1
|
Krüger S, Pfaff N, Gräf R, Meyer I. Dynamic Mitotic Localization of the Centrosomal Kinases CDK1, Plk, AurK, and Nek2 in Dictyostelium amoebae. Cells 2024; 13:1513. [PMID: 39329697 PMCID: PMC11430746 DOI: 10.3390/cells13181513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
The centrosome of the amoebozoan model Dictyostelium discoideum provides the best-established model for an acentriolar centrosome outside the Opisthokonta. Dictyostelium exhibits an unusual centrosome cycle, in which duplication is initiated only at the G2/M transition and occurs entirely during the M phase. Little is known about the role of conserved centrosomal kinases in this process. Therefore, we have generated knock-in strains for Aurora (AurK), CDK1, cyclin B, Nek2, and Plk, replacing the endogenous genes with constructs expressing the respective green fluorescent Neon fusion proteins, driven by the endogenous promoters, and studied their behavior in living cells. Our results show that CDK1 and cyclin B arrive at the centrosome first, already during G2, followed by Plk, Nek2, and AurK. Furthermore, CDK1/cyclin B and AurK were dynamically localized at kinetochores, and AurK in addition at nucleoli. The putative roles of all four kinases in centrosome duplication, mitosis, cytokinesis, and nucleolar dynamics are discussed.
Collapse
Affiliation(s)
| | | | | | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (S.K.); (R.G.)
| |
Collapse
|
2
|
Gu Y, Oliferenko S. Mitosis: An expanded view of mitotic mechanisms that arose in evolution. Curr Biol 2024; 34:R741-R744. [PMID: 39106834 DOI: 10.1016/j.cub.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Mitosis exhibits astonishing evolutionary plasticity, with dividing eukaryotic cells differing in the organization of the mitotic spindle and the extent of nuclear envelope breakdown. A new study suggests that a multinucleated lifestyle may favor the evolution of closed nuclear division.
Collapse
Affiliation(s)
- Ying Gu
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Snezhana Oliferenko
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
3
|
GİRGİN SM, ÇAYDAŞI AKOCA. Bud14 function is crucial for spindle pole body size maintenance. Turk J Biol 2024; 48:267-278. [PMID: 39296336 PMCID: PMC11407341 DOI: 10.55730/1300-0152.2702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/23/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Background/aim Spindle pole bodies (SPB), the functional equivalent of centrosomes in yeast, duplicate through generation of a new SPB next to the old one. However, SPBs are dynamic structures that can grow and exchange, and mechanisms that regulate SPB size remain largely unknown. This study aims to elucidate the role of Bud14 in SPB size maintenance in Saccharomyces cerevisiae. Materials and methods We employed quantitative fluorescence microscopy to assess the relative and absolute amounts of SPB structural proteins at SPBs of wildtype cells and in cells lacking BUD14 (bud14Δ). Quantifications were performed using asynchronous cell cultures, as well as cultures synchronously progressing through the cell cycle and upon different cell cycle arrests. We also utilized mutants that allow the separation of Bud14 functions. Results Our results indicate that higher levels of SPB inner, outer, and central plaque proteins are present at the SPBs of bud14Δ cells compared to wildtype cells during anaphase, as well as during nocodazole-induced M-phase arrest. However, during α-factor mediated G1 arrest, inner and outer plaque proteins responded differently to the absence of BUD14. A Bud14 mutant that cannot interact with the Protein Phosphatase 1 (Glc7) phenocopied bud14Δ in terms of SPB-bound levels of the inner plaque protein Spc110, whereas disruption of Bud14-Kel1-Kel2 complex did not alter Spc110 levels at SPBs. In cells synchronously released from α-factor arrest, lack of Bud14-Glc7 caused increase of Spc110 at the SPBs at early stages of the cell cycle. Conclusion We identified Bud14 as a critical protein for SPB size maintenance. The interaction of Bud14 with Glc7, but not with the Kelch proteins, is indispensable for restricting levels of Spc110 incorporated into the SPBs.
Collapse
Affiliation(s)
- Sevilay Münire GİRGİN
- Department of Molecular Biology and Genetics, Collage of Sciences, Koç University, İstanbul,
Turkiye
| | - Ayşe KOCA ÇAYDAŞI
- Department of Molecular Biology and Genetics, Collage of Sciences, Koç University, İstanbul,
Turkiye
| |
Collapse
|
4
|
Chen JS, Igarashi MG, Ren L, Hanna SM, Turner LA, McDonald NA, Beckley JR, Willet AH, Gould KL. The core spindle pole body scaffold Ppc89 links the pericentrin orthologue Pcp1 to the fission yeast spindle pole body via an evolutionarily conserved interface. Mol Biol Cell 2024; 35:ar112. [PMID: 38985524 PMCID: PMC11321043 DOI: 10.1091/mbc.e24-05-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sarah M. Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R. Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
5
|
Grazzini A, Cavanaugh AM. Fungal microtubule organizing centers are evolutionarily unstable structures. Fungal Genet Biol 2024; 172:103885. [PMID: 38485050 DOI: 10.1016/j.fgb.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
For most Eukaryotic species the requirements of cilia formation dictate the structure of microtubule organizing centers (MTOCs). In this study we find that loss of cilia corresponds to loss of evolutionary stability for fungal MTOCs. We used iterative search algorithms to identify proteins homologous to those found in Saccharomyces cerevisiae, and Schizosaccharomyces pombe MTOCs, and calculated site-specific rates of change for those proteins that were broadly phylogenetically distributed. Our results indicate that both the protein composition of MTOCs as well as the sequence of MTOC proteins are poorly conserved throughout the fungal kingdom. To begin to reconcile this rapid evolutionary change with the rigid structure and essential function of the S. cerevisiae MTOC we further analyzed how structural interfaces among proteins influence the rates of change for specific residues within a protein. We find that a more stable protein may stabilize portions of an interacting partner where the two proteins are in contact. In summary, while the protein composition and sequences of the MTOC may be rapidly changing the proteins within the structure have a stabilizing effect on one another. Further exploration of fungal MTOCs will expand our understanding of how changes in the functional needs of a cell have affected physical structures, proteomes, and protein sequences throughout fungal evolution.
Collapse
Affiliation(s)
- Adam Grazzini
- Department of Biology, Creighton University, Omaha, Nebraska, USA
| | - Ann M Cavanaugh
- Department of Biology, Creighton University, Omaha, Nebraska, USA.
| |
Collapse
|
6
|
Aeschlimann S, Stettler P, Schneider A. DNA segregation in mitochondria and beyond: insights from the trypanosomal tripartite attachment complex. Trends Biochem Sci 2023; 48:1058-1070. [PMID: 37775421 DOI: 10.1016/j.tibs.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
The tripartite attachment complex (TAC) of the single mitochondrion of trypanosomes allows precise segregation of its single nucleoid mitochondrial genome during cytokinesis. It couples the segregation of the duplicated mitochondrial genome to the segregation of the basal bodies of the flagella. Here, we provide a model of the molecular architecture of the TAC that explains how its eight essential subunits connect the basal body, across the mitochondrial membranes, with the mitochondrial genome. We also discuss how the TAC subunits are imported into the mitochondrion and how they assemble to form a new TAC. Finally, we present a comparative analysis of the trypanosomal TAC with open and closed mitotic spindles, which reveals conserved concepts between these diverse DNA segregation systems.
Collapse
Affiliation(s)
- Salome Aeschlimann
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland; Institute for Advanced Study (Wissenschaftskolleg) Berlin, D-14193 Berlin, Germany.
| |
Collapse
|
7
|
Voß Y, Klaus S, Lichti NP, Ganter M, Guizetti J. Malaria parasite centrins can assemble by Ca2+-inducible condensation. PLoS Pathog 2023; 19:e1011899. [PMID: 38150475 PMCID: PMC10775985 DOI: 10.1371/journal.ppat.1011899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/09/2024] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Centrins are small calcium-binding proteins that have a variety of roles and are universally associated with eukaryotic centrosomes. Rapid proliferation of the malaria-causing parasite Plasmodium falciparum in the human blood depends on a particularly divergent and acentriolar centrosome, which incorporates several essential centrins. Their precise mode of action, however, remains unclear. In this study calcium-inducible liquid-liquid phase separation is revealed as an evolutionarily conserved principle of assembly for multiple centrins from P. falciparum and other species. Furthermore, the disordered N-terminus and calcium-binding motifs are defined as essential features for reversible biomolecular condensation, and we demonstrate that certain centrins can form co-condensates. In vivo analysis using live cell STED microscopy shows liquid-like dynamics of centrosomal centrin. Additionally, implementation of an inducible protein overexpression system reveals concentration-dependent formation of extra-centrosomal centrin assemblies with condensate-like properties. The timing of foci formation and dissolution suggests that centrin assembly is regulated. This study thereby provides a new model for centrin accumulation at eukaryotic centrosomes.
Collapse
Affiliation(s)
- Yannik Voß
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Severina Klaus
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicolas P. Lichti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Julien Guizetti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
9
|
Wenz C, Simon CS, Romão TP, Stürmer VS, Machado M, Klages N, Klemmer A, Voß Y, Ganter M, Brochet M, Guizetti J. An Sfi1-like centrin-interacting centriolar plaque protein affects nuclear microtubule homeostasis. PLoS Pathog 2023; 19:e1011325. [PMID: 37130129 PMCID: PMC10180636 DOI: 10.1371/journal.ppat.1011325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
Malaria-causing parasites achieve rapid proliferation in human blood through multiple rounds of asynchronous nuclear division followed by daughter cell formation. Nuclear divisions critically depend on the centriolar plaque, which organizes intranuclear spindle microtubules. The centriolar plaque consists of an extranuclear compartment, which is connected via a nuclear pore-like structure to a chromatin-free intranuclear compartment. Composition and function of this non-canonical centrosome remain largely elusive. Centrins, which reside in the extranuclear part, are among the very few centrosomal proteins conserved in Plasmodium falciparum. Here we identify a novel centrin-interacting centriolar plaque protein. Conditional knock down of this Sfi1-like protein (PfSlp) caused a growth delay in blood stages, which correlated with a reduced number of daughter cells. Surprisingly, intranuclear tubulin abundance was significantly increased, which raises the hypothesis that the centriolar plaque might be implicated in regulating tubulin levels. Disruption of tubulin homeostasis caused excess microtubules and aberrant mitotic spindles. Time-lapse microscopy revealed that this prevented or delayed mitotic spindle extension but did not significantly interfere with DNA replication. Our study thereby identifies a novel extranuclear centriolar plaque factor and establishes a functional link to the intranuclear compartment of this divergent eukaryotic centrosome.
Collapse
Affiliation(s)
- Christoph Wenz
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | - Marta Machado
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Klemmer
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Yannik Voß
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Guizetti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Hinterndorfer K, Laporte MH, Mikus F, Tafur L, Bourgoint C, Prouteau M, Dey G, Loewith R, Guichard P, Hamel V. Ultrastructure expansion microscopy reveals the cellular architecture of budding and fission yeast. J Cell Sci 2022; 135:286062. [PMID: 36524422 PMCID: PMC10112979 DOI: 10.1242/jcs.260240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p–Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox.
This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.
Collapse
Affiliation(s)
- Kerstin Hinterndorfer
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Marine H. Laporte
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Felix Mikus
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Lucas Tafur
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Clélia Bourgoint
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Manoel Prouteau
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Gautam Dey
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Robbie Loewith
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Paul Guichard
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Virginie Hamel
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| |
Collapse
|
11
|
Laporte MH, Bouhlel IB, Bertiaux E, Morrison CG, Giroud A, Borgers S, Azimzadeh J, Bornens M, Guichard P, Paoletti A, Hamel V. Human SFI1 and Centrin form a complex critical for centriole architecture and ciliogenesis. EMBO J 2022; 41:e112107. [PMID: 36125182 PMCID: PMC9627676 DOI: 10.15252/embj.2022112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.
Collapse
Affiliation(s)
- Marine H Laporte
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | | | - Eloïse Bertiaux
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | - Ciaran G Morrison
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
- Centre for Chromosome Biology, School of Biological and Chemical SciencesNational University of Ireland GalwayGalwayIreland
| | - Alexia Giroud
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | - Susanne Borgers
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | | | | | - Paul Guichard
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | - Anne Paoletti
- Institut Curie, UMR 144CNRS, PSL UniversityParisFrance
| | - Virginie Hamel
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
12
|
Tomaz LB, Liu BA, Meroshini M, Ong SLM, Tan EK, Tolwinski NS, Williams CS, Gingras AC, Leushacke M, Dunn NR. MCC is a centrosomal protein that relocalizes to non-centrosomal apical sites during intestinal cell differentiation. J Cell Sci 2022; 135:jcs259272. [PMID: 36217793 PMCID: PMC10658790 DOI: 10.1242/jcs.259272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
The gene mutated in colorectal cancer (MCC) encodes a coiled-coil protein implicated, as its name suggests, in the pathogenesis of hereditary human colon cancer. To date, however, the contributions of MCC to intestinal homeostasis and disease remain unclear. Here, we examine the subcellular localization of MCC, both at the mRNA and protein levels, in the adult intestinal epithelium. Our findings reveal that Mcc transcripts are restricted to proliferating crypt cells, including Lgr5+ stem cells, where the Mcc protein is distinctly associated with the centrosome. Upon intestinal cellular differentiation, Mcc is redeployed to the apical domain of polarized villus cells where non-centrosomal microtubule organizing centers (ncMTOCs) are positioned. Using intestinal organoids, we show that the shuttling of the Mcc protein depends on phosphorylation by casein kinases 1δ and ε, which are critical modulators of WNT signaling. Together, our findings support a role for MCC in establishing and maintaining the cellular architecture of the intestinal epithelium as a component of both the centrosome and ncMTOC.
Collapse
Affiliation(s)
- Lucian B. Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Bernard A. Liu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Meroshini M
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Sheena L. M. Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | | | | | - Anne-Claude Gingras
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marc Leushacke
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - N. Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| |
Collapse
|
13
|
Woglar A, Pierron M, Schneider FZ, Jha K, Busso C, Gönczy P. Molecular architecture of the C. elegans centriole. PLoS Biol 2022; 20:e3001784. [PMID: 36107993 PMCID: PMC9531800 DOI: 10.1371/journal.pbio.3001784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Uncovering organizing principles of organelle assembly is a fundamental pursuit in the life sciences. Caenorhabditis elegans was key in identifying evolutionary conserved components governing assembly of the centriole organelle. However, localizing these components with high precision has been hampered by the minute size of the worm centriole, thus impeding understanding of underlying assembly mechanisms. Here, we used Ultrastructure Expansion coupled with STimulated Emission Depletion (U-Ex-STED) microscopy, as well as electron microscopy (EM) and electron tomography (ET), to decipher the molecular architecture of the worm centriole. Achieving an effective lateral resolution of approximately 14 nm, we localize centriolar and PeriCentriolar Material (PCM) components in a comprehensive manner with utmost spatial precision. We found that all 12 components analysed exhibit a ring-like distribution with distinct diameters and often with a 9-fold radial symmetry. Moreover, we uncovered that the procentriole assembles at a location on the centriole margin where SPD-2 and ZYG-1 also accumulate. Moreover, SAS-6 and SAS-5 were found to be present in the nascent procentriole, with SAS-4 and microtubules recruited thereafter. We registered U-Ex-STED and EM data using the radial array of microtubules, thus allowing us to map each centriolar and PCM protein to a specific ultrastructural compartment. Importantly, we discovered that SAS-6 and SAS-4 exhibit a radial symmetry that is offset relative to microtubules, leading to a chiral centriole ensemble. Furthermore, we established that the centriole is surrounded by a region from which ribosomes are excluded and to which SAS-7 localizes. Overall, our work uncovers the molecular architecture of the C. elegans centriole in unprecedented detail and establishes a comprehensive framework for understanding mechanisms of organelle biogenesis and function.
Collapse
Affiliation(s)
- Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Fabian Zacharias Schneider
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Keshav Jha
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
15
|
Velle KB, Kennard AS, Trupinić M, Ivec A, Swafford AJM, Nolton E, Rice LM, Tolić IM, Fritz-Laylin LK, Wadsworth P. Naegleria's mitotic spindles are built from unique tubulins and highlight core spindle features. Curr Biol 2022; 32:1247-1261.e6. [PMID: 35139359 PMCID: PMC9036621 DOI: 10.1016/j.cub.2022.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic β-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and β-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the "brain-eating amoeba" Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria's mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria's spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Andrew S Kennard
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Monika Trupinić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Arian Ivec
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Andrew J M Swafford
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Emily Nolton
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lillian K Fritz-Laylin
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA.
| | - Patricia Wadsworth
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Ryniawec JM, Rogers GC. Centrosome instability: when good centrosomes go bad. Cell Mol Life Sci 2021; 78:6775-6795. [PMID: 34476544 PMCID: PMC8560572 DOI: 10.1007/s00018-021-03928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.
Collapse
Affiliation(s)
- John M Ryniawec
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|
17
|
Schweizer N, Haren L, Dutto I, Viais R, Lacasa C, Merdes A, Lüders J. Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 2021; 12:6042. [PMID: 34654813 PMCID: PMC8519919 DOI: 10.1038/s41467-021-26252-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Ilaria Dutto
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ricardo Viais
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Cristina Lacasa
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
18
|
Gräf R, Grafe M, Meyer I, Mitic K, Pitzen V. The Dictyostelium Centrosome. Cells 2021; 10:cells10102657. [PMID: 34685637 PMCID: PMC8534566 DOI: 10.3390/cells10102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.
Collapse
|
19
|
Pitzen V, Sander S, Baumann O, Gräf R, Meyer I. Cep192, a Novel Missing Link between the Centrosomal Core and Corona in Dictyostelium Amoebae. Cells 2021; 10:cells10092384. [PMID: 34572033 PMCID: PMC8467581 DOI: 10.3390/cells10092384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure.
Collapse
Affiliation(s)
- Valentin Pitzen
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Sophia Sander
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Otto Baumann
- Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
- Correspondence:
| |
Collapse
|
20
|
Gao X, Herrero S, Wernet V, Erhardt S, Valerius O, Braus GH, Fischer R. The role of Aspergillus nidulans polo-like kinase PlkA in microtubule-organizing center control. J Cell Sci 2021; 134:271867. [PMID: 34328180 DOI: 10.1242/jcs.256537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Oliver Valerius
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Baluška F, Lyons S. Archaeal Origins of Eukaryotic Cell and Nucleus. Biosystems 2021; 203:104375. [PMID: 33549602 DOI: 10.1016/j.biosystems.2021.104375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/12/2023]
Abstract
Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.
Collapse
Affiliation(s)
| | - Sherrie Lyons
- Union College, 130 N. College, St. - Schenectady, NY, 12305, USA.
| |
Collapse
|
22
|
Jana SC. Centrosome structure and biogenesis: Variations on a theme? Semin Cell Dev Biol 2021; 110:123-138. [PMID: 33455859 DOI: 10.1016/j.semcdb.2020.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
Centrosomes are composed of two orthogonally arranged centrioles surrounded by an electron-dense matrix called the pericentriolar material (PCM). Centrioles are cylinders with diameters of ~250 nm, are several hundred nanometres in length and consist of 9-fold symmetrically arranged microtubules (MT). In dividing animal cells, centrosomes act as the principal MT-organising centres and they also organise actin, which tunes cytoplasmic MT nucleation. In some specialised cells, the centrosome acquires additional critical structures and converts into the base of a cilium with diverse functions including signalling and motility. These structures are found in most eukaryotes and are essential for development and homoeostasis at both cellular and organism levels. The ultrastructure of centrosomes and their derived organelles have been known for more than half a century. However, recent advances in a number of techniques have revealed the high-resolution structures (at Å-to-nm scale resolution) of centrioles and have begun to uncover the molecular principles underlying their properties, including: protein components; structural elements; and biogenesis in various model organisms. This review covers advances in our understanding of the features and processes that are critical for the biogenesis of the evolutionarily conserved structures of the centrosomes. Furthermore, it discusses how variations of these aspects can generate diversity in centrosome structure and function among different species and even between cell types within a multicellular organism.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; National Centre for Biological Sciences-TIFR, Bellary Road, 560065 Bangalore, India.
| |
Collapse
|
23
|
Evolution of the centrosome, from the periphery to the center. Curr Opin Struct Biol 2020; 66:96-103. [PMID: 33242728 DOI: 10.1016/j.sbi.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
Centrosomes are central organelles that organize microtubules (MTs) in animals, fungi and several other eukaryotic lineages. Despite an important diversity of structure, the centrosomes of different lineages share the same functions and part of their molecular components. To uncover how divergent centrosomes are related to each other, we need to trace the evolutionary history of MT organization. Careful assessment of cytoskeletal architecture in extant eukaryotic species can help us infer the ancestral state and identify the subsequent changes that took place during evolution. This led to the finding that the last common ancestor of all eukaryotes was very likely a biflagellate cell with a surprisingly complex cytoskeletal organization. Centrosomes are likely derived from the basal bodies of such flagellate, but when and how many times this happened remains unclear. Here, we discuss different hypotheses for how centrosomes evolved in a eukaryotic lineage called Amorphea, to which animals, fungi and amoebozoans belong.
Collapse
|
24
|
Matellán L, Manzano-López J, Monje-Casas F. Polo-like kinase acts as a molecular timer that safeguards the asymmetric fate of spindle microtubule-organizing centers. eLife 2020; 9:61488. [PMID: 33135999 PMCID: PMC7669271 DOI: 10.7554/elife.61488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
The microtubules that form the mitotic spindle originate from microtubule-organizing centers (MTOCs) located at either pole. After duplication, spindle MTOCs can be differentially inherited during asymmetric cell division in organisms ranging from yeast to humans. Problems with establishing predetermined spindle MTOC inheritance patterns during stem cell division have been associated with accelerated cellular aging and the development of both cancer and neurodegenerative disorders. Here, we expand the repertoire of functions Polo-like kinase family members fulfill in regulating pivotal cell cycle processes. We demonstrate that the Plk1 homolog Cdc5 acts as a molecular timer that facilitates the timely and sequential recruitment of two key determinants of spindle MTOCs distribution, that is the γ-tubulin complex receptor Spc72 and the protein Kar9, and establishes the fate of these structures, safeguarding their asymmetric inheritance during Saccharomyces cerevisiae mitosis.
Collapse
Affiliation(s)
- Laura Matellán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| | - Javier Manzano-López
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
25
|
McLamarrah TA, Speed SK, Ryniawec JM, Buster DW, Fagerstrom CJ, Galletta BJ, Rusan NM, Rogers GC. A molecular mechanism for the procentriole recruitment of Ana2. J Cell Biol 2020; 219:132764. [PMID: 31841145 PMCID: PMC7041687 DOI: 10.1083/jcb.201905172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
McLamarrah et al. characterize an early step in centriole duplication. They show that Plk4 hyperphosphorylates Ana2, which increases the affinity of Ana2 for the G-box domain of Sas4, promoting Ana2’s accumulation at the procentriole and, consequently, daughter centriole formation. During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2–G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.
Collapse
Affiliation(s)
- Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sarah K Speed
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Carey J Fagerstrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
26
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
27
|
LaBar T, Phoebe Hsieh YY, Fumasoni M, Murray AW. Evolutionary Repair Experiments as a Window to the Molecular Diversity of Life. Curr Biol 2020; 30:R565-R574. [PMID: 32428498 PMCID: PMC7295036 DOI: 10.1016/j.cub.2020.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Comparative genomics reveals an unexpected diversity in the molecular mechanisms underlying conserved cellular functions, such as DNA replication and cytokinesis. However, the genetic bases and evolutionary processes underlying this 'molecular diversity' remain to be explained. Here, we review a tool to generate alternative mechanisms for conserved cellular functions and test hypotheses concerning the generation of molecular diversity - evolutionary repair experiments, in which laboratory microbial populations adapt in response to a genetic perturbation. We summarize the insights gained from evolutionary repair experiments, the spectrum and dynamics of compensatory mutations, and the alternative molecular mechanisms used to repair perturbed cellular functions. We relate these experiments to the modifications of conserved functions that have occurred outside the laboratory. We end by proposing strategies to improve evolutionary repair experiments as a tool to explore the molecular diversity of life.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
28
|
Alonso A, Fabritius A, Ozzello C, Andreas M, Klenchin D, Rayment I, Winey M. Yeast pericentrin/Spc110 contains multiple domains required for tethering the γ-tubulin complex to the centrosome. Mol Biol Cell 2020; 31:1437-1452. [PMID: 32374651 PMCID: PMC7359572 DOI: 10.1091/mbc.e20-02-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae spindle pole body (SPB) serves as the sole microtubule-organizing center of the cell, nucleating both cytoplasmic and nuclear microtubules. Yeast pericentrin, Spc110, binds to and activates the γ-tubulin complex via its N terminus, allowing nuclear microtubule polymerization to occur. The Spc110 C terminus links the γ-tubulin complex to the central plaque of the SPB by binding to Spc42, Spc29, and calmodulin (Cmd1). Here, we show that overexpression of the C terminus of Spc110 is toxic to cells and correlates with its localization to the SPB. Spc110 domains that are required for SPB localization and toxicity include its Spc42-, Spc29-, and Cmd1-binding sites. Overexpression of the Spc110 C terminus induces SPB defects and disrupts microtubule organization in both cycling and G2/M arrested cells. Notably, the two mitotic SPBs are affected in an asymmetric manner such that one SPB appears to be pulled away from the nucleus toward the cortex but remains attached via a thread of nuclear envelope. This SPB also contains relatively fewer microtubules and less endogenous Spc110. Our data suggest that overexpression of the Spc110 C terminus acts as a dominant-negative mutant that titrates endogenous Spc110 from the SPB causing spindle defects.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Amy Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Courtney Ozzello
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Mike Andreas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Dima Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
29
|
Bertiaux E, Bastin P. Dealing with several flagella in the same cell. Cell Microbiol 2020; 22:e13162. [DOI: 10.1111/cmi.13162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
- École Doctorale Complexité du Vivant Sorbonne Université Paris France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
| |
Collapse
|
30
|
Gibboney S, Orvis J, Kim K, Johnson CJ, Martinez-Feduchi P, Lowe EK, Sharma S, Stolfi A. Effector gene expression underlying neuron subtype-specific traits in the Motor Ganglion of Ciona. Dev Biol 2020; 458:52-63. [PMID: 31639337 PMCID: PMC6987015 DOI: 10.1016/j.ydbio.2019.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
The central nervous system of the Ciona larva contains only 177 neurons. The precise regulation of neuron subtype-specific morphogenesis and differentiation observed during the formation of this minimal connectome offers a unique opportunity to dissect gene regulatory networks underlying chordate neurodevelopment. Here we compare the transcriptomes of two very distinct neuron types in the hindbrain/spinal cord homolog of Ciona, the Motor Ganglion (MG): the Descending decussating neuron (ddN, proposed homolog of Mauthner Cells in vertebrates) and the MG Interneuron 2 (MGIN2). Both types are invariantly represented by a single bilaterally symmetric left/right pair of cells in every larva. Supernumerary ddNs and MGIN2s were generated in synchronized embryos and isolated by fluorescence-activated cell sorting for transcriptome profiling. Differential gene expression analysis revealed ddN- and MGIN2-specific enrichment of a wide range of genes, including many encoding potential "effectors" of subtype-specific morphological and functional traits. More specifically, we identified the upregulation of centrosome-associated, microtubule-stabilizing/bundling proteins and extracellular guidance cues part of a single intrinsic regulatory program that might underlie the unique polarization of the ddNs, the only descending MG neurons that cross the midline. Consistent with our predictions, CRISPR/Cas9-mediated, tissue-specific elimination of two such candidate effectors, Efcab6-related and Netrin1, impaired ddN polarized axon outgrowth across the midline.
Collapse
Affiliation(s)
- Susanne Gibboney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jameson Orvis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Elijah K Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sarthak Sharma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
31
|
Semenovskaya K, Lévêque MF, Berry L, Bordat Y, Dubremetz JF, Lebrun M, Besteiro S. TgZFP2 is a novel zinc finger protein involved in coordinating mitosis and budding in Toxoplasma. Cell Microbiol 2019; 22:e13120. [PMID: 31628778 DOI: 10.1111/cmi.13120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Zinc finger proteins (ZFPs) are one of the most abundant groups of proteins with a wide range of molecular functions. We have characterised a Toxoplasma protein that we named TgZFP2, as it bears a zinc finger domain conserved in eukaryotes. However, this protein has little homology outside this region and contains no other conserved domain that could hint for a particular function. We thus investigated TgZFP2 function by generating a conditional mutant. We showed that depletion of TgZFP2 leads to a drastic arrest in the parasite cell cycle, and complementation assays demonstrated the zinc finger domain is essential for TgZFP2 function. More precisely, whereas replication of the nuclear material is initially essentially unaltered, daughter cell budding is seriously impaired: to a large extent newly formed buds fail to incorporate nuclear material. TgZFP2 is found at the basal complex in extracellular parasites and after invasion, but as the parasites progress into cell division, it relocalises to cytoplasmic punctate structures and, strikingly, accumulates in the pericentrosomal area at the onset of daughter cell elongation. Centrosomes have emerged as major coordinators of the budding and nuclear cycles in Toxoplasma, and our study identifies a novel and important component of this machinery.
Collapse
Affiliation(s)
- Ksenia Semenovskaya
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Maude F Lévêque
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France.,MiVEGEC, Université de Montpellier, CNRS, IRD, CHU de Montpellier, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Yann Bordat
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Jean-François Dubremetz
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Sébastien Besteiro
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
32
|
Abstract
Multinucleate fungi and oomycetes are phylogenetically distant but structurally similar. To address whether they share similar nuclear dynamics, we carried out time-lapse imaging of fluorescently labeled Phytophthora palmivora nuclei. Nuclei underwent coordinated bidirectional movements during plant infection. Within hyphal networks growing in planta or in axenic culture, nuclei either are dragged passively with the cytoplasm or actively become rerouted toward nucleus-depleted hyphal sections and often display a very stretched shape. Benomyl-induced depolymerization of microtubules reduced active movements and the occurrence of stretched nuclei. A centrosome protein localized at the leading end of stretched nuclei, suggesting that, as in fungi, astral microtubule-guided movements contribute to nuclear distribution within oomycete hyphae. The remarkable hydrodynamic shape adaptations of Phytophthora nuclei contrast with those in fungi and likely enable them to migrate over longer distances. Therefore, our work summarizes mechanisms which enable a near-equal nuclear distribution in an oomycete. We provide a basis for computational modeling of hydrodynamic nuclear deformation within branched tubular networks.IMPORTANCE Despite their fungal morphology, oomycetes constitute a distinct group of protists related to brown algae and diatoms. Many oomycetes are pathogens and cause diseases of plants, insects, mammals, and humans. Extensive efforts have been made to understand the molecular basis of oomycete infection, but durable protection against these pathogens is yet to be achieved. We use a plant-pathogenic oomycete to decipher a key physiological aspect of oomycete growth and infection. We show that oomycete nuclei travel actively and over long distances within hyphae and during infection. Such movements require microtubules anchored on the centrosome. Nuclei hydrodynamically adapt their shape to travel in or against the flow. In contrast, fungi lack a centrosome and have much less flexible nuclei. Our findings provide a basis for modeling of flexible nuclear shapes in branched hyphal networks and may help in finding hard-to-evade targets to develop specific antioomycete strategies and achieve durable crop disease protection.
Collapse
|
33
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
34
|
Ito D, Zitouni S, Jana SC, Duarte P, Surkont J, Carvalho-Santos Z, Pereira-Leal JB, Ferreira MG, Bettencourt-Dias M. Pericentrin-mediated SAS-6 recruitment promotes centriole assembly. eLife 2019; 8:41418. [PMID: 31182187 PMCID: PMC6559791 DOI: 10.7554/elife.41418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
The centrosome is composed of two centrioles surrounded by a microtubule-nucleating pericentriolar material (PCM). Although centrioles are known to regulate PCM assembly, it is less known whether and how the PCM contributes to centriole assembly. Here we investigate the interaction between centriole components and the PCM by taking advantage of fission yeast, which has a centriole-free, PCM-containing centrosome, the SPB. Surprisingly, we observed that several ectopically-expressed animal centriole components such as SAS-6 are recruited to the SPB. We revealed that a conserved PCM component, Pcp1/pericentrin, interacts with and recruits SAS-6. This interaction is conserved and important for centriole assembly, particularly its elongation. We further explored how yeasts kept this interaction even after centriole loss and showed that the conserved calmodulin-binding region of Pcp1/pericentrin is critical for SAS-6 interaction. Our work suggests that the PCM not only recruits and concentrates microtubule-nucleators, but also the centriole assembly machinery, promoting biogenesis close by.
Collapse
Affiliation(s)
- Daisuke Ito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Ophiomics, Precision Medicine, Lisboa, Portugal
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081 UMR7284 CNRS, Nice, France
| | | |
Collapse
|
35
|
Abstract
Microtubules are cytoskeletal filaments essential for numerous aspects of cell physiology. They are polarized polymeric tubes with a fast growing plus end and a slow growing minus end. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the dynamics and organization of microtubule minus ends. Several factors, including the γ-tubulin ring complex, CAMSAP/Patronin, ASPM/Asp, SPIRAL2 (in plants) and the KANSL complex recognize microtubule minus ends and regulate their nucleation, stability and interactions with partners, such as microtubule severing enzymes, microtubule depolymerases and protein scaffolds. Together with minus-end-directed motors, these microtubule minus-end targeting proteins (-TIPs) also control the formation of microtubule-organizing centers, such as centrosomes and spindle poles, and mediate microtubule attachment to cellular membrane structures, including the cell cortex, Golgi complex and the cell nucleus. Structural and functional studies are starting to reveal the molecular mechanisms by which dynamic -TIP networks control microtubule minus ends.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland .,University of Basel, Biozentrum, CH-4056 Basel, Switzerland
| |
Collapse
|
36
|
Drennan AC, Krishna S, Seeger MA, Andreas MP, Gardner JM, Sether EKR, Jaspersen SL, Rayment I. Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication. Mol Biol Cell 2019; 30:1505-1522. [PMID: 30969903 PMCID: PMC6724696 DOI: 10.1091/mbc.e19-03-0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 11/12/2022] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are membraneless organelles whose duplication and assembly is necessary for bipolar mitotic spindle formation. The structural organization and functional roles of major proteins in these organelles can provide critical insights into cell division control. Spc42, a phosphoregulated protein with an N-terminal dimeric coiled-coil (DCC), assembles into a hexameric array at the budding yeast SPB core, where it functions as a scaffold for SPB assembly. Here, we present in vitro and in vivo data to elucidate the structural arrangement and biological roles of Spc42 elements. Crystal structures reveal details of two additional coiled-coils in Spc42: a central trimeric coiled-coil and a C-terminal antiparallel DCC. Contributions of the three Spc42 coiled-coils and adjacent undetermined regions to the formation of an ∼145 Å hexameric lattice in an in vitro lipid monolayer assay and to SPB duplication and assembly in vivo reveal structural and functional redundancy in Spc42 assembly. We propose an updated model that incorporates the inherent symmetry of these Spc42 elements into a lattice, and thereby establishes the observed sixfold symmetry. The implications of this model for the organization of the central SPB core layer are discussed.
Collapse
Affiliation(s)
- Amanda C. Drennan
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | - Mark A. Seeger
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | | | | | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| |
Collapse
|
37
|
Zhao H, Chen Q, Fang C, Huang Q, Zhou J, Yan X, Zhu X. Parental centrioles are dispensable for deuterosome formation and function during basal body amplification. EMBO Rep 2019; 20:e46735. [PMID: 30833343 PMCID: PMC6446193 DOI: 10.15252/embr.201846735] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
Mammalian epithelial cells use a pair of parental centrioles and numerous deuterosomes as platforms for efficient basal body production during multiciliogenesis. How deuterosomes form and function, however, remain controversial. They are proposed to arise either spontaneously for massive de novo centriole biogenesis or in a daughter centriole-dependent manner as shuttles to carry away procentrioles assembled at the centriole. Here, we show that both parental centrioles are dispensable for deuterosome formation. In both mouse tracheal epithelial and ependymal cells (mTECs and mEPCs), discrete deuterosomes in the cytoplasm are initially procentriole-free. They emerge at widely dispersed positions in the cytoplasm and then enlarge, concomitant with their increased ability to form procentrioles. More importantly, deuterosomes still form efficiently in mEPCs whose daughter centriole or even both parental centrioles are eliminated through shRNA-mediated depletion or drug inhibition of Plk4, a kinase essential to centriole biogenesis in both cycling cells and multiciliated cells. Therefore, deuterosomes can be assembled autonomously to mediate de novo centriole amplification in multiciliated cells.
Collapse
Affiliation(s)
- Huijie Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Qingxia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Qiongping Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, Shandong, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
38
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
39
|
Comparative Biology of Centrosomal Structures in Eukaryotes. Cells 2018; 7:cells7110202. [PMID: 30413081 PMCID: PMC6262633 DOI: 10.3390/cells7110202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
The centrosome is not only the largest and most sophisticated protein complex within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles. This special issue of "Cells" features representatives of three main, structurally divergent centrosome types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history of centrosome research and highlight recently emerged topics, such as the role of centrioles in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of centrosomal structures into the nuclear envelope and the involvement of centrosomal components in non-centrosomal microtubule organization.
Collapse
|