1
|
Wang Q, Liu L, Gou X, Zhang T, Zhao Y, Xie Y, Zhou J, Liu Y, Song K. The 3'‑untranslated region of XB130 regulates its mRNA stability and translational efficiency in non‑small cell lung cancer cells. Oncol Lett 2023; 26:427. [PMID: 37720672 PMCID: PMC10502931 DOI: 10.3892/ol.2023.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Silencing XB130 inhibits cell proliferation and epithelial-mesenchymal transition in non-small cell lung cancer (NSCLC), suggesting that downregulating XB130 expression may impede NSCLC progression. However, the molecular mechanism underlying the regulation of XB130 expression remains unclear. In the present study, the role of the 3'-untranslated region (3'-UTR) in the regulation of XB130 expression was investigated. Recombinant psiCHECK-2 vectors with wild-type, truncated, or mutant XB130 3'-UTR were constructed, and the effects of these insertions on reporter gene expression were examined using a dual-luciferase reporter assay and reverse transcription-quantitative PCR. Additionally, candidate proteins that regulated XB130 expression by binding to critical regions of the XB130 3'-UTR were screened for using an RNA pull-down assay, followed by mass spectrometry and western blotting. The results revealed that insertion of the entire XB130 3'-UTR (1,218 bp) enhanced reporter gene expression. Positive regulatory elements were primarily found in nucleotides 113-989 of the 3'-UTR, while negative regulatory elements were found in the 1-112 and 990-1,218 regions of the 3'-UTR. Deletion analyses identified nucleotides 113-230 and 503-660 of the 3'-UTR as two major fragments that likely promote XB130 expression by increasing mRNA stability and translation rate. Additionally, a U-rich element in the 970-1,053 region of the 3'-UTR was identified as a negative regulatory element that inhibited XB130 expression by suppressing translation. Furthermore, seven candidate proteins that potentially regulated XB130 expression by binding to the 113-230, 503-660, and 970-1,053 regions of the 3'-UTR were identified, shedding light on the regulatory mechanism of XB130 expression. Collectively, these results suggested that complex sequence integrations in the mRNA 3'-UTR variably affected XB130 expression in NSCLC cells.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Sport and Health, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
2
|
Choi D, Kang W, Park S, Son B, Park T. Identification of Glucocorticoid Receptor Target Genes That Potentially Inhibit Collagen Synthesis in Human Dermal Fibroblasts. Biomolecules 2023; 13:978. [PMID: 37371558 DOI: 10.3390/biom13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Over several decades, excess glucocorticoids (GCs) of endogenous or exogenous origin have been recognized to significantly inhibit collagen synthesis and accelerate skin aging. However, little is known regarding their molecular mechanisms. We hypothesized that the action of GCs on collagen production is at least partially through the glucocorticoid receptor (GR) and its target genes, and therefore aimed to identify GR target genes that potentially inhibit collagen synthesis in Hs68 human dermal fibroblasts. We first confirmed that dexamethasone, a synthetic GC, induced canonical GR signaling in dermal fibroblasts. We then collected 108 candidates for GR target genes reported in previous studies on GR target genes and verified that 17 genes were transcriptionally upregulated in dexamethasone-treated dermal fibroblasts. Subsequently, by individual knockdown of the 17 genes, we identified that six genes, AT-rich interaction domain 5B, FK506 binding protein 5, lysyl oxidase, methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2, zinc finger protein 36, and zinc fingers and homeoboxes 3, are potentially involved in GC-mediated inhibition of collagen synthesis. The present study sheds light on the molecular mechanisms of GC-mediated skin aging and provides a basis for further research on the biological characteristics of individual GR target genes.
Collapse
Affiliation(s)
- Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Soyoon Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Bomin Son
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
3
|
Al‐Qahtani QH, Moghrabi WN, Al‐Yahya S, Al‐Haj L, Al‐Saif M, Mahmoud L, Al‐Mohanna F, Al‐Souhibani N, Alaiya A, Hitti E, Khabar KSA. Kinome inhibition reveals a role for polo-like kinase 1 in targeting post-transcriptional control in cancer. Mol Oncol 2021; 15:2120-2139. [PMID: 33411958 PMCID: PMC8334256 DOI: 10.1002/1878-0261.12897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Dysfunctions in post-transcriptional control are observed in cancer and chronic inflammatory diseases. Here, we employed a kinome inhibitor library (n = 378) in a reporter system selective for 3'-untranslated region-AU-rich elements (ARE). Fifteen inhibitors reduced the ARE-reporter activity; among the targets is the polo-like kinase 1 (PLK1). RNA-seq experiments demonstrated that the PLK1 inhibitor, volasertib, reduces the expression of cytokine and cell growth ARE mRNAs. PLK1 inhibition caused accelerated mRNA decay in cancer cells and was associated with reduced phosphorylation and stability of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). Ectopic expression of PLK1 increased abundance and stability of high molecular weight of ZFP36/TTP likely of the phosphorylated form. PLK1 effect was associated with the MAPK-MK2 pathway, a major regulator of ARE-mRNA stability, as evident from MK2 inhibition, in vitro phosphorylation, and knockout experiments. Mutational analysis demonstrates that TTP serine 186 is a target for PLK1 effect. Treatment of mice with the PLK1 inhibitor reduced both ZFP36/TTP phosphorylation in xenograft tumor tissues, and the tumor size. In cancer patients' tissues, PLK1/ARE-regulated gene cluster was overexpressed in solid tumors and associated with poor survival. The data showed that PLK1-mediated post-transcriptional aberration could be a therapeutic target.
Collapse
Affiliation(s)
- Qamraa H. Al‐Qahtani
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
- Present address:
Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud UniversityRiyadh11495Saudi Arabia
| | - Walid N. Moghrabi
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Suhad Al‐Yahya
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Latifa Al‐Haj
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Maher Al‐Saif
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Linah Mahmoud
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Falah Al‐Mohanna
- Department of Comparative MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Norah Al‐Souhibani
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Ayodele Alaiya
- Stem Cell and Tissue Engineering ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Edward Hitti
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Khalid S. A. Khabar
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| |
Collapse
|
4
|
Regulation of Fetal Genes by Transitions among RNA-Binding Proteins during Liver Development. Int J Mol Sci 2020; 21:ijms21239319. [PMID: 33297405 PMCID: PMC7731027 DOI: 10.3390/ijms21239319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Transcripts of alpha-fetoprotein (Afp), H19, and insulin-like growth factor 2 (Igf2) genes are highly expressed in mouse fetal liver, but decrease drastically during maturation. While transcriptional regulation of these genes has been well studied, the post-transcriptional regulation of their developmental decrease is poorly understood. Here, we show that shortening of poly(A) tails and subsequent RNA decay are largely responsible for the postnatal decrease of Afp, H19, and Igf2 transcripts in mouse liver. IGF2 mRNA binding protein 1 (IMP1), which regulates stability and translation efficiency of target mRNAs, binds to these fetal liver transcripts. When IMP1 is exogenously expressed in mouse adult liver, fetal liver transcripts show higher expression and possess longer poly(A) tails, suggesting that IMP1 stabilizes them. IMP1 declines concomitantly with fetal liver transcripts as liver matures. Instead, RNA-binding proteins (RBPs) that promote RNA decay, such as cold shock domain containing protein E1 (CSDE1), K-homology domain splicing regulatory protein (KSRP), and CUG-BP1 and ETR3-like factors 1 (CELF1), bind to 3' regions of fetal liver transcripts. These data suggest that transitions among RBPs associated with fetal liver transcripts shift regulation from stabilization to decay, leading to a postnatal decrease in those fetal transcripts.
Collapse
|
5
|
Mahmoud L, Abdulkarim AS, Kutbi S, Moghrabi W, Altwijri S, Khabar KSA, Hitti EG. Post-Transcriptional Inflammatory Response to Intracellular Bacterial c-di-AMP. Front Immunol 2020; 10:3050. [PMID: 32010134 PMCID: PMC6979040 DOI: 10.3389/fimmu.2019.03050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Cyclic-di-AMP (c-di-AMP) is a bacterial second messenger that is produced by intracellular bacterial pathogens in mammalian host macrophages. Previous reports have shown that c-di-AMP is recognized by intracellular pattern recognition receptors of the innate immune system and stimulate type I interferon response. Here we report that the response to c-di-AMP includes a post-transcriptional component that is involved in the induction of additional inflammatory cytokines including IL-6, CXCL2, CCL3, and CCL4. Their mRNAs contain AU-rich elements (AREs) in their 3' UTR that promote decay and repress translation. We show that c-di-AMP leads to the phosphorylation of p38 MAPK as well as the induction of the ARE-binding protein TTP, both of which are components of a signaling pathway that modulate the expression of ARE-containing mRNAs at the post-transcriptional level. Pharmacological inhibition of p38 reduces the c-di-AMP-dependent release of induced cytokines, while TTP knockdown increases their release and mRNA stability. C-di-AMP can specifically increase the expression of a nano-Luciferase reporter that contains AREs. We propose a non-canonical intracellular mode of activation of the p38 MAPK pathway with the subsequent enhancement in the expression of inflammatory cytokines. C-di-AMP is widely distributed in bacteria, including infectious intracellular pathogens; hence, understanding of its post-transcriptional gene regulatory effect on the host response may provide novel approaches for therapy.
Collapse
Affiliation(s)
- Linah Mahmoud
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Alaa S Abdulkarim
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Shaima Kutbi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Sulaiman Altwijri
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Edward G Hitti
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Abstract
Three decades of research in hematopoietic stem cell transplantation and HIV/AIDS fields have shaped a picture of immune restoration disorders. This manuscript overviews the molecular biology of interferon networks, the molecular pathogenesis of immune reconstitution inflammatory syndrome, and post-hematopoietic stem cell transplantation immune restoration disorders (IRD). It also summarizes the effects of thymic involution on T cell diversity, and the results of the assessment of diagnostic biomarkers of IRD, and tested targeted immunomodulatory treatments.
Collapse
Affiliation(s)
- Hesham Mohei
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Usha Kellampalli
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
7
|
Kidoya H, Muramatsu F, Shimamura T, Jia W, Satoh T, Hayashi Y, Naito H, Kunisaki Y, Arai F, Seki M, Suzuki Y, Osawa T, Akira S, Takakura N. Regnase-1-mediated post-transcriptional regulation is essential for hematopoietic stem and progenitor cell homeostasis. Nat Commun 2019; 10:1072. [PMID: 30842549 PMCID: PMC6403248 DOI: 10.1038/s41467-019-09028-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
The balance between self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) maintains hematopoietic homeostasis, failure of which can lead to hematopoietic disorder. HSPC fate is controlled by signals from the bone marrow niche resulting in alteration of the stem cell transcription network. Regnase-1, a member of the CCCH zinc finger protein family possessing RNAse activity, mediates post-transcriptional regulatory activity through degradation of target mRNAs. The precise function of Regnase-1 has been explored in inflammation-related cytokine expression but its function in hematopoiesis has not been elucidated. Here, we show that Regnase-1 regulates self-renewal of HSPCs through modulating the stability of Gata2 and Tal1 mRNA. In addition, we found that dysfunction of Regnase-1 leads to the rapid onset of abnormal hematopoiesis. Thus, our data reveal that Regnase-1-mediated post-transcriptional regulation is required for HSPC maintenance and suggest that it represents a leukemia tumor suppressor.
Collapse
Affiliation(s)
- Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan.
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Nagoya, Showa-ku,, 466-8550, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita, 565-0871, Japan
| | - Yumiko Hayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Kyushu University, 3-1-1 Maidashi, Fukuoka, Higashi-ku, 812-8582, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Kyushu University, 3-1-1 Maidashi, Fukuoka, Higashi-ku, 812-8582, Japan
| | - Masahide Seki
- Department of Medical Genome Sciences Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Tokyo, Meguro-ku, 153-8904, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita, 565-0871, Japan.,Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan.
| |
Collapse
|
8
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
10
|
Wang H, Chen Y, Guo J, Shan T, Deng K, Chen J, Cai L, Zhou H, Zhao Q, Jin S, Xia J. Dysregulation of tristetraprolin and human antigen R promotes gastric cancer progressions partly by upregulation of the high-mobility group box 1. Sci Rep 2018; 8:7080. [PMID: 29728635 PMCID: PMC5935726 DOI: 10.1038/s41598-018-25443-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Aberrant expression of ARE-binding proteins (ARE-BPs) plays an important role in several diseases, including cancer. Both tristetraprolin (TTP) and human antigen R (HuR) are important ARE-BPs and always play opposite roles in regulating target mRNAs. Our previous work has demonstrated that TTP expression is decreased in gastric cancer (GC). In this study, we reported that HuR was elevated in GC cell lines and gastric cancer patients and that decreased TTP expression partly contributed to the elevated HuR levels by regulating its mRNA turnover. We also observed that dysregulation of TTP and HuR elevated the high-mobility group box 1 (HMGB1) expression in different ways. HuR promoted HMGB1 expression at translational level, while TTP regulated HMGB1 mRNA turnover by destabilizing its mRNA. Increased HuR promoted cancer cell proliferation and the metastasis potential partly by HMGB1. Using immunohistochemistry, we observed that both positive cytoplasmic and high-expression of nuclear HuR were associated with poor pathologic features and survival of GC patients. In conclusion, this study demonstrated that dysregulation of the TTP and HuR plays an important role in GC. Moreover, high HuR nuclear expression or aberrant cytoplasmic distribution may serve as a predictor of poor survival.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Yigang Chen
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Jian Guo
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Ting Shan
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Jialin Chen
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Liping Cai
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Hong Zhou
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Qin Zhao
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Shimao Jin
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China.
| |
Collapse
|
11
|
Scheller U, Pfisterer K, Uebe S, Ekici AB, Reis A, Jamra R, Ferrazzi F. Integrative bioinformatics analysis characterizing the role of EDC3 in mRNA decay and its association to intellectual disability. BMC Med Genomics 2018; 11:41. [PMID: 29685133 PMCID: PMC5914069 DOI: 10.1186/s12920-018-0358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Decapping of mRNA is an important step in the regulation of mRNA turnover and therefore of gene expression, which is a key process controlling development and homeostasis of all organisms. It has been shown that EDC3 plays a role in mRNA decapping, however its function is not well understood. Previously, we have associated a homozygous variant in EDC3 with autosomal recessive intellectual disability. Here, we investigate the functional role of EDC3. METHODS We performed transcriptome analyses in patients' samples. In addition, we established an EDC3 loss-of-function model using siRNA-based knockdown in the human neuroblastoma cell line SKNBE and carried out RNA sequencing. Integrative bioinformatics analyses were performed to identify EDC3-dependent candidate genes and/or pathways. RESULTS Our analyses revealed that 235 genes were differentially expressed in patients versus controls. In addition, AU-rich element (ARE)-containing mRNAs, whose degradation in humans has been suggested to involve EDC3, had higher fold changes than non-ARE-containing genes. The analysis of RNA sequencing data from the EDC3 in vitro loss-of-function model confirmed the higher fold changes of ARE-containing mRNAs compared to non-ARE-containing mRNAs and further showed an upregulation of long non-coding and coding RNAs. In total, 764 genes were differentially expressed. Integrative bioinformatics analyses of these genes identified dysregulated candidate pathways, including pathways related to synapses/coated vesicles and DNA replication/cell cycle. CONCLUSION Our data support the involvement of EDC3 in mRNA decay, including ARE-containing mRNAs, and suggest that EDC3 might be preferentially involved in the degradation of long coding and non-coding RNAs. Furthermore, our results associate ECD3 loss-of-function with synapses-related pathways. Collectively, our data provide novel information that might help elucidate the molecular mechanisms underlying the association of intellectual disability with the dysregulation of mRNA degradation.
Collapse
Affiliation(s)
- Ute Scheller
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Kathrin Pfisterer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Rami Jamra
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
- Institute of Human Genetics, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Guo L, Louis IVS, Bohjanen PR. Post-transcriptional regulation of cytokine expression and signaling. CURRENT TRENDS IN IMMUNOLOGY 2018; 19:33-40. [PMID: 30568341 PMCID: PMC6296478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cytokines and cytokine signaling pathways are crucial for regulating cellular functions, including cell growth, proliferation, differentiation, and cell death. Cytokines regulate physiological processes such as immune responses and maintain immune homeostasis, and they also mediate pathological conditions such as autoimmune diseases and cancer. Hence, the precise control of the expression of cytokines and the transduction of cytokine signals is tightly regulated at transcriptional and post-transcriptional levels. In particular, post-transcriptional regulation at the level of mRNA stability is critical for coordinating cytokine expression and cytokine signaling. Numerous cytokine transcripts contain AU-rich elements (AREs), whereas transcripts encoding numerous components of cytokine signaling pathways contain GU-rich elements (GREs). AREs and GREs are mRNA decay elements that mediate rapid mRNA degradation. Through ARE- and GRE-mediated decay mechanisms, immune cells selectively and specifically regulate cytokine networks during immune responses. Aberrant expression and stability of ARE- or GRE-containing transcripts that encode cytokines or components of cytokine signaling pathways are observed in disease states, including cancer. In this review, we focus on the role of AREs and GREs in regulating cytokine expression and signal transduction at the level of mRNA stability.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St. Louis
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R. Bohjanen
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Vlasova-St Louis I, Bohjanen PR. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev 2016; 33:83-93. [PMID: 27956133 DOI: 10.1016/j.cytogfr.2016.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
Cytokines and growth factors regulate cell proliferation, differentiation, migration and apoptosis, and play important roles in coordinating growth signal responses during development. The expression of cytokine genes and the signals transmitted through cytokine receptors are tightly regulated at several levels, including transcriptional and post-transcriptional levels. A majority of cytokine mRNAs, including growth factor transcripts, contain AU-rich elements (AREs) in their 3' untranslated regions that control gene expression by regulating mRNA degradation and changing translational rates. In addition, numerous proteins involved in transmitting signals downstream of cytokine receptors are regulated at the level of mRNA degradation by GU-rich elements (GREs) found in their 3' untranslated regions. Abnormal stabilization and overexpression of ARE or GRE-containing transcripts had been observed in many malignancies, which is a consequence of the malfunction of RNA-binding proteins. In this review, we briefly summarize the role of AREs and GREs in regulating mRNA turnover to coordinate cytokine and growth factor expression, and we describe how dysregulation of mRNA degradation mechanisms contributes to the development and progression of cancer.
Collapse
Affiliation(s)
| | - Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Dysregulation of TTP and HuR plays an important role in cancers. Tumour Biol 2016; 37:14451-14461. [DOI: 10.1007/s13277-016-5397-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
|