1
|
Yang Y, Sun Z, Li J, Song Y, Xu W. Neutrophil-derived IL-10 increases CVB3-induced acute pancreatitis pathology via suppressing CD8 +T cell activation while increasing macrophage STAT3-IL-6 cascade. Cytokine 2024; 184:156784. [PMID: 39437614 DOI: 10.1016/j.cyto.2024.156784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Acute pancreatitis (AP) is a lethal inflammatory disease of the pancreas. Its pathogenesis remains obscure and specific treatments are lacking. An increase in Interleukin-10 (IL-10) in the early stage of AP patients is closely related to AP severity. In Coxsackievirus B3 (CVB3) induced murine AP model, we found early IL-10 increased viral replication and pancreatic inflammation, yet the cellular source of IL-10 and the immunomodulatory role of neutrophils during viral infection remains unknown. Here we show that CVB3 infection enhanced neutrophil infiltration and IL-10 expression in the pancreas at day3 post infection (p.i.). Neutrophils served as an important early source of pancreatic IL-10 at the initiation of infection. Day3 pancreas extracts (D3P) also induced bone-marrow derived neutrophils (BMneu) to secrete IL-10. Adoptive transfer of D3P-pretreated BMneu into IL-10 KO mice increased viral replication and pancreas histopathology, which effect was blunted by the absence of IL-10 in BMneu. Mechanically, IL-10+ neutrophil increased IL-10R1 expression on MΦs and activated STAT3-IL-6/IL-10 signaling cascade while decreased IL-12 and MHC II expression in MΦs, thus impairing IFN-γ+Granzyme B+CD8+T cell activation and viral clearance. Adoptive transferring infected mice with activated CD8+T cells 4 days p.i. attenuated viral load and AP pathology indicating an AP-protective effect. Our findings document a novel immunoregulatory function of neutrophils in acute CVB3 infection, in which neutrophil-derived IL-10 impairs anti-viral CD8+T activation, and amplifies intrapancreatic inflammation via activating MΦ STAT3-IL-6 signaling cascade. An IL-10-targeting option is suggested for the future treatment of viral AP.
Collapse
Affiliation(s)
- Yue Yang
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Zhirong Sun
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Jingrou Li
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Yahui Song
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Wei Xu
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China.
| |
Collapse
|
2
|
Liu H, Mao H, Ouyang X, Lu R, Li L. Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. Traffic 2024; 25:e12951. [PMID: 39238078 DOI: 10.1111/tra.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui Mao
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xueqian Ouyang
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis 2024; 12:e1351. [PMID: 39023414 PMCID: PMC11256889 DOI: 10.1002/iid3.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.
Collapse
Affiliation(s)
- Qi Liu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| |
Collapse
|
4
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
5
|
Milivojcevic Bevc I, Tasic-Uros D, Stojanovic BS, Jovanovic I, Dimitrijevic Stojanovic M, Gajovic N, Jurisevic M, Radosavljevic G, Pantic J, Stojanovic B. Redefining Immune Dynamics in Acute Pancreatitis: The Protective Role of Galectin-3 Deletion and Treg Cell Enhancement. Biomolecules 2024; 14:642. [PMID: 38927046 PMCID: PMC11201657 DOI: 10.3390/biom14060642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory condition that can lead to systemic inflammatory responses and multiple organ dysfunction. This study investigates the role of Galectin-3 (Gal-3), a β-galactoside-binding lectin, in modulating acquired immune responses in AP. Acute pancreatitis was induced by ligation of the bile-pancreatic duct in wild-type and Galectin-3-deficient C57BL/6 mice. We determined the phenotypic and molecular features of inflammatory cells, serum concentrations of amylase, pancreatic trypsin activity, and pancreatic and lung pathology. Galectin-3 deficiency decreased the total number of CD3+CD49- T cells and CD4+ T helper cells, downregulated the production of inflammatory cytokine and IFN-γ, and increased the accumulation of IL-10-producing Foxp3+ T regulatory cells and regulatory CD4+ T cells in the pancreata of diseased animals. The deletion of Galectin-3 ameliorates acute pancreatitis characterized by lowering serum amylase concentration and pancreatic trypsin activity, and attenuating of the histopathology of the lung. These findings shed light on the role of Galectin-3 in acquired immune response in acute pancreatitis and identify Galectin-3 as an attractive target for investigation of the immunopathogenesis of disease and for consideration as a potential therapeutic target for patients with acute inflammatory disease of the pancreas.
Collapse
Affiliation(s)
| | - Danijela Tasic-Uros
- City Medical Emergency Department, 11000 Belgrade, Serbia; (I.M.B.); (D.T.-U.)
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Milena Jurisevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gordana Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
6
|
Mo S, Wu W, Luo K, Huang C, Wang Y, Qin H, Cai H. Identification and analysis of chemokine-related and NETosis-related genes in acute pancreatitis to develop a predictive model. Front Genet 2024; 15:1389936. [PMID: 38784040 PMCID: PMC11112067 DOI: 10.3389/fgene.2024.1389936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background: Chemokines and NETosis are significant contributors to the inflammatory response, yet there still needs to be a more comprehensive understanding regarding the specific molecular characteristics and interactions of NETosis and chemokines in the context of acute pancreatitis (AP) and severe AP (SAP). Methods: To address this gap, the mRNA expression profile dataset GSE194331 was utilized for analysis, comprising 87 AP samples (77 non-SAP and 10 SAP) and 32 healthy control samples. Enrichment analyses were conducted for differentially expressed chemokine-related genes (DECRGs) and NETosis-related genes (DENRGs). Three machine-learning algorithms were used for the identification of signature genes, which were subsequently utilized in the development and validation of nomogram diagnostic models for the prediction of AP and SAP. Furthermore, single-gene Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed. Lastly, an interaction network for the identified signature genes was constructed. Results: We identified 12 DECRGs and 7 DENRGs, and enrichment analyses indicated they were primarily enriched in cytokine-cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and T cell receptor signaling pathway. Moreover, these machine learning algorithms finally recognized three signature genes (S100A8, AIF1, and IL18). Utilizing the identified signature genes, we developed nomogram models with high predictive accuracy for AP and differentiation of SAP from non-SAP, as demonstrated by area under the curve (AUC) values of 0.968 (95% CI 0.937-0.990) and 0.862 (95% CI 0.742-0.955), respectively, in receiver operating characteristic (ROC) curve analysis. Subsequent single-gene GESA and GSVA indicated a significant positive correlation between these signature genes and the proteasome complex. At the same time, a negative association was observed with the Th1 and Th2 cell differentiation signaling pathways. Conclusion: We have identified three genes (S100A8, AIF1, and IL18) related to chemokines and NETosis, and have developed accurate diagnostic models that might provide a novel method for diagnosing AP and differentiating between severe and non-severe cases.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Kai Luo
- Department of Critical Care Medicine, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Cheng Huang
- Oncology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Heping Qin
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaiyang Cai
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| |
Collapse
|
7
|
Hu Y, Ding J, Chen Y, Wang Q, Yang X, Hua H, Ye X. Soluble Fibrinogen-Like Protein 2 Downregulation and Th17/Treg Imbalance in a Taurocholate-Induced Murine Experimental Model of Severe Acute Pancreatitis. J Clin Lab Anal 2024; 38:e25076. [PMID: 38853390 PMCID: PMC11211668 DOI: 10.1002/jcla.25076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is associated with tremendous systemic inflammation, T-helper 17 (Th17) cells, and regulatory T (Treg) cells play an essential role in the inflammatory responses. Meanwhile, soluble fibrinogen-like protein 2 (Sfgl2) is a critical immunosuppressive effector cytokine of Treg cells and modulates immune responses. However, the impact of SAP induction on Sfgl2 expression and the role of Sfgl2 in immunomodulation under SAP conditions are largely unknown. METHODS A taurocholate-induced mouse SAP model was established. The ratios of CD4+CD25+Foxp3+ Treg cells or CD4+IL-17+ Th17 cells in blood and pancreatic tissues as well as surface expression of CD80, CD86, and major histocompatibility complex class II (MHC-II) were determined by flow cytometry. Gene mRNA expression was determined by qPCR. Serum amylase and soluble factors were quantitated by commercial kits. Bone marrow-derived dendritic cells (DCs) were generated, and NF-κB/p65 translocation was measured by immunofluorescence staining. RESULTS SAP induction in mice decreased the Th17/Treg ratio in the pancreatic tissue and increased the Th17/Treg ratio in the peripheral blood. In addition, SAP was associated with a reduced level of Sfgl2 in the pancreatic tissue and blood: higher levels of serum IL-17, IL-2, IFN-α, and TNF-α, and lower levels of serum IL-4 and IL-10. Furthermore, the SAP-induced reduction in Sfgl2 expression was accompanied by dysregulated maturation of bone marrow-derived DCs. CONCLUSIONS SAP causes reduced Sfgl2 expression and Th17/Treg imbalance, thus providing critical insights for the development of Sfgl2- and Th17/Treg balance-targeted immunotherapies for patients with SAP.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Qunying Wang
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Xiaoyun Yang
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Hongjun Hua
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| |
Collapse
|
8
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
9
|
Chen Y, Li X, Lu R, Lv Y, Ye J, Huang Q, Meng W, Long F, Burman J, Mo X, Fan C. Genetic insights into across pancreatitis types: the causal influence of immunoglobulin G N-glycosylation variants on disease risk. Front Immunol 2024; 15:1326370. [PMID: 38566993 PMCID: PMC10986635 DOI: 10.3389/fimmu.2024.1326370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background While a few case-control studies indicated a possible correlation of IgG N-glycosylation patterns with pancreatitis, their restricted sample sizes and methodologies prevented conclusive insights into causality or distinguishing traits across pancreatitis types. Method We conducted a two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between 77 IgG N-glycosylation traits and various types of pancreatitis, including acute pancreatitis (AP), chronic pancreatitis (CP), alcohol acute pancreatitis (AAP), and alcohol chronic pancreatitis (ACP). This analysis utilized summary-level data from genome-wide association studies (GWAS), employing methods such as IVW, MR-Egger, and weighted median. To ensure the robustness of our findings, several sensitivity analyses, including Cochran's Q statistic, leave-one-out, MR-Egger intercept, and MR-PRESSO global test were conducted. Result Our study uncovered the causal relationship between specific IgG N-glycosylation traits and various types of pancreatitis. Notably, an increase in genetically predicted IGP7 levels was associated with a decreased risk of developing AP. For CP, our data suggested a protective effect associated with higher levels of both IGP7 and IGP31, contrasting with increased levels of IGP27 and IGP65, which were linked to a heightened risk. Moreover, in the case of AAP, elevated IGP31 levels were causatively associated with a lower incidence, while higher IGP26 levels correlated with an increased risk for ACP. Conclusion This study establishes causal relationship between specific IgG N-glycosylation patterns and varying risks of different pancreatitis forms, underscoring their potential as predictive biomarkers. These findings necessitate further exploration into the underlying mechanisms, promising to inform more personalized diagnostic and therapeutic strategies in pancreatitis management.
Collapse
Affiliation(s)
- Yulin Chen
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Lu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yinchun Lv
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Junman Ye
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaorong Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Wentong Meng
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Feiwu Long
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jonas Burman
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xianming Mo
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Laboratory of Stem Cell Biology, State Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanwen Fan
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Bi YW, Li LS, Ru N, Zhang B, Lei X. Nicotinamide adenine dinucleotide phosphate oxidase in pancreatic diseases: Mechanisms and future perspectives. World J Gastroenterol 2024; 30:429-439. [PMID: 38414585 PMCID: PMC10895600 DOI: 10.3748/wjg.v30.i5.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis and pancreatic cancer (PC) stand as the most worrisome ailments affecting the pancreas. Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases, yet their true nature continues to elude their grasp. Within this realm, oxidative stress is often believed to play a causal and contributory role in the development of pancreatitis and PC. Excessive accumulation of reactive oxygen species (ROS) can cause oxidative stress, and the key enzyme responsible for inducing ROS production in cells is nicotinamide adenine dinucleotide phosphate hydrogen oxides (NOX). NOX contribute to pancreatic fibrosis and inflammation by generating ROS that injure acinar cells, activate pancreatic stellate cells, and mediate macrophage polarization. Excessive ROS production occurs during malignant transformation and pancreatic carcinogenesis, creating an oxidative microenvironment that can cause abnormal apoptosis, epithelial to mesenchymal transition and genomic instability. Therefore, understanding the role of NOX in pancreatic diseases contributes to a more in-depth exploration of the exact pathogenesis of these diseases. In this review, we aim to summarize the potential roles of NOX and its mechanism in pancreatic disorders, aiming to provide novel insights into understanding the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Ya-Wei Bi
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Long-Song Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao Lei
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Liu J, Zhong L, Zhang Y, Ma J, Xie T, Chen X, Zhang B, Shang D. Identification of novel biomarkers based on lipid metabolism-related molecular subtypes for moderately severe and severe acute pancreatitis. Lipids Health Dis 2024; 23:1. [PMID: 38169383 PMCID: PMC10763093 DOI: 10.1186/s12944-023-01972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an unpredictable and potentially fatal disorder. A derailed or unbalanced immune response may be the root of the disease's severe course. Disorders of lipid metabolism are highly correlated with the occurrence and severity of AP. We aimed to characterize the contribution and immunological characteristics of lipid metabolism-related genes (LMRGs) in non-mild acute pancreatitis (NMAP) and identify a robust subtype and biomarker for NMAP. METHODS The expression mode of LMRGs and immune characteristics in NMAP were examined. Then LMRG-derived subtypes were identified using consensus clustering. The weighted gene co-expression network analysis (WGCNA) was utilized to determine hub genes and perform functional enrichment analyses. Multiple machine learning methods were used to build the diagnostic model for NMAP patients. To validate the predictive effectiveness, nomograms, receiver operating characteristic (ROC), calibration, and decision curve analysis (DCA) were used. Using gene set variation analysis (GSVA) and single-cell analysis to study the biological roles of model genes. RESULTS Dysregulated LMRGs and immunological responses were identified between NMAP and normal individuals. NMAP individuals were divided into two LMRG-related subtypes with significant differences in biological function. The cluster-specific genes are primarily engaged in the regulation of defense response, T cell activation, and positive regulation of cytokine production. Moreover, we constructed a two-gene prediction model with good performance. The expression of CARD16 and MSGT1 was significantly increased in NMAP samples and positively correlated with neutrophil and mast cell infiltration. GSVA results showed that they are mainly upregulated in the T cell receptor complex, immunoglobulin complex circulating, and some immune-related routes. Single-cell analysis indicated that CARD16 was mainly distributed in mixed immune cells and macrophages, and MGST1 was mainly distributed in exocrine glandular cells. CONCLUSIONS This study presents a novel approach to categorizing NMAP into different clusters based on LMRGs and developing a reliable two-gene biomarker for NMAP.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunshu Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyuan Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tong Xie
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
12
|
Bogut A, Stojanovic B, Jovanovic M, Dimitrijevic Stojanovic M, Gajovic N, Stojanovic BS, Balovic G, Jovanovic M, Lazovic A, Mirovic M, Jurisevic M, Jovanovic I, Mladenovic V. Galectin-1 in Pancreatic Ductal Adenocarcinoma: Bridging Tumor Biology, Immune Evasion, and Therapeutic Opportunities. Int J Mol Sci 2023; 24:15500. [PMID: 37958483 PMCID: PMC10650903 DOI: 10.3390/ijms242115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most challenging malignancies to treat, with a complex interplay of molecular pathways contributing to its aggressive nature. Galectin-1 (Gal-1), a member of the galectin family, has emerged as a pivotal player in the PDAC microenvironment, influencing various aspects from tumor growth and angiogenesis to immune modulation. This review provides a comprehensive overview of the multifaceted role of Galectin-1 in PDAC. We delve into its contributions to tumor stroma remodeling, angiogenesis, metabolic reprogramming, and potential implications for therapeutic interventions. The challenges associated with targeting Gal-1 are discussed, given its pleiotropic functions and complexities in different cellular conditions. Additionally, the promising prospects of Gal-1 inhibition, including the utilization of nanotechnology and theranostics, are highlighted. By integrating recent findings and shedding light on the intricacies of Gal-1's involvement in PDAC, this review aims to provide insights that could guide future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| | | | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Goran Balovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
| | - Milan Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Aleksandar Lazovic
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Milos Mirovic
- Department of Surgery, General Hospital of Kotor, 85330 Kotor, Montenegro;
| | - Milena Jurisevic
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| |
Collapse
|
13
|
Dimitrijevic Stojanovic M, Stojanovic B, Radosavljevic I, Kovacevic V, Jovanovic I, Stojanovic BS, Prodanovic N, Stankovic V, Jocic M, Jovanovic M. Galectin-3's Complex Interactions in Pancreatic Ductal Adenocarcinoma: From Cellular Signaling to Therapeutic Potential. Biomolecules 2023; 13:1500. [PMID: 37892182 PMCID: PMC10605315 DOI: 10.3390/biom13101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Galectin-3 (Gal-3) plays a multifaceted role in the development, progression, and prognosis of pancreatic ductal adenocarcinoma (PDAC). This review offers a comprehensive examination of its expression in PDAC, its interaction with various immune cells, signaling pathways, effects on apoptosis, and therapeutic resistance. Additionally, the prognostic significance of serum levels of Gal-3 is discussed, providing insights into its potential utilization as a biomarker. Critical analysis is also extended to the inhibitors of Gal-3 and their potential therapeutic applications in PDAC, offering new avenues for targeted treatments. The intricate nature of Gal-3's role in PDAC reveals a complex landscape that demands a nuanced understanding for potential therapeutic interventions and monitoring.
Collapse
Affiliation(s)
- Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Ivan Radosavljevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Vojin Kovacevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nikola Prodanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
| | - Miodrag Jocic
- Institute for Transfusiology and Haemobiology, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|