the critical role of fibroblasts-endothelial cells crosstalk in scar formation and provide potential targets for therapeutic intervention. Understanding the molecular mechanisms underlying this interplay holds promise for the development of innovative approaches to treat tissue injuries and diseases.
Collapse
Affiliation(s)
- Yaxin Tan
- College of GraduateTianjin Medical UniversityTianjinPR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Mengde Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Fanliang Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Yuyan Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Linhao Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Liting Liang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Xu Guo
- College of GraduateTianjin Medical UniversityTianjinPR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Qinghua Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Yu Feng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Chao Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Xiaobing Fu
- College of GraduateTianjin Medical UniversityTianjinPR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPR China
| |
Collapse
|
24
|
Meetam T, Angspatt A, Aramwit P. Evidence of Potential Natural Products for the Management of Hypertrophic Scars. J Evid Based Integr Med 2024; 29:2515690X241271948. [PMID: 39196306 PMCID: PMC11359448 DOI: 10.1177/2515690x241271948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Hypertrophic scarring is an aberrant wound-healing response to reestablish dermal integrity after an injury and can cause significant abnormalities in physical, aesthetic, functional, and psychological symptoms, impacting the patient's quality of life. There is currently no gold standard for preventing and treating hypertrophic scars. Therefore, many researchers have attempted to search for antihypertrophic scar agents with greater efficacy and fewer side effects. Natural therapeutics are becoming attractive as potential alternative anti-scarring agents because of their high efficacy, safety, biocompatibility, low cost, and easy accessibility. This review demonstrates various kinds of natural product-based therapeutics, including onion, vitamin E, Gotu kola, green tea, resveratrol, emodin, curcumin, and others, in terms of their mechanisms of action, evidence of efficacy and safety, advantages, and disadvantages when used as anti-scarring agents. We reviewed the literature based on data from in vitro, in vivo, and clinical trials. A total of 23 clinical trials were identified in this review; most clinical trials were ranked as having uncertain results (level of evidence 2b; n = 16). Although these natural products showed beneficial effects in both in vitro and in vivo studies of potential anti-scarring agents, there was limited clinical evidence to support their efficacy due to the limited quality of the studies, with individual flaws including small sample sizes, poor randomization, and blinding, and short follow-up durations. More robust and well-designed clinical trials with large-scale and prolonged follow-up durations are required to clarify the benefits and risks of these agents.
Collapse
Affiliation(s)
- Thunyaluk Meetam
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Sirindhorn College of Public Health Trang, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Trang, Thailand
| | - Apichai Angspatt
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok,
Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
25
|
Bharadia SK, Burnett L, Gabriel V. Hypertrophic Scar. Phys Med Rehabil Clin N Am 2023; 34:783-798. [PMID: 37806697 DOI: 10.1016/j.pmr.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Hypertrophic scars frequently develop post-burn, and are characterized by their pruritic, painful, raised, erythematous, dyschromic, and contractile qualities. This article aims to synthesize knowledge on the clinical and molecular development, evolution, management, and measurement of hypertrophic burn scar for both patient and clinician knowledge.
Collapse
Affiliation(s)
- Shyla Kajal Bharadia
- Cumming School of Medicine, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada
| | - Lindsay Burnett
- Alberta Health Services, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada
| | - Vincent Gabriel
- Department of Clinical Neurosciences, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada; Department of Surgery, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada; Medical Director, Calgary Firefighters Burn Treatment Centre, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada.
| |
Collapse
|
26
|
Rivas E, Foster J, Crandall CG, Finnerty CC, Suman-Vejas OE. Key Exercise Concepts in the Rehabilitation from Severe Burns. Phys Med Rehabil Clin N Am 2023; 34:811-824. [PMID: 37806699 PMCID: PMC10731385 DOI: 10.1016/j.pmr.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This article presents information on the benefits of exercise in counteracting the detrimental effects of bed rest, and/or severe burns. Exercise is key for maintaining physical function, lean body mass, metabolic recovery, and psychosocial health after major burn injuries. The details of an exercise training program conducted in severely burned persons are presented, as well as information on the importance of proper regulation of body temperature during exercise or physical activity. The sections on exercise and thermoregulation are followed by a section on the role of exercise in scarring and contractures. Finally, gaps in the current knowledge of exercise, thermoregulation, and contractures are presented.
Collapse
Affiliation(s)
- Eric Rivas
- Microgravity Research, In-Space Solutions, Axiom Space Headquarters, 1290 Hercules Avenue, Houston, TX 77058, USA
| | - Josh Foster
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine (IEEM), Texas Health Presbyterian Hospital Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Craig G Crandall
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine (IEEM), Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX 75231, USA
| | - Celeste C Finnerty
- Department of Surgery, Division of Surgical Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1220, USA
| | - Oscar E Suman-Vejas
- Department of Surgery, Division of Surgical Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1220, USA.
| |
Collapse
|
27
|
Zhang Y, Song Y, Du J, Liu W, Dong C, Huang Z, Zhang Z, Yang L, Wang T, Xiong S, Dong L, Guo Y, Dang J, He Q, Yu Z, Ma X. S100 calcium-binding protein A9 promotes skin regeneration through toll-like receptor 4 during tissue expansion. BURNS & TRAUMA 2023; 11:tkad030. [PMID: 37936894 PMCID: PMC10627002 DOI: 10.1093/burnst/tkad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 11/09/2023]
Abstract
Background In plastic surgery, tissue expansion is widely used for repairing skin defects. However, low expansion efficiency and skin rupture caused by thin, expanded skin remain significant challenges in promoting skin regeneration during expansion. S100 calcium-binding protein A9 (S100A9) is essential in promoting wound healing; however, its effects on skin regeneration during tissue expansion remain unclear. The aim of the present study was to explore the role of S100A9 in skin regeneration, particularly collagen production to investigate its importance in skin regeneration during tissue expansion. Methods The expression and distribution of S100A9 and its receptors-toll-like receptor 4 (TLR-4) and receptor for advanced glycation end products were studied in expanded skin. These characteristics were investigated in skin samples of rats and patients. Moreover, the expression of S100A9 was investigated in stretched keratinocytes in vitro. The effects of S100A9 on the proliferation and migration of skin fibroblasts were also observed. TAK-242 was used to inhibit the binding of S100A9 to TLR-4; the levels of collagen I (COL I), transforming growth factor beta (TGF-β), TLR-4 and phospho-extracellular signal-related kinase 1/2 (p-ERK1/2) in fibroblasts were determined. Furthermore, fibroblasts were co-cultured with stretched S100A9-knockout keratinocytes by siRNA transfection and the levels of COL I, TGF-β, TLR-4 and p-ERK1/2 in fibroblasts were investigated. Additionally, the area of expanded skin, thickness of the dermis, and synthesis of COL I, TGF-β, TLR-4 and p-ERK1/2 were analysed to determine the effects of S100A9 on expanded skin. Results Increased expression of S100A9 and TLR-4 was associated with decreased extracellular matrix (ECM) in the expanded dermis. Furthermore, S100A9 facilitated the proliferation and migration of human skin fibroblasts as well as the expression of COL I and TGF-β in fibroblasts via the TLR-4/ERK1/2 pathway. We found that mechanical stretch-induced S100A9 expression and secretion of keratinocytes stimulated COL I, TGF-β, TLR-4 and p-ERK1/2 expression in skin fibroblasts. Recombined S100A9 protein aided expanded skin regeneration and rescued dermal thinning in rats in vivo as well as increasing ECM deposition during expansion. Conclusions These findings demonstrate that mechanical stretch promoted expanded skin regeneration by upregulating S100A9 expression. Our study laid the foundation for clinically improving tissue expansion using S100A9.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Jing Du
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Chen Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhaosong Huang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhe Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liu Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Shaoheng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liwei Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Juanli Dang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Qiang He
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| |
Collapse
|
28
|
Liu C, Tang L, Hou C, Zhang J, Li J. Intralesional Axitinib Injection Mitigates Hypertrophic Scar by Inhibiting Angiogenesis Pathway: A Preliminary Study in a Rabbit Ear Model. Clin Cosmet Investig Dermatol 2023; 16:3023-3034. [PMID: 37901151 PMCID: PMC10612514 DOI: 10.2147/ccid.s430852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
Objective High levels of VEGF and excessive angiogenesis contribute significantly to hypertrophic scar (HS) formation. Our study aimed to preliminarily investigate the effect of axitinib, a selective VEGF receptor tyrosine kinase inhibitor, on angiogenesis of HS and to explore its possible mechanism in a rabbit ear model. Methods Ten male New Zealand white rabbits were used to establish HS models and then randomised to the control and axitinib groups. The scar tissues in the two groups were injected with axitinib or normal saline, and they were evaluated after one month of treatment. Macroscopic scar thickness, vascularity and pliability, as well as histopathological analysis including HE staining and Masson staining and scar elevation index (SEI) between two groups were compared. Immunohistochemical staining of CD31 in two groups was conducted to assess the degree of angiogenesis in HS tissue. The protein expression of protein kinase B (AKT) and ribosomal protein S6 kinase (p70S6K) and their phosphorylation levels in both groups were examined by Western blot analysis. Results The macroscopic and histological observation showed intralesional axitinib injection significantly reduced scar thickness, vascularity and pliability of HS in the rabbit ear model. The value of SEI in HE assessment was also significantly declined in the axitinib group. Furthermore, immunohistochemical analysis revealed that axitinib suppressed the expression of CD31 in HS tissue, and the mean IOD for blood vessels was significantly lower in the axitinib-treated group. Additionally, axitinib effectively attenuated the protein expression of p70S6K, p-AKT and p-p70S6K by Western blot analysis. Conclusion Our study suggests that intralesional injection of axitinib can effectively attenuate HS by reducing angiogenesis in the rabbit ear model, and this inhibitory effect may be mediated by suppression of AKT/p70S6K signaling pathway. It indicates that axitinib may be a promising option for the treatment of HS in the future.
Collapse
Affiliation(s)
- Chuanbo Liu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Liang Tang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Chunsheng Hou
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinsheng Li
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
29
|
Balko S, Kerr E, Buchel E, Logsetty S, Raouf A. Paracrine signalling between keratinocytes and SVF cells results in a new secreted cytokine profile during wound closure. Stem Cell Res Ther 2023; 14:258. [PMID: 37726799 PMCID: PMC10510163 DOI: 10.1186/s13287-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Stromal vascular fraction (SVF) cells, and the adipose-derived mesenchymal stem cells they contain, have shown enhanced wound healing in vitro and in vivo, yet their clinical application has been limited. In this regard, understanding the mechanisms that govern SVF-enhanced wound healing would improve their application in the clinic. Here, we show that the SVF cells and keratinocytes engage in a paracrine crosstalk during wound closure, which results in a new cytokine profile that is distinct from the cytokines regularly secreted by either cell type on their own. We identify 11 cytokines, 5 of which are not regularly secreted by the SVF cells, whose expressions are significantly increased during wound closure by the keratinocytes. This new cytokine profile could be used to accelerate wound closure and initiate re-epithelialization without the need to obtain the SVF cells from the patient.
Collapse
Affiliation(s)
- Stefan Balko
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Evan Kerr
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ed Buchel
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sarvesh Logsetty
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Afshin Raouf
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
30
|
Bordoni B, Escher AR, Girgenti GT, Tobbi F, Bonanzinga R. Osteopathic Approach for Keloids and Hypertrophic Scars. Cureus 2023; 15:e44815. [PMID: 37692181 PMCID: PMC10483258 DOI: 10.7759/cureus.44815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
The skin is a complex organ, a system that influences and is influenced by the body system, with different skin layers always mechano-biologically active. In the presence of a lesion that damages the dermis, the skin undergoes sensory, morphological, and functional alterations. The subsequent adaptation is the formation of scar tissue, following distinct and overlapping biological phases. For reasons not yet fully elucidated, some healing processes lead to pathological scars, from which symptoms such as pain, itching, and functional limitations are derived. Currently, there is no gold standard treatment that fully meets the needs of different scars and can eliminate any symptoms that the patient suffers. One such treatment is manual medicine, which involves direct manual approaches to the site of injury. Reviewing the phases that allow the skin to be remodeled following an injury, this article reflects on the usefulness of resorting to these procedures, highlighting erroneous concepts on which the manual approach is based, compared to what the current literature highlights the cicatricial processes. Considering pathological scar adaptations, it would be better to follow a gentle manual approach.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Gregory T Girgenti
- Anesthesiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Filippo Tobbi
- Osteopathy, PGO (Post Graduate Osteopathic) Institute, Lesignano De' bagni, ITA
| | - Roberto Bonanzinga
- Osteopathy, PGO (Post Graduate Osteopathic) Institute, Lesignano De' bagni, ITA
| |
Collapse
|
31
|
Ding J, Pan Y, Raj S, Schaffrick L, Wong J, Nguyen A, Manchikanti S, Unsworth L, Kwan P, Tredget E. Characteristics of Serum Exosomes after Burn Injury and Dermal Fibroblast Regulation by Exosomes In Vitro. Cells 2023; 12:1738. [PMID: 37443772 PMCID: PMC10341298 DOI: 10.3390/cells12131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Exosomes (EXOs) have been considered a new target thought to be involved in and treat wound healing. More research is needed to fully understand EXO characteristics and the mechanisms of EXO-mediated wound healing, especially wound healing after burn injury. (2) Methods: All EXOs were isolated from 85 serum samples of 29 burn patients and 13 healthy individuals. We characterized the EXOs for morphology and density, serum concentration, protein level, marker expression, size distribution, and cytokine content. After a confirmation of EXO uptake by dermal fibroblasts, we also explored the functional regulation of primary human normal skin and hypertrophic scar fibroblast cell lines by the EXOs in vitro, including cell proliferation and apoptosis. (3) Results: EXOs dynamically changed their morphology, density, size, and cytokine level during wound healing in burn patients, which were correlated with burn severity and the stages of wound healing. EXOs both from burn patients and healthy individuals stimulated dermal fibroblast proliferation and apoptosis. (4) Conclusions: EXO features may be important signals that influence wound healing after burn injury; however, to understand the mechanisms by which EXOs regulates the fibroblasts in healing wounds, further studies will be required.
Collapse
Affiliation(s)
- Jie Ding
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| | - Yingying Pan
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| | - Shammy Raj
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2S2, Canada; (S.R.); (L.U.)
| | - Lindy Schaffrick
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| | - Jolene Wong
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| | - Antoinette Nguyen
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| | - Sharada Manchikanti
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| | - Larry Unsworth
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2S2, Canada; (S.R.); (L.U.)
| | - Peter Kwan
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| | - Edward Tredget
- Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Y.P.); (L.S.); (J.W.); (A.N.); (S.M.); (P.K.); (E.T.)
| |
Collapse
|
32
|
Riis Porsborg S, Krzyslak H, Pierchala MK, Trolé V, Astafiev K, Lou-Moeller R, Pennisi CP. Exploring the Potential of Ultrasound Therapy to Reduce Skin Scars: An In Vitro Study Using a Multi-Well Device Based on Printable Piezoelectric Transducers. Bioengineering (Basel) 2023; 10:bioengineering10050566. [PMID: 37237636 DOI: 10.3390/bioengineering10050566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive skin scarring affects over 100 million patients worldwide, with effects ranging from cosmetic to systemic problems, and an effective treatment is yet to be found. Ultrasound-based therapies have been used to treat a variety of skin disorders, but the exact mechanisms behind the observed effects are still unclear. The aim of this work was to demonstrate the potential of ultrasound for the treatment of abnormal scarring by developing a multi-well device based on printable piezoelectric material (PiezoPaint™). First, compatibility with cell cultures was evaluated using measurements of heat shock response and cell viability. Second, the multi-well device was used to treat human fibroblasts with ultrasound and quantify their proliferation, focal adhesions, and extracellular matrix (ECM) production. Ultrasound caused a significant reduction in fibroblast growth and ECM deposition without changes in cell viability or adhesion. The data suggest that these effects were mediated by nonthermal mechanisms. Interestingly, the overall results suggest that ultrasound treatment would a be beneficial therapy for scar reduction. In addition, it is expected that this device will be a useful tool for mapping the effects of ultrasound treatment on cultured cells.
Collapse
Affiliation(s)
- Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, DK-9260 Gistrup, Denmark
| | - Hubert Krzyslak
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, DK-9260 Gistrup, Denmark
| | | | - Vincent Trolé
- CTS Ferroperm Piezoceramics, DK-3490 Kvistgaard, Denmark
| | | | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, DK-9260 Gistrup, Denmark
| |
Collapse
|