1
|
Carriero F, Rubino V, Gelzo M, Scalia G, Raia M, Ciccozzi M, Gentile I, Pinchera B, Castaldo G, Ruggiero G, Terrazzano G. Immune Profile in COVID-19: Unveiling T R3-56 Cells in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:10465. [PMID: 39408792 PMCID: PMC11477006 DOI: 10.3390/ijms251910465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of COronaVIrus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presented a global health challenge since its identification in December 2019. With clinical manifestations ranging from mild respiratory symptoms to severe multi-organ dysfunction, COVID-19 continues to affect populations worldwide. The complex interactions between SARS-CoV-2 variants and the human immune system are crucial for developing effective therapies, vaccines, and preventive measures. Understanding these immune responses highlights the intricate nature of COVID-19 pathogenesis. This retrospective study analyzed, by flow cytometry approach, a cohort of patients infected with SARS-CoV-2 during the initial pandemic waves from 2020 to 2021. It focused on untreated individuals at the time of hospital admission and examined the presence of TR3-56 cells in their immune profiles during the anti-viral immune response. Our findings provide additional insights into the complex immunological dynamics of SARS-CoV-2 infection and highlight the potential role of TR3-56 cells as crucial components of the immune response. We suggest that TR3-56 cells could serve as valuable biomarkers for identifying more severe cases of COVID-19, aiding in the assessment and management of the disease.
Collapse
Affiliation(s)
- Flavia Carriero
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giulia Scalia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Massimo Ciccozzi
- Unità di Epidemiologia e Statistica Medica, Università Campus Biomedico, 00128 Rome, Italy;
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
2
|
Pinto G, Gelzo M, Cernera G, Esposito M, Illiano A, Serpico S, Pinchera B, Gentile I, Castaldo G, Amoresano A. Molecular fingerprint by omics-based approaches in saliva from patients affected by SARS-CoV-2 infection. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5082. [PMID: 39228271 DOI: 10.1002/jms.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Clinical expression of coronavirus disease 2019 (COVID-19) infectionis widely variable including fatal cases and patients with mild symptoms and a rapid resolution. We studied saliva from 63 hospitalized COVID-19 patients and from 30 healthy controls by integrating large-scale proteomics, peptidomics and targeted metabolomics to assess the biochemical alterations following the infection and to obtain a set of putative biomarkers useful for noninvasive diagnosis. We used an untargeted approach by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomics and peptidomics analysis and targeted LC-multiple reaction monitoring/MS for the analysis of amino acids. The levels of 77 proteins were significantly different in COVID-19 patients. Among these, seven proteins were found only in saliva from patients with COVID-19, four were up-regulated and three were down-regulated at least five-folds in saliva from COVID-19 patients in comparison to controls. The analysis of proteins revealed a complex balance between pro-inflammatory and anti-inflammatory proteins and a reduced amount of several proteins with immune activity that possibly favours the spreading of the virus. Such reduction could be related to the enhanced activity of endopeptidases induced by the infection that in turn caused an altered balance of free peptides. In fact, on a total of 28 peptides, 22 (80%) were differently expressed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and control subjects. The multivariate analysis of such peptides permits to obtain a diagnostic algorithm that discriminate the two populations with a high diagnostic efficiency. Among amino acids, only threonine resulted significantly different between COVID-19 patients and controls, while alanine levels were significantly different between COVID-19 patients with different severity. In conclusion, the present study defined a set of molecules to be detected with a quick and easy method based on mass spectrometry tandem useful to reveal biochemical alterations involved in the pathogenesis of such a complex disease. Data are available via ProteomeXchange with identifier PXD045612.
Collapse
Affiliation(s)
- Gabriella Pinto
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie avanzate Franco Salvatore, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Naples, Italy
| | - Gustavo Cernera
- CEINGE-Biotecnologie avanzate Franco Salvatore, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Naples, Italy
| | - Mariapia Esposito
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Naples, Italy
| | - Anna Illiano
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Stefania Serpico
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Naples, Italy
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, University of Naples Federico II, Naples, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, University of Naples Federico II, Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie avanzate Franco Salvatore, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Naples, Italy
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
- CEINGE-Biotecnologie avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
3
|
Cernera G, Gelzo M, De Placido P, Pietroluongo E, Raia M, Scalia G, Tortora M, Formisano P, Palmieri G, Giuliano M, Castaldo G. Serum biomarkers of inflammation and vascular damage upon SARS-Cov-2 mRNA vaccine in patients with thymic epithelial tumors. Clin Chem Lab Med 2024; 62:1198-1205. [PMID: 38232092 DOI: 10.1515/cclm-2023-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVES Thymic epithelial tumors (TET) patients are at high risk of autoimmune and hypoimmune complications. Limited evidence is available on the potential risk of immune-related and inflammatory reactions induced by SARS-Cov-2 vaccine in this patient population. METHODS In order to identify subjects at higher risk for vaccine complications, we prospectively evaluated a panel of serum biomarkers related to inflammation (TNF-α, IL-1β, -6, -10, -12, and -17A, IFN-α, β and γ, MPO, MMP-9), and vascular damage (E- and P-selectin, VEGF-A, P-ANCA and MCP-1) in 44 TET patients and in 30 healthy controls along the whole SARS-Cov-2 vaccine cycle. RESULTS About 50 % of subjects (either TET and controls) showed an increase of serum biochemical markers of inflammation and endothelial damage with a large heterogeneity of values. Such increase appeared early, after the first dose in control subjects and later, after the second dose in TET patients (in which we observed mainly an increase of inflammatory biomarkers). The values normalized after about 3 months and did not increase after the third, booster dose. No autoimmune or vascular complications were observed in the study subjects and no difference was observed in terms of vaccine response among subjects showing serum biomarkers increase and those who experienced no changes. CONCLUSIONS Our data highlight the relevance of Sars-Cov-2 vaccine in TET patients, as it resulted safe and prevented severe COVID-19. However, further studies are awaited to explore the mechanisms and the potential consequences of the observed increase of serum inflammatory and vascular damage biomarkers.
Collapse
Affiliation(s)
- Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Pietro De Placido
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Erica Pietroluongo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | | | | | - Marianna Tortora
- Rare Tumors Coordinating Center of Campania Region (CRCTR), Naples, Italy
| | - Pietro Formisano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Naples, Italy
| | | | - Mario Giuliano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
- Rare Tumors Coordinating Center of Campania Region (CRCTR), Naples, Italy
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| |
Collapse
|
4
|
Cernera G, Gelzo M, De Placido P, Ottaviano M, Pietroluongo E, Raia M, Scalia G, Tortora M, Castaldo G, Formisano P, Palmieri G, Giuliano M. Immunocytometric analysis of patients with thymic epithelial tumors revealed that COVID-19 vaccine booster strongly enhanced the immune response. Front Immunol 2023; 14:1233056. [PMID: 37705978 PMCID: PMC10495582 DOI: 10.3389/fimmu.2023.1233056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Background Thymic epithelial tumors (TETs) are rare malignancies with heterogeneous clinical manifestations. The high frequency of autoimmune paraneoplastic disorders observed in such patients requires caution when using COVID-19 vaccines. Furthermore, TETs are often associated with severe immunodeficiency, making it difficult to predict vaccine immunization. Therefore, we aimed to evaluate immune response to COVID-19 vaccine in patients with TETs. Methods We conducted a prospective study enrolling patients who underwent the SARS-Cov-2 mRNA full vaccine cycle (two doses plus a booster after 6 months of BNT162b2). All patients were enrolled before receiving 1st vaccine dose and were followed over the vaccination cycle for up to 6 months after the booster dose to i) assess humoral and cellular responses, ii) define biomarkers predictive of effective immunization, and iii) evaluate the safety of the vaccine. Results At the end of the full vaccine cycle, 27 (61.4%) patients developed humoral and 38 (86.4%) cellular responses (IFN γ release by stimulated cells) and showed an increase in activated TH1 and TH17 cells, particularly significant after the booster dose. The number of B and T lymphocytes at baseline was predictive of humoral and cellular responses, respectively. Patients with no evidence of tumor lesions had a higher probability of achieving a humoral response than those with evidence of the disease. Furthermore, the percentage of patients with immune-related disorders (75%), particularly Good's syndrome (47.7%) and myasthenia gravis (29.5%), did not change over the entire vaccine cycle. Overall, 19 of the 44 enrolled patients (43.2%) had COVID-19 during the observation period; none required hospitalization or oxygen support, and no fatalities were observed. Conclusion SARS-Cov-2 mRNA vaccine determines the immune responses in patients with TET, particularly after the booster dose, and in patients with no evidence of tumor lesions. Preliminary analysis of B and T lymphocytes may help identify patients who have a lower probability of achieving effective humoral and cellular responses and thus may need passive immunization. The vaccine prevented severe COVID-19 infection and is safe.
Collapse
Affiliation(s)
- Gustavo Cernera
- CEINGE-Biotecnologie avanzate, scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie avanzate, scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Pietro De Placido
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Margaret Ottaviano
- Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, IRCCS Fondazione G. Pascale, Naples, Italy
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| | - Erica Pietroluongo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | | | | | - Marianna Tortora
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie avanzate, scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Pietro Formisano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Naples, Italy
| | - Giovannella Palmieri
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| | - Mario Giuliano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| |
Collapse
|
5
|
Tatsi EB, Filippatos F, Dellis C, Dourdouna MM, Syriopoulou V, Michos A. Kinetics of SARS-CoV-2 Spike Antibodies after the Second and Third Dose of the BNT162b2 COVID-19 Vaccine and Association with Epidemiological Characteristics and Breakthrough Infection in a Cohort Study of Healthcare Workers. Microorganisms 2023; 11:2010. [PMID: 37630570 PMCID: PMC10458561 DOI: 10.3390/microorganisms11082010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
To prospectively study the kinetics of immune responses after immunization with the BNT162b2 mRNA COVID-19 vaccine and their association with epidemiological parameters and breakthrough infection (BI), we measured total (TAbs-WT) and neutralizing antibodies against wild-type (NAbs-WT) and Omicron (NAbs-O) SARS-CoV-2 spike proteins in healthcare workers (HCWs) after the second (4 and 8 months) and third dose (1 and 8 months). Vaccinated HCWs (n = 486), with a median age (IQR) of 49 years (38-56), were included in this prospective cohort study. BI was observed 4 and 8 months after the second dose in 8/486 (1.6%) and 15/486 (3.1%) HCWs, respectively, and 1 and 8 months after the third dose in 17/486 (3.5%) and 152/486 (31.3%) HCWs, respectively. A comparison of immune responses 1 month after the third dose in vaccinated HCWs without a BI or with a BI in the next 7 months did not detect any statistically significant differences in the TAbs-WT (median (IQR): 16,611.0 (13,011.0) U/mL vs. 17,572.5 (14,501.0) U/mL, p = 0.529) and NAbs-WT (median (IQR): 96.5% (1.7) vs. 96.7% (1.9), p = 0.555). After infection, HCWs with a BI had significantly increased TAbs-WT levels at all time points compared to healthy HCWs. The findings of the present study indicate that antibody levels after three doses of the BNT162b2 vaccine are not directly associated with the possibility of a BI.
Collapse
Affiliation(s)
- Elizabeth-Barbara Tatsi
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (V.S.)
- University Research Institute of Maternal and Child Health and Precision Medicine, 11527 Athens, Greece
| | - Filippos Filippatos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (V.S.)
| | - Charilaos Dellis
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (V.S.)
| | - Maria-Myrto Dourdouna
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (V.S.)
| | - Vasiliki Syriopoulou
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (V.S.)
| | - Athanasios Michos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (V.S.)
| |
Collapse
|