1
|
Kleniewska P, Pawliczak R. The Link Between Dysbiosis, Inflammation, Oxidative Stress, and Asthma-The Role of Probiotics, Prebiotics, and Antioxidants. Nutrients 2024; 17:16. [PMID: 39796449 PMCID: PMC11722634 DOI: 10.3390/nu17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Asthma (a chronic inflammatory disease of the airways) is characterized by a variable course, response to treatment, and prognosis. Its incidence has increased significantly in recent decades. Unfortunately, modern lifestyle and environmental factors contribute to the further increase in the incidence of this disease. Progressive industrialization and urbanization, widespread use of antibiotic therapy, excessive sterility and inappropriate, highly processed diets are some of the many risk factors that are relevant today. Over the years, a lot of evidence has been gathered showing the influence of microorganisms of the gut or airways on human health. Studies published in recent years indicate that dysbiosis (microbial imbalance) and oxidative stress (pro-oxidant-antioxidant imbalance) are important elements of the pathogenesis of this inflammatory disease. Scientists have attempted to counteract the effects of this process by using probiotics, prebiotics, and antioxidants. The use of probiotic microorganisms positively modulates the immune system by maintaining homeostasis between individual fractions of immune system cells. Moreover, recently conducted experiments have shown that probiotics have antioxidant, anti-inflammatory, and protective properties in oxidative stress (OS). The aim of this study is to present the current state of knowledge on the role of dysbiosis and OS in the pathogenesis of asthma. Conclusions: This review highlights the importance of using probiotics, prebiotics, and antioxidants as potential strategies to support the treatment and prevention of this disease.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | | |
Collapse
|
2
|
Gao L, Chen X, Jiang Z, Zhu J, Wang Q. Respiratory Flora Intervention: A New Strategy for the Prevention and Treatment of Occupationally Related Respiratory Allergy in Healthcare Workers. Microorganisms 2024; 12:2653. [PMID: 39770855 PMCID: PMC11728507 DOI: 10.3390/microorganisms12122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/05/2025] Open
Abstract
Occupational allergic respiratory disease in healthcare workers due to occupational exposure has received widespread attention. At the same time, evidence of altered respiratory flora associated with the development of allergy has been found in relevant epidemiologic studies. It is of concern that the composition of nasopharyngeal flora in healthcare workers differs significantly from that of non-healthcare workers due to occupational factors, with a particularly high prevalence of carriage of pathogenic and drug-resistant bacteria. Recent studies have found that interventions with upper respiratory tract probiotics can significantly reduce the incidence of respiratory allergies and infections. We searched PubMed and other databases to describe the burden of allergic respiratory disease and altered respiratory flora in healthcare workers in this narrative review, and we summarize the mechanisms and current state of clinical research on the use of flora interventions to ameliorate respiratory allergy, with the aim of providing a new direction for protecting the respiratory health of healthcare workers.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China; (L.G.); (X.C.); (Z.J.); (J.Z.)
| |
Collapse
|
3
|
Alwayli D, Jiang X, Liang J, Shah SRH, Ullah A, Abusidu MFZ, Shu W. Adjuvant Effect of Lactobacillus paracasei in Sublingual Immunotherapy of Asthmatic Mice. Pharmaceuticals (Basel) 2024; 17:1580. [PMID: 39770422 PMCID: PMC11678203 DOI: 10.3390/ph17121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Sublingual immunotherapy (SLIT) has shown promise in mitigating allergic asthma symptoms; nevertheless, its high dose and prolonged duration of treatment raise safety concerns. This study explored the potential of Lactobacillus paracasei (L. paracasei) to enhance the effectiveness of SLIT in a mouse model of allergic asthma. Methods: Allergic asthma was induced in Balb/c mice following sensitization and challenge with a house dust mite (HDM) allergen. Subsequently, the mice were subjected to SLIT (66 and 132 µg) either alone or in combination with L. paracasei supplementation. Asthma-associated parameters, including rubbing frequency, IgE level, cytokine profiles, and histological changes, were evaluated to assess treatment efficacy. Results: mice that received SLIT 132 µg combined with the probiotic (combined 132) demonstrated a significant reduction in allergic symptoms (rubbing). This treatment strategy led to a marked IgE and eosinophil level decrease in serum; an increase in anti-inflammatory cytokines like IFN-γ and IL-10; and a reduction in pro-inflammatory cytokines IL-17 and TNF-α. The combination therapy also mitigated lung inflammation and supported the restoration of the structural integrity of the colon, promoting the recovery of goblet cells and mucus secretion. Probiotic treatment alone also effectively reduced IgE levels, increased IFN-γ, and decreased levels of IL-17 and TNF-α. Conclusions: The adjuvant effect of L. paracasei in enhancing SLIT represents a promising approach for improving asthma treatment efficacy.
Collapse
Affiliation(s)
- Dhafer Alwayli
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Xiaoli Jiang
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Jiaxu Liang
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Syed Rafiq Hussain Shah
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Atta Ullah
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Mohammed F. Z. Abusidu
- Department of Biotechnology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Wen Shu
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| |
Collapse
|
4
|
Hou Y, Wang D, Zhou S, Huo C, Chen H, Li F, Ding M, Li H, Zhao H, He J, Da H, Ma Y, Qiang Z, Chen X, Bai C, Cui J, Gao N, Liu Y. Probiotics combined with prebiotics alleviated seasonal allergic rhinitis by altering the composition and metabolic function of intestinal microbiota: a prospective, randomized, double-blind, placebo-controlled clinical trial. Front Immunol 2024; 15:1439830. [PMID: 39555052 PMCID: PMC11563974 DOI: 10.3389/fimmu.2024.1439830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Background Numerous studies have established that probiotics or prebiotics can relieve the symptoms of allergic rhinitis (AR), but their mechanism of action remain underexplored. This study aimed to observe the clinical efficacy of probiotics combined with prebiotics in seasonal AR patients and explore their underlying mechanisms. Methods We conducted a prospective, randomized, double-blind, placebo-controlled clinical trial. The test group was given probiotics combined with prebiotics, whereas the placebo group was administered simulated preparation for 90 days. Outcome measures included total nasal symptom score (TNSS), visual analog scale, rhinitis quality of life questionnaire, fractional exhaled nitric oxide, and the rate and intensity of Loratadine use. Serum TNF-α, INF-γ, IL-4, IL-17, and IgE levels were measured by enzyme-linked immunosorbent assay. Intestinal microbiota was detected by 16S rRNA gene sequencing and quantitative PCR. Short-chain fatty acids were analyzed by gas chromatography-mass spectrometry. Results 106 participants (N = 53 for both test group and placebo group) completed the study. From baseline to day 91, mean difference between groups (MDBG) in the reduction of TNSS was -1.1 (-2.2, -0.1) (P = 0.04); MDBG in the increment of TNF-α was 7.1 pg/ml (95% CI: 0.8, 13.4, P = 0.03); the INF-γ level was significantly increased (P = 0.01), whereas that of IL-17 (P = 0.005) was significantly decreased in the test group, whilst mean difference within groups was not statistically significant in the placebo group; MDBG in the increment of acetate was 12.4% (95% CI: 7.1%, 17.6%, P <0.001). After the administration of probiotics and prebiotics, the composition and metabolic function of the intestinal microbiota were significantly altered and positively related to the beneficial effect on seasonal AR patients. Conclusion Probiotics combined with prebiotics administered for 90 days significantly attenuated the symptoms of seasonal AR patients, which may related to fluctuations in the composition and metabolic function of the intestinal microbiota and further ameliorating host immunity.
Collapse
Affiliation(s)
- Yangfan Hou
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Shuru Zhou
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Caifang Huo
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Haijuan Chen
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Fangxia Li
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Minjuan Ding
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Hongxin Li
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Hongyan Zhao
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Jin He
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Hongju Da
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Yu Ma
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Zhihui Qiang
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Xiushan Chen
- Department of Respiratory and Critical Care Medicine, Yulin No.2 Hospital, Yulin, China
| | - Cairong Bai
- Department of Respiratory and Critical Care Medicine, Yulin No.2 Hospital, Yulin, China
- Department of Allergy, Yulin No.2 Hospital, Yulin, China
| | - Jing Cui
- Department of Respiratory and Critical Care Medicine, Yulin No.2 Hospital, Yulin, China
| | - Na Gao
- Department of Respiratory and Critical Care Medicine, Yulin No.2 Hospital, Yulin, China
- Department of Allergy, Yulin No.2 Hospital, Yulin, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| |
Collapse
|
5
|
Kim HJ, Jeon HJ, Kim DG, Kim JY, Shim JJ, Lee JH. Lacticaseibacillus paracsei HY7207 Alleviates Hepatic Steatosis, Inflammation, and Liver Fibrosis in Mice with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:9870. [PMID: 39337360 PMCID: PMC11432063 DOI: 10.3390/ijms25189870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Non-alcoholic fatty acid disease (NAFLD) is caused by a build-up of fat in the liver, inducing local inflammation and fibrosis. We evaluated the effects of probiotic lactic acid-generating bacteria (LAB) derived from a traditional fermented beverage in a mouse model of NAFLD. The LAB isolated from this traditional Korean beverage were screened using the human hepatic cell line HepG2, and Lactocaseibacillus paracasei HY7207 (HY7207), which was the most effective inhibitor of fat accumulation, was selected for further study. HY7207 showed stable productivity in industrial-scale culture. Whole-genome sequencing of HY7207 revealed that the genome was 2.88 Mbp long, with 46.43% GC contents and 2778 predicted protein-coding DNA sequences (CDSs). HY7207 reduced the expression of lipogenesis and hepatic apoptosis-related genes in HepG2 cells treated with palmitic acid. Furthermore, the administration of 109 CFU/kg/day of HY7207 for 8 weeks to mice fed an NAFLD-inducing diet improved their physiologic and serum biochemical parameters and ameliorated their hepatic steatosis. In addition, HY7207 reduced the hepatic expression of genes important for lipogenesis (Srebp1c, Fasn, C/ebpa, Pparg, and Acaca), inflammation (Tnf, Il1b, and Ccl2), and fibrosis (Col1a1, Tgfb1, and Timp1). Finally, HY7207 affected the expression of the apoptosis-related genes Bax (encoding Bcl2 associated X, an apoptosis regulator) and Bcl2 (encoding B-cell lymphoma protein 2) in the liver. These data suggest that HY7207 consumption ameliorates NAFLD in mice through effects on liver steatosis, inflammation, fibrosis, and hepatic apoptosis. Thus, L. paracasei HY7207 may be suitable for use as a functional food supplement for patients with NAFLD.
Collapse
Affiliation(s)
- Hyeon-Ji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Hye-Jin Jeon
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Dong-Gun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jae-Hwan Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| |
Collapse
|
6
|
Wang J, Zhao Y, Cui T, Bao H, Gao M, Cheng M, Sun Y, Lu Y, Guan J, Zhang D, Jiang Y, Huang H, Shi C, Wang J, Wang N, Hu J, Yang W, Qian H, Jiang Q, Yang G, Zeng Y, Wang C, Cao X. AhR ligands from LGG metabolites promote piglet intestinal ILC3 activation and IL-22 secretion to inhibit PEDV infection. J Virol 2024; 98:e0103924. [PMID: 39012142 PMCID: PMC11334530 DOI: 10.1128/jvi.01039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yibo Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tong Cui
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hongyu Bao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiayao Guan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | | | - Qingrong Jiang
- Sichuan Sundaily Farm Ecological Food Co. Ltd, Mianyang, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Kleniewska P, Pawliczak R. Can probiotics be used in the prevention and treatment of bronchial asthma? Pharmacol Rep 2024; 76:740-753. [PMID: 38951480 PMCID: PMC11294272 DOI: 10.1007/s43440-024-00618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Asthma is a lifelong condition with varying degrees of severity and susceptibility to symptom control. Recent studies have examined the effects of individual genus, species, and strains of probiotic microorganisms on the course of asthma. The present review aims to provide an overview of current knowledge on the use of probiotic microorganisms, mainly bacteria of the genus Lactobacillus and Bifidobacterium, in asthma prevention and treatment. Recent data from clinical trials and mouse models of allergic asthma indicate that probiotics have therapeutic potential in this condition. Animal studies indicate that probiotic microorganisms demonstrate anti-inflammatory activity, attenuate airway hyperresponsiveness (AHR), and reduce airway mucus secretion. A randomized, double-blind, placebo-controlled human trials found that combining multi-strain probiotics with prebiotics yielded promising outcomes in the treatment of clinical manifestations of asthma. It appears that probiotic supplementation is safe and significantly reduces the frequency of asthma exacerbations, as well as improved forced expiratory volume and peak expiratory flow parameters, and greater attenuation of inflammation. Due to the small number of available clinical trials, and the use of a wide range of probiotic microorganisms and assessment methods, it is not possible to draw clear conclusions regarding the use of probiotics as asthma treatments.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland.
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland
| |
Collapse
|
8
|
Lee MK, Chen IH, Hsu IL, Tsai WH, Lee TY, Jhong JH, Liu BC, Huang TY, Lin FK, Chang WW, Wu JH. The impact of Lacticaseibacillus paracasei GMNL-143 toothpaste on gingivitis and oral microbiota in adults: a randomized, double-blind, crossover, placebo-controlled trial. BMC Oral Health 2024; 24:477. [PMID: 38643116 PMCID: PMC11031891 DOI: 10.1186/s12903-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND This study examines the oral health benefits of heat-killed Lacticaseibacillus paracasei GMNL-143, particularly its potential in oral microbiota alterations and gingivitis improvement. METHODS We assessed GMNL-143's in vitro interactions with oral pathogens and its ability to prevent pathogen adherence to gingival cells. A randomized, double-blind, crossover clinical trial was performed on gingivitis patients using GMNL-143 toothpaste or placebo for four weeks, followed by a crossover after a washout. RESULTS GMNL-143 showed coaggregation with oral pathogens in vitro, linked to its surface layer protein. In patients, GMNL-143 toothpaste lowered the gingival index and reduced Streptococcus mutans in crevicular fluid. A positive relationship was found between Aggregatibacter actinomycetemcomitans and gingival index changes, and a negative one between Campylobacter and gingival index changes in plaque. CONCLUSION GMNL-143 toothpaste may shift oral bacterial composition towards a healthier state, suggesting its potential in managing mild to moderate gingivitis. TRIAL REGISTRATION ID NCT04190485 ( https://clinicaltrials.gov/ ); 09/12/2019, retrospective registration.
Collapse
Affiliation(s)
- Min-Kang Lee
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan
| | - I-Hui Chen
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan
| | - I-Ling Hsu
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Jhih-Hua Jhong
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City, 320315, Taiwan
| | - Bai-Chia Liu
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Tsui-Yin Huang
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Fang-Kuei Lin
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Wen-Wei Chang
- Departement of Biomedical Sciences, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N. Rd, Taichung City, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402306, Taiwan.
| | - Ju-Hui Wu
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan.
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan.
| |
Collapse
|
9
|
Xu X, Yin J, Yang Y, Liu H, Yu J, Luo X, Zhang Y, Song X. Advances in co-pathogenesis of the united airway diseases. Respir Med 2024; 225:107580. [PMID: 38484897 DOI: 10.1016/j.rmed.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
According to the concept of "united airway diseases", the airway is a single organ in which upper and lower airway diseases are commonly comorbid. A range of inflammatory factors have been found to play an important role in the chain reaction of upper and lower airway diseases. However, the amount of research on this concept remains limited. The underlying mechanism of the relationship between typical diseases of the united airway, such as asthma, allergic rhinitis, and chronic sinusitis, also needs to be further explored. This review highlights the interaction between upper and lower respiratory diseases gathered from epidemiological, histoembryology, neural mechanistic, microbiological, and clinical studies, revealing the relationship between the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Huifang Liu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; The 2nd School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Jingyi Yu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xianghuang Luo
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| |
Collapse
|
10
|
Ciprandi G, Miraglia del Giudice M, Drago L. Progress on probiotics as add-on therapy for allergic rhinitis. REVUE FRANÇAISE D'ALLERGOLOGIE 2024; 64:103766. [DOI: 10.1016/j.reval.2023.103766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Han H, Chen G, Zhang B, Zhang X, He J, Du W, Li MD. Probiotic Lactobacillus plantarum GUANKE effectively alleviates allergic rhinitis symptoms by modulating functions of various cytokines and chemokines. Front Nutr 2024; 10:1291100. [PMID: 38288067 PMCID: PMC10822906 DOI: 10.3389/fnut.2023.1291100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Background Currently, the prevalence of allergic rhinitis (AR) remains high and there is a great need to develop better and safer ways to alleviate AR symptoms. The Lactobacillus plantarum GUANKE probiotic was reported as an immunomodulator through maintaining Th1/Th2 balance. This study aimed to determine the efficacy of GUANKE in AR subjects. Methods Adults aged from 18 to 60 years old and previously suffered from AR were recruited and received GUANKE probiotics treatment for 4 weeks. The questionnaires of Total nasal symptom scores (TNSS), total non-nasal symptom score (TNNSS), and rhinitis control assessment test (RCAT) were used to assess the effectiveness before and after treatment. The serum allergen-specific IgE and cytokines were also determined at baseline and after 4 weeks of probiotics administration. Results The results showed that TNSS and TNNSS were significantly reduced and the RCAT score was significantly increased compared to baseline. The sub-symptom score of rhinorrhea, itching, sneezing, and tearing in each questionnaire also showed significant changes, and the serum IgE level was markedly decreased. We further measured inflammatory-related proteins in serum and found that a total of 20 proteins (6 upregulated and 14 downregulated) were significantly changed compared to baseline, including IL-4, IL-7, IL-20, IL-33, CXCL1, CXCL5, CXCL6, CXCL11, CCL4, CCL23, TGF-alpha, LAP-TGF-beta-1, MMP-1, MMP-10, AXIN1, NT-3, OSM, SCF, CD6, and NRTN. Enrichment analysis showed that these significantly altered proteins were mainly enriched in cytokine and chemokine-related signaling pathways. Conclusion Taken together, this study demonstrated the Lactobacillus plantarum GUANKE can serve as an effective immunobiotic for the treatment of AR, which is realized through maintaining the Th1/Th2 balance by modulating the functions of various cytokines and chemokines.
Collapse
Affiliation(s)
- Haijun Han
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuewen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingmin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biological Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenjuan Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Wu Y, Zhang G, Wang Y, Wei X, Liu H, Zhang L, Zhang L. A Review on Maternal and Infant Microbiota and Their Implications for the Prevention and Treatment of Allergic Diseases. Nutrients 2023; 15:nu15112483. [PMID: 37299446 DOI: 10.3390/nu15112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Allergic diseases, which are closely related to the composition and metabolism of maternal and infant flora, are prevalent in infants worldwide. The mother's breast milk, intestinal, and vaginal flora directly or indirectly influence the development of the infant's immune system from pregnancy to lactation, and the compositional and functional alterations of maternal flora are associated with allergic diseases in infants. Meanwhile, the infant's own flora, represented by the intestinal flora, indicates and regulates the occurrence of allergic diseases and is altered with the intervention of allergic diseases. By searching and selecting relevant literature in PubMed from 2010 to 2023, the mechanisms of allergy development in infants and the links between maternal and infant flora and infant allergic diseases are reviewed, including the effects of flora composition and its consequences on infant metabolism. The critical role of maternal and infant flora in allergic diseases has provided a window for probiotics as a microbial therapy. Therefore, the uses and mechanisms by which probiotics, such as lactic acid bacteria, can help to improve the homeostasis of both the mother and the infant, and thereby treat allergies, are also described.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yucong Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Wei
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|