1
|
Hadzimustafic N, D’Elia A, Shamoun V, Haykal S. Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. Int J Mol Sci 2024; 25:1863. [PMID: 38339142 PMCID: PMC10855589 DOI: 10.3390/ijms25031863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A hallmark of plastic and reconstructive surgery is restoring form and function. Historically, tissue procured from healthy portions of a patient's body has been used to fill defects, but this is limited by tissue availability. Human-induced pluripotent stem cells (hiPSCs) are stem cells derived from the de-differentiation of mature somatic cells. hiPSCs are of particular interest in plastic surgery as they have the capacity to be re-differentiated into more mature cells, and cultured to grow tissues. This review aims to evaluate the applications of hiPSCs in the plastic surgery context, with a focus on recent advances and limitations. The use of hiPSCs and non-human iPSCs has been researched in the context of skin, nerve, vasculature, skeletal muscle, cartilage, and bone regeneration. hiPSCs offer a future for regenerated autologous skin grafts, flaps comprised of various tissue types, and whole functional units such as the face and limbs. Also, they can be used to model diseases affecting tissues of interest in plastic surgery, such as skin cancers, epidermolysis bullosa, and scleroderma. Tumorigenicity, immunogenicity and pragmatism still pose significant limitations. Further research is required to identify appropriate somatic origin and induction techniques to harness the epigenetic memory of hiPSCs or identify methods to manipulate epigenetic memory.
Collapse
Affiliation(s)
- Nina Hadzimustafic
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Andrew D’Elia
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Valentina Shamoun
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Siba Haykal
- Department of Plastic and Reconstructive Surgery, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
2
|
Bohrer LR, Stone NE, Wright AT, Han S, Sicher I, Sulchek TA, Mullins RF, Tucker BA. CGMP Compliant Microfluidic Transfection of Induced Pluripotent Stem Cells for CRISPR-Mediated Genome Editing. Stem Cells 2023; 41:1037-1046. [PMID: 37632456 PMCID: PMC10631803 DOI: 10.1093/stmcls/sxad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Inherited retinal degeneration is a term used to describe heritable disorders that result from the death of light sensing photoreceptor cells. Although we and others believe that it will be possible to use gene therapy to halt disease progression early in its course, photoreceptor cell replacement will likely be required for patients who have already lost their sight. While advances in autologous photoreceptor cell manufacturing have been encouraging, development of technologies capable of efficiently delivering genome editing reagents to stem cells using current good manufacturing practices (cGMP) are needed. Gene editing reagents were delivered to induced pluripotent stem cells (iPSCs) using a Zephyr microfluidic transfection platform (CellFE). CRISPR-mediated cutting was quantified using an endonuclease assay. CRISPR correction was confirmed via digital PCR and Sanger sequencing. The resulting corrected cells were also karyotyped and differentiated into retinal organoids. We describe use of a novel microfluidic transfection platform to correct, via CRISPR-mediated homology-dependent repair (HDR), a disease-causing NR2E3 mutation in patient-derived iPSCs using cGMP compatible reagents and approaches. We show that the resulting cell lines have a corrected genotype, exhibit no off-target cutting, retain pluripotency and a normal karyotype and can be differentiated into retinal tissue suitable for transplantation. The ability to codeliver CRISPR/Cas9 and HDR templates to patient-derived iPSCs without using proprietary transfection reagents will streamline manufacturing protocols, increase the safety of resulting cell therapies, and greatly reduce the regulatory burden of clinical trials.
Collapse
Affiliation(s)
- Laura R Bohrer
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicholas E Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Allison T Wright
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | - Todd A Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Niemis W, Peterson SR, Javier C, Nguyen A, Subiah S, Palmer RHC. On the utilization of the induced pluripotent stem cell (iPSC) model to study substance use disorders: A scoping review protocol. PLoS One 2023; 18:e0292238. [PMID: 37824561 PMCID: PMC10569547 DOI: 10.1371/journal.pone.0292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Induced pluripotent stem cells (iPSCs) are cells derived from somatic cells via reprogramming techniques. The iPSC approach has been increasingly used in neuropsychiatric research in the last decade. Though substance use disorders (SUDs) are a commonly occurring psychiatric disorder, the application of iPSC model in addiction research has been limited. No comprehensive review has been reported. We conducted a scoping review to collate existing evidence on the iPSC technologies applied to SUD research. We aim to identify current knowledge gaps and limitations in order to advance the use of iPSCs in the SUD field. METHODS AND ANALYSIS We employed a scoping review using the methodological framework first created by Arksey and O'Malley and further updated by Levac et al. and the Joanna Briggs Institute (JBI). We adopted the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Protocols (PRISMA-P) to report items for the protocol. We searched evidence from four electronic databases: PubMed®, Embase®, Web of Science™, and Scopus®. Primary research, systematic reviews, and meta-analyses were included and limited to studies published in English, at the time from 2007 to March 2022. This is an "ongoing" scoping review. Searched studies will be independently screened, selected, and extracted by two reviewers. Disagreement will be solved by the third reviewer and discussion. Extracted data will be analyzed in descriptive and quantitative approaches, then summarized and presented in appropriate formats. Results will be reported following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline and disseminated through a peer-reviewed publication and conference presentations. CONCLUSION To our best knowledge, this is the first comprehensive scoping review of iPSC methods specifically applied to a broad range of addictive drugs/substances that lead to SUDs or misuse behavior. REGISTRATION This protocol is registered on Zenodo repository (https://zenodo.org/) with doi:10.5281/zenodo.7915252.
Collapse
Affiliation(s)
- Wasiri Niemis
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Shenita R. Peterson
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, United States of America
| | - Chrisabella Javier
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Amy Nguyen
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Sanchi Subiah
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
4
|
Giallongo S, Lo Re O, Resnick I, Raffaele M, Vinciguerra M. Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:275-298. [DOI: 10.1007/978-981-19-5642-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
6
|
Benati D, Leung A, Perdigao P, Toulis V, van der Spuy J, Recchia A. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. Int J Mol Sci 2022; 23:ijms232315276. [PMID: 36499601 PMCID: PMC9735568 DOI: 10.3390/ijms232315276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal disorders (IRDs) affect millions of people worldwide and are a major cause of irreversible blindness. Therapies based on drugs, gene augmentation or transplantation approaches have been widely investigated and proposed. Among gene therapies for retinal degenerative diseases, the fast-evolving genome-editing CRISPR/Cas technology has emerged as a new potential treatment. The CRISPR/Cas system has been developed as a powerful genome-editing tool in ophthalmic studies and has been applied not only to gain proof of principle for gene therapies in vivo, but has also been extensively used in basic research to model diseases-in-a-dish. Indeed, the CRISPR/Cas technology has been exploited to genetically modify human induced pluripotent stem cells (iPSCs) to model retinal disorders in vitro, to test in vitro drugs and therapies and to provide a cell source for autologous transplantation. In this review, we will focus on the technological advances in iPSC-based cellular reprogramming and gene editing technologies to create human in vitro models that accurately recapitulate IRD mechanisms towards the development of treatments for retinal degenerative diseases.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Pedro Perdigao
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (J.v.d.S.); (A.R.)
| |
Collapse
|
7
|
Chu JJ, Ji WB, Zhuang JH, Gong BF, Chen XH, Cheng WB, Liang WD, Li GR, Gao J, Yin Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv 2022; 29:2100-2116. [PMID: 35850622 PMCID: PMC9302016 DOI: 10.1080/10717544.2022.2094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Age is the strongest risk factor for Alzheimer's disease (AD). In recent years, the relationship between aging and AD has been widely studied, with anti-aging therapeutics as the treatment for AD being one of the mainstream research directions. Therapeutics targeting senescent cells have shown improvement in AD symptoms and cerebral pathological changes, suggesting that anti-aging strategies may be a promising alternative for AD treatment. Nanoparticles represent an excellent approach for efficiently crossing the blood-brain barrier (BBB) to achieve better curative function and fewer side effects. Thereby, nanoparticles-based anti-aging treatment may exert potent anti-AD therapeutic efficacy. This review discusses the relationship between aging and AD and the application and prospect of anti-aging strategies and nanoparticle-based therapeutics in treating AD.
Collapse
Affiliation(s)
- Jian-Jian Chu
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bo Ji
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Hua Zhuang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Bao-Feng Gong
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xiao-Han Chen
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Bin Cheng
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Danqi Liang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Gen-Ru Li
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Maguire JA, Gadue P, French DL. Highly Efficient CRISPR/Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells. Curr Protoc 2022; 2:e590. [PMID: 36426905 PMCID: PMC9708095 DOI: 10.1002/cpz1.590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human pluripotent stem cells hold tremendous potential for both basic biology and cell-based therapies for a wide variety of diseases. The ability to manipulate the genome of these cells using the CRISPR/Cas9 technology has expanded this potential by providing a valuable tool to engineer or correct disease-associated mutations. Because of the high efficiency with which CRISPR/Cas9 creates targeted double-strand breaks, a major challenge has been the introduction of precise genetic modifications on one allele without indel formation on the non-targeted allele. To overcome this obstacle, we describe use of two oligonucleotide repair templates: one expressing the sequence change and the other maintaining the normal sequence. In addition, we have streamlined both the transfection and screening methodologies to make the protocols efficient, with small numbers of cells and a limited amount of labor-intensive clone passaging. This article provides a technically simple approach for generating valuable tools to model human disease in stem cells. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Application and optimization of CRISPR-based genome editing in human pluripotent stem cells Basic Protocol 2: Genetic modification of human pluripotent stem cells using a double-oligonucleotide CRISPR/Cas9 recombination system.
Collapse
Affiliation(s)
- Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania
| |
Collapse
|
9
|
Chupradit K, Thongsin N, Tayapiwatana C, Wattanapanitch M. A precise gene delivery approach for human induced pluripotent stem cells using Cas9 RNP complex and recombinant AAV6 donor vectors. PLoS One 2022; 17:e0270963. [PMID: 35797389 PMCID: PMC9262223 DOI: 10.1371/journal.pone.0270963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Genome editing in human induced pluripotent stem cells (hiPSCs) offers a potential tool for studying gene functions in disease models and correcting genetic mutations for cell-based therapy. Precise transgene insertion in hiPSCs represents a significant challenge. In the past decade, viral transduction has been widely used due to its high transduction efficiency; however, it can result in random transgene integration and variable transgene copy numbers. Non-viral-based strategies are generally safer but limited by their low transfection efficiency in hiPSCs. Recently, genome engineering using adeno-associated virus (AAV) vectors has emerged as a promising gene delivery approach due to AAVs’ low immunogenicity, toxicity, and ability to infect a broad range of cells. The following protocol describes the workflow for genome editing in hiPSCs using the CRISPR/Cas9 ribonucleoprotein (RNP) complex combined with the recombinant AAV serotype 6 (AAV6) donor vectors to introduce a gene of interest (GOI) fused with mCherry fluorescent reporter gene into the AAVS1 safe harbor site. This approach leads to efficient transgene insertion and is applicable to precise genome editing of hiPSCs or other types of stem cells for research purposes.
Collapse
Affiliation(s)
- Koollawat Chupradit
- Research Department, Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nontaphat Thongsin
- Research Department, Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchai Tayapiwatana
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Methichit Wattanapanitch
- Research Department, Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
10
|
Ma L, Xing J, Li Q, Zhang Z, Xu K. Development of a universal antibiotic resistance screening reporter for improving efficiency of cytosine and adenine base editing. J Biol Chem 2022; 298:102103. [PMID: 35671823 PMCID: PMC9287484 DOI: 10.1016/j.jbc.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Base editing has emerged as a revolutionary technology for single nucleotide modifications. The cytosine and adenine base editors (CBEs and ABEs) have demonstrated great potential in clinical and fundamental research. However, screening and isolating target-edited cells remains challenging. In the current study, we developed a universal Adenine and Cytosine Base-Editing Antibiotic Resistance Screening Reporter (ACBE-ARSR) for improving the editing efficiency. To develop the reporter, the CBE-ARSR was first constructed and shown to be capable of enriching cells for those that had undergone CBE editing activity. Then, the ACBE-ARSR was constructed and was further validated in the editing assays by four different CBEs and two versions of ABE at several different genomic loci. Our results demonstrated that ACBE-ARSR, compared to the reporter of transfection (RoT) screening strategy, improved the editing efficiency of CBE and ABE by 4.6- and 1.9-fold on average, respectively. We found the highest CBE and ABE editing efficiencies as enriched by ACBE-ARSR reached 90% and 88.7%. Moreover, we also demonstrated ACBE-ARSR could be employed for enhancing simultaneous multiplexed genome editing. In conclusion, both CBE and ABE activity can be improved significantly using our novel ACBE-ARSR screening strategy, which we believe will facilitate the development of base editors and their application in biomedical and fundamental research studies.
Collapse
Affiliation(s)
- Lixia Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Jiani Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiying Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kun Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
11
|
Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA. Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med 2021; 10:1384-1393. [PMID: 34156760 PMCID: PMC8459636 DOI: 10.1002/sctm.21-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autologous photoreceptor cell replacement is one of the most promising approaches currently under development for the treatment of inherited retinal degenerative blindness. Unlike endogenous stem cell populations, induced pluripotent stem cells (iPSCs) can be differentiated into both rod and cone photoreceptors in high numbers, making them ideal for this application. That said, in addition to photoreceptor cells, state of the art retinal differentiation protocols give rise to all of the different cell types of the normal retina, the majority of which are not required and may in fact hinder successful photoreceptor cell replacement. As such, following differentiation photoreceptor cell enrichment will likely be required. In addition, to prevent the newly generated photoreceptor cells from suffering the same fate as the patient's original cells, correction of the patient's disease-causing genetic mutations will be necessary. In this review we discuss literature pertaining to the use of different cell sorting and transfection approaches with a focus on the development and use of novel next generation microfluidic devices. We will discuss how gold standard strategies have been used, the advantages and disadvantages of each, and how novel microfluidic platforms can be incorporated into the clinical manufacturing pipeline to reduce the complexity, cost, and regulatory burden associated with clinical grade production of photoreceptor cells for autologous cell replacement.
Collapse
Affiliation(s)
- Nicholas E. Stone
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Todd Sulchek
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
12
|
Brookhouser N, Nguyen T, Tekel SJ, Standage-Beier K, Wang X, Brafman DA. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol 2020; 18:193. [PMID: 33317513 PMCID: PMC7737295 DOI: 10.1186/s12915-020-00929-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. RESULTS To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. CONCLUSION We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| |
Collapse
|
13
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
14
|
Geng BC, Choi KH, Wang SZ, Chen P, Pan XD, Dong NG, Ko JK, Zhu H. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells. Acta Pharmacol Sin 2020; 41:1427-1432. [PMID: 32555510 DOI: 10.1038/s41401-020-0452-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become an essential research platform to study different human diseases once being discovered by Dr. Shinya Yamanaka in 2006. Another breakthrough in biomedical research is the application of CRISPR/Cas9 system for genome editing in mammalian cells. Although numerous studies have been done to develop methods for gene editing in iPSCs, the current approaches suffer from several limitations, including time and labor consuming, low editing efficiency, and potential off-target effects. In the current study, we report an electroporation-mediated plasmid CRISPR/Cas9 delivery approach for genome editing in iPSCs. With this approach, an edited iPSC cell line could be obtained within 2 weeks. In addition, the transit introducing of CRISPR/Cas9 machinery could minimize genomic integration of Cas9 gene, which avoided potential long-term side effects of Cas9 enzyme. We showed that CRISPR/Cas9-mediated genomic editing did not affect pluripotency and differentiation ability of iPSCs. With the quickly evolving of both iPSC and CRISPR/Cas9-mediated genome editing research fields, we believe that our method can significantly facilitate the application of genome editing in iPSCs research.
Collapse
|
15
|
Sumer SA, Hoffmann S, Laue S, Campbell B, Raedecke K, Frajs V, Clauss S, Kääb S, Janssen JWG, Jauch A, Laugwitz KL, Dorn T, Moretti A, Rappold GA. Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection. Stem Cell Reports 2020; 15:999-1013. [PMID: 32976766 PMCID: PMC7562944 DOI: 10.1016/j.stemcr.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.
Collapse
Affiliation(s)
- Simon Alexander Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja Laue
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Birgit Campbell
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany
| | - Kristin Raedecke
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Viktoria Frajs
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Sebastian Clauss
- DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany; Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), 81675 Munich, Bavaria, Germany
| | - Stefan Kääb
- DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany; Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), 81675 Munich, Bavaria, Germany
| | - Johannes W G Janssen
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Anna Jauch
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
16
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
17
|
Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells 2020; 12:787-802. [PMID: 32952859 PMCID: PMC7477654 DOI: 10.4252/wjsc.v12.i8.787] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell-derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.
Collapse
Affiliation(s)
- Xin-Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin-Po Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
18
|
Wang P, Xu L, Gao Y, Han R. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Mol Ther 2020; 28:1696-1705. [PMID: 32353322 PMCID: PMC7335737 DOI: 10.1016/j.ymthe.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Adenine base editor (ABE) is a new generation of genome-editing technology through fusion of Cas9 nickase with an evolved E. coli TadA (TadA∗) and holds great promise as novel genome-editing therapeutics for treating genetic disorders. ABEs can directly convert A-T to G-C in specific genomic DNA targets without introducing double-strand breaks (DSBs). We recently showed that computer program-assisted analysis of Sanger sequencing traces can be used as a low-cost and rapid alternative of deep sequencing to assess base-editing outcomes. Here we developed a rapid fluorescence-based reporter assay (Base Editing ON [BEON]) to quantify ABE efficiency. The assay relies on the restoration of the downstream green fluorescent protein (GFP) in ABE-mediated editing of a stop codon located within the guide RNA (gRNA). We showed that this assay can be used to screen for effective ABE variants, characterize the protospacer adjacent motif (PAM) requirement of a novel NNG-targeting ABE based on ScCas9, and enrich for edited cells. Finally, we demonstrated that the reporter assay allowed us to assess the feasibility of ABE editing to correct point mutations associated with dysferlinopathy. Taken together, the BEON assay would facilitate and simplify the studies with ABEs.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Standage-Beier K, Brookhouser N, Balachandran P, Zhang Q, Brafman DA, Wang X. RNA-Guided Recombinase-Cas9 Fusion Targets Genomic DNA Deletion and Integration. CRISPR J 2020; 2:209-222. [PMID: 31436506 DOI: 10.1089/crispr.2019.0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CRISPR-based technologies have become central to genome engineering. However, CRISPR-based editing strategies are dependent on the repair of DNA breaks via endogenous DNA repair mechanisms, which increases susceptibility to unwanted mutations. Here we complement Cas9 with a recombinase's functionality by fusing a hyperactive mutant resolvase from transposon Tn3, a member of serine recombinases, to a catalytically inactive Cas9, which we term integrase Cas9 (iCas9). We demonstrate iCas9 targets DNA deletion and integration. First, we validate iCas9's function in Saccharomyces cerevisiae using a genome-integrated reporter. Cooperative targeting by CRISPR RNAs at spacings of 22 or 40 bp enables iCas9-mediated recombination. Next, iCas9's ability to target DNA deletion and integration in human HEK293 cells is demonstrated using dual GFP-mCherry fluorescent reporter plasmid systems. Finally, we show that iCas9 is capable of targeting integration into a genomic reporter locus. We envision targeting and design concepts of iCas9 will contribute to genome engineering and synthetic biology.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona; University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Parithi Balachandran
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Qi Zhang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - David A Brafman
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Xiao Wang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| |
Collapse
|
20
|
Raman S, Brookhouser N, Brafman DA. Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiol Dis 2020; 138:104788. [PMID: 32032733 PMCID: PMC7098264 DOI: 10.1016/j.nbd.2020.104788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
Although the biochemical and pathological hallmarks of Alzheimer's disease (AD), such as axonal transport defects, synaptic loss, and selective neuronal death, are well characterized, the underlying mechanisms that cause AD are largely unknown, thereby making it difficult to design effective therapeutic interventions. Genome-wide association studies (GWAS) studies have identified several factors associated with increased AD risk. Of these genetic factors, polymorphisms in the Apolipoprotein E (APOE) gene are the strongest and most prevalent. While it has been established that the ApoE protein modulates the formation of amyloid plaques and neurofibrillary tangles, the precise molecular mechanisms by which various ApoE isoforms enhance or mitigate AD onset and progression in aging adults are yet to be elucidated. Advances in cellular reprogramming to generate disease-in-a-dish models now provide a simplified and accessible system that complements animal and primary cell models to study ApoE in the context of AD. In this review, we will describe the use and manipulation of human induced pluripotent stem cells (hiPSCs) in dissecting the interaction between ApoE and AD. First, we will provide an overview of the proposed roles that ApoE plays in modulating pathophysiology of AD. Next, we will summarize the recent studies that have employed hiPSCs to model familial and sporadic AD. Lastly, we will speculate on how current advances in genome editing technologies and organoid culture systems can be used to improve hiPSC-based tools to investigate ApoE-dependent modulation of AD onset and progression.
Collapse
Affiliation(s)
- Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, United States of America; Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, United States of America
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America.
| |
Collapse
|
21
|
Haro‐Mora JJ, Uchida N, Demirci S, Wang Q, Zou J, Tisdale JF. Biallelic correction of sickle cell disease-derived induced pluripotent stem cells (iPSCs) confirmed at the protein level through serum-free iPS-sac/erythroid differentiation. Stem Cells Transl Med 2020; 9:590-602. [PMID: 32034898 PMCID: PMC7180291 DOI: 10.1002/sctm.19-0216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
New technologies of induced pluripotent stem cells (iPSCs) and genome editing have emerged, allowing for the development of autologous transfusion therapies. We previously demonstrated definitive β-globin production from human embryonic stem cell (hESC)-derived erythroid cell generation via hemangioblast-like ES-sacs. In this study, we demonstrated normal β-globin protein production from biallelic corrected sickle cell disease (SCD) iPSCs. We optimized our ES/iPS-sac method for feeder cell-free hESC maintenance followed by serum-free ES-sac generation, which is preferred for electroporation-based genome editing. Surprisingly, the optimized protocol improved yields of ES-sacs (25.9-fold), hematopoietic-like spherical cells (14.8-fold), and erythroid cells (5.8-fold), compared with our standard ES-sac generation. We performed viral vector-free gene correction in SCD iPSCs, resulting in one clone with monoallelic and one clone with biallelic correction, and using this serum-free iPS-sac culture, corrected iPSC-generated erythroid cells with normal β-globin, confirmed at DNA and protein levels. Our serum-free ES/iPS-sac protocol with gene correction will be useful to develop regenerative transfusion therapies for SCD.
Collapse
Affiliation(s)
- Juan J. Haro‐Mora
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH)BethesdaMaryland
| | - Naoya Uchida
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH)BethesdaMaryland
| | - Selami Demirci
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH)BethesdaMaryland
| | - Qi Wang
- iPS Cell Core FacilityNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMaryland
| | - Jizhong Zou
- iPS Cell Core FacilityNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMaryland
| | - John F. Tisdale
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH)BethesdaMaryland
| |
Collapse
|
22
|
Rezaei H, khadempar S, Farahani N, Hosseingholi EZ, hayat SMG, Sathyapalan T, Sahebkar AH. Harnessing CRISPR/Cas9 technology in cardiovascular disease. Trends Cardiovasc Med 2020; 30:93-101. [DOI: 10.1016/j.tcm.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/03/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
|
23
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
24
|
Standage-Beier K, Tekel SJ, Brookhouser N, Schwarz G, Nguyen T, Wang X, Brafman DA. A transient reporter for editing enrichment (TREE) in human cells. Nucleic Acids Res 2019; 47:e120. [PMID: 31428784 PMCID: PMC6821290 DOI: 10.1093/nar/gkz713] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Current approaches to identify cell populations that have been modified with deaminase base editing technologies are inefficient and rely on downstream sequencing techniques. In this study, we utilized a blue fluorescent protein (BFP) that converts to green fluorescent protein (GFP) upon a C-to-T substitution as an assay to report directly on base editing activity within a cell. Using this assay, we optimize various base editing transfection parameters and delivery strategies. Moreover, we utilize this assay in conjunction with flow cytometry to develop a transient reporter for editing enrichment (TREE) to efficiently purify base-edited cell populations. Compared to conventional cell enrichment strategies that employ reporters of transfection (RoT), TREE significantly improved the editing efficiency at multiple independent loci, with efficiencies approaching 80%. We also employed the BFP-to-GFP conversion assay to optimize base editor vector design in human pluripotent stem cells (hPSCs), a cell type that is resistant to genome editing and in which modification via base editors has not been previously reported. At last, using these optimized vectors in the context of TREE allowed for the highly efficient editing of hPSCs. We envision TREE as a readily adoptable method to facilitate base editing applications in synthetic biology, disease modeling, and regenerative medicine.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Molecular and Cellular Biology graduate program, Arizona State University, Tempe, AZ 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Grace Schwarz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
25
|
Prozess oder Resultat? Der Begriff der genetischen Veränderung in der Debatte um humane Keimbahninterventionen. Ethik Med 2019. [DOI: 10.1007/s00481-019-00530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, Popovic M, Vassena R, Veiga A. Two decades of embryonic stem cells: a historical overview. Hum Reprod Open 2019; 2019:hoy024. [PMID: 30895264 PMCID: PMC6396646 DOI: 10.1093/hropen/hoy024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION How did the field of stem cell research develop in the years following the derivation of the first human embryonic stem cell (hESC) line? SUMMARY ANSWER Supported by the increasing number of clinical trials to date, significant technological advances in the past two decades have brought us ever closer to clinical therapies derived from pluripotent cells. WHAT IS KNOWN ALREADY Since their discovery 20 years ago, the use of human pluripotent stem cells has progressed tremendously from bench to bedside. Here, we provide a concise review of the main keystones of this journey and focus on ongoing clinical trials, while indicating the most relevant future research directions. STUDY DESIGN, SIZE, DURATION This is a historical narrative, including relevant publications in the field of pluripotent stem cells (PSC) derivation and differentiation, recounted both through scholarly research of published evidence and interviews of six pioneers who participated in some of the most relevant discoveries in the field. PARTICIPANTS/MATERIALS, SETTING, METHODS The authors all contributed by researching the literature and agreed upon body of works. Portions of the interviews of the field pioneers have been integrated into the review and have also been included in full for advanced reader interest. MAIN RESULTS AND THE ROLE OF CHANCE The stem cell field is ever expanding. We find that in the 20 years since the derivation of the first hESC lines, several relevant developments have shaped the pluripotent cell field, from the discovery of different states of pluripotency, the derivation of induced PSC, the refinement of differentiation protocols with several clinical trials underway, as well as the recent development of organoids. The challenge for the years to come will be to validate and refine PSCs for clinical use, from the production of highly defined cell populations in clinical grade conditions to the possibility of creating replacement organoids for functional, if not anatomical, function restoration. LIMITATIONS, REASONS FOR CAUTION This is a non-systematic review of current literature. Some references may have escaped the experts’ analysis due to the exceedingly diverse nature of the field. As the field of regenerative medicine is rapidly advancing, some of the most recent developments may have not been captured entirely. WIDER IMPLICATIONS OF THE FINDINGS The multi-disciplinary nature and tremendous potential of the stem cell field has important implications for basic as well as translational research. Recounting these activities will serve to provide an in-depth overview of the field, fostering a further understanding of human stem cell and developmental biology. The comprehensive overview of clinical trials and expert opinions included in this narrative may serve as a valuable scientific resource, supporting future efforts in translational approaches. STUDY FUNDING/COMPETING INTEREST(S) ESHRE provided funding for the authors’ on-site meeting and discussion during the preparation of this manuscript. S.M.C.S.L. is funded by the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). M.G. is supported by the Methusalem grant of Vrije Universiteit Brussel, in the name of Prof. Karen Sermon and by Innovation by Science and Technology in Flanders (IWT, Project Number: 150042). A.V. and B.A. are supported by the Plataforma de Proteomica, Genotipado y Líneas Celulares (PT1770019/0015) (PRB3), Instituto de Salud Carlos III. Research grant to B.H. by the Research Foundation—Flanders (FWO) (FWO.KAN.2016.0005.01 and FWO.Project G051516N). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER Not applicable. ESHRE Pages are not externally peer reviewed. This article has been approved by the Executive Committee of ESHRE.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy and Stem Cell Group, Basque Center for Blood Transfusion and Human Tissues, Barrio Labeaga S/N, Galdakao, Spain
| | - B Aran
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - S M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands.,Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Vrije Univeristeit Brussel, Laarbeeklaan 103, Jette (Brussels), Belgium
| | - B Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - S Panula
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - M Popovic
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - A Veiga
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain.,Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
27
|
Alipour M, Nabavi SM, Arab L, Vosough M, Pakdaman H, Ehsani E, Shahpasand K. Stem cell therapy in Alzheimer's disease: possible benefits and limiting drawbacks. Mol Biol Rep 2018; 46:1425-1446. [PMID: 30565076 DOI: 10.1007/s11033-018-4499-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death globally and the main reason for dementia in elderly people. AD is a long-term and progressive neurodegenerative disorder that steadily worsens memory and communicating skills eventually leads to a disabled person of performing simple daily tasks. Unfortunately, numerous clinical trials exploring new therapeutic drugs have encountered disappointing outcomes in terms of improved cognitive performance since they are not capable of halting or stimulating the regeneration of already-damaged neural cells, and merely provide symptomatic relief. Therefore, a deeper understanding of the mechanism of action of stem cell may contribute to the development of novel and effective therapies. The revolutionary discovery of stem cells has cast a new hope for the development of disease-modifying treatments for AD, in terms of their potency in the replenishment of lost cells via differentiating towards specific lineages, stimulating in situ neurogenesis, and delivering the therapeutic agents to the brain. Herein, firstly, we explore the pathophysiology of AD. Next, we summarize the most recent preclinical stem cell reports designed for AD treatment, their benefits and outcomes according to cell type. We briefly review relevant clinical trials and their potential clinical applications in order to find a unique solution to effectively relieve the patients' pain.
Collapse
Affiliation(s)
- Masoume Alipour
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Seyed Massood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Leila Arab
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pakdaman
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ehsani
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran.
| |
Collapse
|
28
|
Maguire JA, Cardenas-Diaz FL, Gadue P, French DL. Highly Efficient CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells. ACTA ACUST UNITED AC 2018; 48:e64. [PMID: 30358158 DOI: 10.1002/cpsc.64] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human PSCs offer tremendous potential for both basic biology and cell-based therapies for a wide variety of diseases. The ability to manipulate the genome of these cells using the CRISPR-Cas9 technology has expanded this potential by providing a valuable tool for engineering or correcting disease-associated mutations. Because of the high efficiency with which CRISPR-Cas9 creates targeted double-strand breaks, a major challenge has been the introduction of precise genetic modifications on one allele, without indel formation on the non-targeted allele. To overcome this obstacle, we describe the use of two oligonucleotides, one expressing the sequence change, with the other maintaining the normal sequence. In addition, we have streamlined both the transfection and screening methodology to make this protocol efficient with small numbers of cells and to limit the amount of labor-intensive clone passaging. This protocol provides a streamlined and technically simple approach for generating valuable tools to model human disease in stem cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells Int 2018; 2018:4136473. [PMID: 29731778 PMCID: PMC5872631 DOI: 10.1155/2018/4136473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1) the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2) the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies.
Collapse
|
30
|
Meier RPH, Muller YD, Balaphas A, Morel P, Pascual M, Seebach JD, Buhler LH. Xenotransplantation: back to the future? Transpl Int 2018; 31:465-477. [PMID: 29210109 DOI: 10.1111/tri.13104] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Yannick D Muller
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Balaphas
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Leo H Buhler
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Gadjanski I. Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:143-170. [PMID: 29691821 DOI: 10.1007/978-3-319-76711-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED In order to engineer biomimetic osteochondral (OC) construct, it is necessary to address both the cartilage and bone phase of the construct, as well as the interface between them, in effect mimicking the developmental processes when generating hierarchical scaffolds that show gradual changes of physical and mechanical properties, ideally complemented with the biochemical gradients. There are several components whose characteristics need to be taken into account in such biomimetic approach, including cells, scaffolds, bioreactors as well as various developmental processes such as mesenchymal condensation and vascularization, that need to be stimulated through the use of growth factors, mechanical stimulation, purinergic signaling, low oxygen conditioning, and immunomodulation. This chapter gives overview of these biomimetic OC system components, including the OC interface, as well as various methods of fabrication utilized in OC biomimetic tissue engineering (TE) of gradient scaffolds. Special attention is given to addressing the issue of achieving clinical size, anatomically shaped constructs. Besides such neotissue engineering for potential clinical use, other applications of biomimetic OC TE including formation of the OC tissues to be used as high-fidelity disease/healing models and as in vitro models for drug toxicity/efficacy evaluation are covered. HIGHLIGHTS Biomimetic OC TE uses "smart" scaffolds able to locally regulate cell phenotypes and dual-flow bioreactors for two sets of conditions for cartilage/bone Protocols for hierarchical OC grafts engineering should entail mesenchymal condensation for cartilage and vascular component for bone Immunomodulation, low oxygen tension, purinergic signaling, time dependence of stimuli application are important aspects to consider in biomimetic OC TE.
Collapse
Affiliation(s)
- Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica, Novi Sad, Serbia. .,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, Serbia.
| |
Collapse
|
32
|
Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. J Hum Genet 2017; 63:165-178. [PMID: 29192237 DOI: 10.1038/s10038-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical to the aims needed in clinical trial.
Collapse
|