1
|
Gregersen I, Scarth ME, Abdullah R, Thorsby PM, Hauger LE, Haugaa KH, Sagen EL, Michelsen AE, Ueland T, Edvardsen T, Aukrust P, Almaas VM, Bjørnebekk AK, Halvorsen B. Elevated interleukin 8 and matrix metalloproteinase 9 levels are associated with myocardial pathology in users of anabolic-androgenic steroids. Eur J Prev Cardiol 2024; 31:1469-1476. [PMID: 38573232 DOI: 10.1093/eurjpc/zwae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
AIMS In the current paper, we aim to explore the effect of both current and former long-term anabolic-androgenic steroid (AAS) use on regulation of systemic inflammatory markers and mediators of extracellular matrix (ECM) remodelling and their association with hormones and echocardiographic myocardial pathology in weightlifters. METHODS AND RESULTS In a cross-sectional study, 93 weightlifting AAS users, of whom 62 were current and 31 were past users, with at least 1-year cumulative AAS use (mean 11 ± 7 accumulated years of AAS use), were compared with 54 non-using weightlifting controls (WLCs) using clinical interview, blood pressure measurements, and echocardiography. Serum levels of interleukin (IL)-6, IL-8, tumour necrosis factor (TNF), interferon (IFN)-γ, growth differentiation factor (GDF)-15, and matrix metalloproteinase (MMP)-9, sex hormones, and lipids were analysed. It was found that serum levels of IL-8, GDF-15, and MMP-9 were significantly increased in current AAS users compared with former users and WLCs. Matrix metalloproteinase 9, but not IL-8, correlated consistently with sex hormone levels, and sex hormone levels correlated consistently with mean wall thickness, in current users. Moreover, HDL cholesterol was significantly lower in current vs. former AAS users and significantly inversely correlated with MMP-9 in current users. Further, in current users, MMP-9 and IL-8 correlated with markers of myocardial strain, and MMP-9 also correlated with indices of cardiac mass, which was not seen in former users. Mediation analyses suggested that MMP-9 could partly explain hormone-induced alterations in markers of myocardial damage in current users. CONCLUSION Long-term AAS is associated with increased levels of markers of inflammation and ECM remodelling, which seems to have a hormone-dependent (MMP-9) and a hormone-independent (IL-8) association with markers of myocardial dysfunction.
Collapse
Affiliation(s)
- Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Morgan Elizabeth Scarth
- Anabolic Androgenic Steroid Research Group, Section of Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, 0372 Oslo, Norway
| | - Rang Abdullah
- Anabolic Androgenic Steroid Research Group, Section of Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, 0372 Oslo, Norway
- ProCardio Center for Research-Based Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Per Medbøe Thorsby
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Aker, Trondheimsveien 235,0586 Oslo, Norway
- Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Trondheimsveien 235, 0586 Oslo, Norway
| | - Lisa E Hauger
- Anabolic Androgenic Steroid Research Group, Section of Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, 0372 Oslo, Norway
- National Centre for Epilepsy, Section of Clinical Psychology and Neuropsychology, Oslo University Hospital, Henriksens vei, Sandvika, Norway
| | - Kristina H Haugaa
- ProCardio Center for Research-Based Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Universitetsvegen 57, 9019 Tromsø, Norway
| | - Thor Edvardsen
- ProCardio Center for Research-Based Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Vibeke Marie Almaas
- ProCardio Center for Research-Based Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Astrid Kristine Bjørnebekk
- Anabolic Androgenic Steroid Research Group, Section of Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, 0372 Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| |
Collapse
|
2
|
Dai GC, Wang H, Ming Z, Lu PP, Li YJ, Gao YC, Shi L, Cheng Z, Liu XY, Rui YF. Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: A new candidate marker for aging. Ageing Res Rev 2024; 95:102215. [PMID: 38325754 DOI: 10.1016/j.arr.2024.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Aging can lead to various disorders in organisms and with the escalating impact of population aging, the incidence of age-related diseases is steadily increasing. As a major risk factor for chronic illnesses in humans, the prevention and postponement of aging have become focal points of research among numerous scientists. Aging biomarkers, which mirror molecular alterations at diverse levels in organs, tissues, and cells, can be used to monitor and evaluate biological changes associated with aging. Currently, aging biomarkers are primarily categorized into physiological traits, imaging characteristics, histological features, cellular-level alterations, and molecular-level changes that encompass the secretion of aging-related factors. However, in the context of the musculoskeletal soft tissue system, aging-related biological indicators primarily involve microscopic parameters at the cellular and molecular levels, resulting in inconvenience and uncertainty in the assessment of musculoskeletal soft tissue aging. To identify convenient and effective indicators, we conducted a comprehensive literature review to investigate the correlation between ectopic mineralization and age-related changes in the musculoskeletal soft tissue system. Here, we introduce the concept of ectopic mineralization as a macroscopic, reliable, and convenient biomarker for musculoskeletal soft tissue aging and present novel targets and strategies for the future management of age-related musculoskeletal soft tissue disorders.
Collapse
Affiliation(s)
- Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Ming
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Ying-Juan Li
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yu-Cheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Cheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Xiao-Yu Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
3
|
Turlo AJ, Hammond DE, Ramsbottom KA, Soul J, Gillen A, McDonald K, Peffers MJ. Mesenchymal Stromal Cell Secretome Is Affected by Tissue Source and Donor Age. Stem Cells 2023; 41:1047-1059. [PMID: 37591507 PMCID: PMC10631804 DOI: 10.1093/stmcls/sxad060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
Variation in mesenchymal stromal cell (MSC) function depending on their origin is problematic, as it may confound clinical outcomes of MSC therapy. Current evidence suggests that the therapeutic benefits of MSCs are attributed to secretion of biologically active factors (secretome). However, the effect of donor characteristics on the MSC secretome remains largely unknown. Here, we examined the influence of donor age, sex, and tissue source, on the protein profile of the equine MSC secretome. We used dynamic metabolic labeling with stable isotopes combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify secreted proteins in MSC conditioned media (CM). Seventy proteins were classified as classically secreted based on the rate of label incorporation into newly synthesized proteins released into the extracellular space. Next, we analyzed CM of bone marrow- (n = 14) and adipose-derived MSCs (n = 16) with label-free LC-MS/MS. Clustering analysis of 314 proteins detected across all samples identified tissue source as the main factor driving variability in MSC CM proteomes. Linear modelling applied to the subset of 70 secreted proteins identified tissue-related difference in the abundance of 23 proteins. There was an age-related decrease in the abundance of CTHRC1 and LOX, further validated with orthogonal techniques. Due to the lack of flow cytometry characterization of MSC surface markers, the analysis could not account for the potential effect of cell population heterogeneity. This study provides evidence that tissue source and donor age contribute to differences in the protein composition of MSC secretomes which may influence the effects of MSC therapy.
Collapse
Affiliation(s)
- Agnieszka J Turlo
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Dean E Hammond
- epartment of Cellular and Molecular Physiology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kerry A Ramsbottom
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Alexandra Gillen
- Department of Veterinary Science, Philip Leverhulme Equine Hospital, University of Liverpool, UK
| | | | - Mandy J Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Kwan KYC, Ng KWK, Rao Y, Zhu C, Qi S, Tuan RS, Ker DFE, Wang DM. Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches. Int J Mol Sci 2023; 24:15183. [PMID: 37894875 PMCID: PMC10607611 DOI: 10.3390/ijms242015183] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon aging is associated with an increasing prevalence of tendon injuries and/or chronic tendon diseases, such as tendinopathy, which affects approximately 25% of the adult population. Aged tendons are often characterized by a reduction in the number and functionality of tendon stem/progenitor cells (TSPCs), fragmented or disorganized collagen bundles, and an increased deposition of glycosaminoglycans (GAGs), leading to pain, inflammation, and impaired mobility. Although the exact pathology is unknown, overuse and microtrauma from aging are thought to be major causative factors. Due to the hypovascular and hypocellular nature of the tendon microenvironment, healing of aged tendons and related injuries is difficult using current pain/inflammation and surgical management techniques. Therefore, there is a need for novel therapies, specifically cellular therapy such as cell rejuvenation, due to the decreased regenerative capacity during aging. To augment the therapeutic strategies for treating tendon-aging-associated diseases and injuries, a comprehensive understanding of tendon aging pathology is needed. This review summarizes age-related tendon changes, including cell behaviors, extracellular matrix (ECM) composition, biomechanical properties and healing capacity. Additionally, the impact of conventional treatments (diet, exercise, and surgery) is discussed, and recent advanced strategies (cell rejuvenation) are highlighted to address aged tendon healing. This review underscores the molecular and cellular linkages between aged tendon biomechanical properties and the healing response, and provides an overview of current and novel strategies for treating aged tendons. Understanding the underlying rationale for future basic and translational studies of tendon aging is crucial to the development of advanced therapeutics for tendon regeneration.
Collapse
Affiliation(s)
- Ka Yu Carissa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kerry Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenxian Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200040, China;
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Marques Azzini GO, Marques Azzini VO, Santos GS, Visoni S, Fusco MA, Beker NS, Mahmood A, Bizinotto Lana JV, Jeyaraman M, Nallakumarasamy A, Jeyaraman N, da Fonseca LF, Luz Arab MG, Vicente R, Rajendran RL, Gangadaran P, Ahn BC, Duarte Lana JFS. Cannabidiol for musculoskeletal regenerative medicine. Exp Biol Med (Maywood) 2023; 248:445-455. [PMID: 37158062 PMCID: PMC10281618 DOI: 10.1177/15353702231162086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most prevalent causes, which lead patients to a physician's office. The most common disorders affecting MSK structures are osteoarthritis, rheumatoid arthritis, back pain, and myofascial pain syndrome, which are all responsible for major pain and physical disability. Although there are many known management strategies currently in practice, phytotherapeutic compounds have recently begun to rise in the medical community, especially cannabidiol (CBD). This natural, non-intoxicating molecule derived from the cannabis plant has shown interesting results in many preclinical studies and some clinical settings. CBD plays vital roles in human health that go well beyond the classic immunomodulatory, anti-inflammatory, and antinociceptive properties. Recent studies demonstrated that CBD also improves cell proliferation and migration, especially in mesenchymal stem cells (MSCs). The foremost objective of this review article is to discuss the therapeutic potential of CBD in the context of MSK regenerative medicine. Numerous studies listed in the literature indicate that CBD possesses a significant capacity to modulate mammalian tissue to attenuate and reverse the notorious hallmarks of chronic musculoskeletal disorders (MSDs). The most of the research included in this review report common findings like immunomodulation and stimulation of cell activity associated with tissue regeneration, especially in human MSCs. CBD is considered safe and well tolerated as no serious adverse effects were reported. CBD promotes many positive effects which can manage detrimental alterations brought on by chronic MSDs. Since the application of CBD for MSK health is still undergoing expansion, additional randomized clinical trials are warranted to further clarify its efficacy and to understand its cellular mechanisms.
Collapse
Affiliation(s)
| | | | - Gabriel Silva Santos
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | - Silvia Visoni
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | | | | | - Ansar Mahmood
- University Hospitals Birmingham,
Birmingham B15 2PR, UK
| | - João Vitor Bizinotto Lana
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Medical Specialties School Centre,
Centro Universitário Max Planck, Indaiatuba, 13343-060, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, A.C.S.
Medical College and Hospital, Dr.M.G.R. Educational and Research Institute, Chennai
600056, India
- Department of Biotechnology, School of
Engineering and Technology, Sharda University, Greater Noida 201310, India
- South Texas Orthopaedic Research
Institute (STORI Inc.), Laredo, TX 78045, USA
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
| | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
- Department of Orthopaedics, All India
Institute of Medical Sciences, Bhubaneswar 751019, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
- Department of Orthopaedics, Atlas
Hospitals, Tiruchirappalli 620002, India
| | - Lucas Furtado da Fonseca
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Universidade Federal de São Paulo
(UNIFESP), São Paulo, 04021-001, Brazil
| | - Miguel Gustavo Luz Arab
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Saúde Máxima (SAMAX), São Paulo,
01239-040, Brazil
| | - Rodrigo Vicente
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Ultra Sports Science, São Paulo,
Brazil
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational
Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical
Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of
Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational
Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical
Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of
Korea
| | | |
Collapse
|
6
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
7
|
Ramires LC, Jeyaraman M, Muthu S, Shankar A N, Santos GS, da Fonseca LF, Lana JF, Rajendran RL, Gangadaran P, Jogalekar MP, Cardoso AA, Eickhoff A. Application of Orthobiologics in Achilles Tendinopathy: A Review. Life (Basel) 2022; 12:life12030399. [PMID: 35330150 PMCID: PMC8954398 DOI: 10.3390/life12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Orthobiologics are biological materials that are intended for the regeneration of bone, cartilage, and soft tissues. In this review, we discuss the application of orthobiologics in Achilles tendinopathy, more specifically. We explain the concepts and definitions of each orthobiologic and the literature regarding its use in tendon disorders. The biological potential of these materials can be harnessed and administered into injured tissues, particularly in areas where standard healing is disrupted, a typical feature of Achilles tendinopathy. These products contain a wide variety of cell populations, cytokines, and growth factors, which have been shown to modulate many other cells at local and distal sites in the body. Collectively, they can shift the state of escalated inflammation and degeneration to reestablish tissue homeostasis. The typical features of Achilles tendinopathy are failed healing responses, persistent inflammation, and predominant catabolic reactions. Therefore, the application of orthobiologic tools represents a viable solution, considering their demonstrated efficacy, safety, and relatively easy manipulation. Perhaps a synergistic approach regarding the combination of these orthobiologics may promote more significant clinical outcomes rather than individual application. Although numerous optimistic results have been registered in the literature, additional studies and clinical trials are still highly desired to further illuminate the clinical utility and efficacy of these therapeutic strategies in the management of tendinopathies.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Centro Clínico Mãe de Deus, Porto Alegre 90110-270, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Navaladi Shankar A
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Alfredo A. Cardoso
- Department of Oncology-Integrative Medicine-Pain Care, IAC—Instituto Ana Cardoso de Práticas Integrativas e Medicina Regenerative, Gramado 95670-000, Brazil;
| | - Alex Eickhoff
- Department of Orthopaedics, Centro Ortopédico Eickhoff, Três de Maio 98910-000, Brazil;
| |
Collapse
|
8
|
Myotendinous Junction: Exercise Protocols Can Positively Influence Their Development in Rats. Biomedicines 2022; 10:biomedicines10020480. [PMID: 35203688 PMCID: PMC8962292 DOI: 10.3390/biomedicines10020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
The myotendinous junction (MTJ) is an interface that different stimuli alter their morphology. One of the main stimuli to promote alterations in the MTJ morphology is physical exercise. The present study aimed to investigate the morphology and molecular MTJ adaptations of biceps brachii muscle in adult Wistar rats submitted to different ladder-based protocols. Forty Wistar rats (90 days old) were divided into four groups: Sedentary (S), Climbing (C), Overload Climbing (OC), Climbing, and Overload Climbing (COC). The results of light microscopy demonstrated the cell and collagen tissue reorganization in the experimental groups. The sarcomeres lengths of different regions showed a particular development according to the specific protocols. The sarcoplasmic invaginations and evaginations demonstrated positive increases that promoted the myotendinous interface development. In the extracellular matrix, the structures presented an increase principally in the COC group. Finally, the immunofluorescence analysis showed the telocytes disposition adjacent to the MTJ region in all experimental groups, revealing their network organization. Thus, we concluded that the different protocols contributed to the morphological adaptations with beneficial effects in distinct ways of tissue and cellular development and can be used as a model for MTJ remodeling to future proteomic and genetic analysis.
Collapse
|
9
|
Anabolic Androgenic Steroids in Orthopaedic Surgery: Current Concepts and Clinical Applications. J Am Acad Orthop Surg Glob Res Rev 2022; 6:01979360-202201000-00001. [PMID: 34982051 PMCID: PMC8735789 DOI: 10.5435/jaaosglobal-d-21-00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Despite the well-documented effects of testosterone and its synthetic derivatives—collectively termed anabolic androgenic steroids (AASs)—on the musculoskeletal system, the therapeutic use of these agents has received limited investigation within the field of orthopaedic surgery. In the last 2 decades, preclinical and clinical research has started to identify promising applications of the short-term use of AASs in the perioperative period. There is evidence to suggest that AASs may improve postoperative recovery after anterior cruciate ligament reconstruction and total joint arthroplasty. In addition, AASs may augment the biological healing environment in specific clinical scenarios including muscle injury, fracture repair, and rotator cuff repair. Current literature fails to present strong evidence for or against the use of AASs in orthopaedics, but there is continuous research on this topic. The purpose of this study was to provide a comprehensive overview of the current status of AAS applications in orthopaedic surgery, with an emphasis on preclinical data, clinical studies, and future directions.
Collapse
|
10
|
Effects of aging on the histology and biochemistry of rat tendon healing. BMC Musculoskelet Disord 2021; 22:949. [PMID: 34781961 PMCID: PMC8594129 DOI: 10.1186/s12891-021-04838-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Tendon diseases and injuries are a serious problem for the aged population, often leading to pain, disability and a significant decline in quality of life. The purpose of this study was to determine the influence of aging on biochemistry and histology during tendon healing and to provide a new strategy for improving tendon healing. METHOD A total of 24 Sprague-Dawley rats were equally divided into a young and an aged group. A rat patellar tendon defect model was used in this study. Tendon samples were collected at weeks 2 and 4, and hematoxylin-eosin, alcian blue and immunofluorescence staining were performed for histological analysis. Meanwhile, reverse transcription-polymerase chain reaction (RT-PCR) and western blot were performed to evaluate the biochemical changes. RESULTS The histological scores in aged rats were significantly lower than those in young rats. At the protein level, collagen synthesis-related markers Col-3, Matrix metalloproteinase-1 and Metallopeptidase Inhibitor 1(TIMP-1) were decreased at week 4 in aged rats compared with those of young rats. Though there was a decrease in the expression of the chondrogenic marker aggrecan at the protein level in aged tendon, the Micro-CT results from weeks 4 samples showed no significant difference(p>0.05) on the ectopic ossification between groups. Moreover, we found more adipocytes accumulated in the aged tendon defect with the Oil Red O staining and at the gene and protein levels the markers related to adipogenic differentiation. CONCLUSIONS Our findings indicate that tendon healing is impaired in aged rats and is characterized by a significantly lower histological score, decreased collagen synthesis and more adipocyte accumulation in patellar tendon after repair.
Collapse
|
11
|
Adipogenic differentiation was inhibited by downregulation of PPARγ signaling pathway in aging tendon stem/progenitor cells. J Orthop Surg Res 2021; 16:614. [PMID: 34663381 PMCID: PMC8522149 DOI: 10.1186/s13018-021-02720-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tendon stem/progenitor cells (TSPCs) play a vital role in tendon repair and regeneration. Previously we found more adipocytes accumulated in the patellar tendon injury sites in aging rats compared with the young ones, of which the mechanism is still unknown. Here, we want to identify whether erroneous differentiation of TSPCs by aging accounts for the adipocyte accumulation. METHODS TSPCs from young and aging rats were isolated and propagated. Both young and aging TSPCs were induced to differentiate into adipocytes, and Oil red O staining, quantitative real-time polymerase chain reaction (qRT-PCR), western-blot and immunofluorescent staining were used to evaluate the capability of TSPCs. RNA sequencing was utilized to screen out different genes and signaling pathways related to adipogenesis between young and aging TSPCs. RESULTS The Oil red O staining showed there were more adipocytes formed in young TSPCs. Besides, adipogenic markers perilipin, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins alpha (C/EBPα) and Fatty acid-binding protein 4 (FABP4) were elevated both at gene and protein level. PPARγ signaling pathway was selected as our target via RNA sequencing. After adding the signaling activators, Rosiglitazone maleate (RM), inhibited adipogenesis of aging TSCs was reversed. CONCLUSIONS In conclusion, aging inhibited adipogenesis of TSPCs by down-regulating PPARγ signaling. It is not likely that the adipocyte accumulation in aging tendon during repair was due to the aging of TSPCs. This may provide new targets for curing aging tendon injuries or tendinopathies.
Collapse
|
12
|
Holman ME, Chang G, Ghatas MP, Saha PK, Zhang X, Khan MR, Sima AP, Adler RA, Gorgey AS. Bone and non-contractile soft tissue changes following open kinetic chain resistance training and testosterone treatment in spinal cord injury: an exploratory study. Osteoporos Int 2021; 32:1321-1332. [PMID: 33443609 DOI: 10.1007/s00198-020-05778-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
UNLABELLED Twenty men with spinal cord injury (SCI) were randomized into two 16-week intervention groups receiving testosterone treatment (TT) or TT combined with resistance training (TT + RT). TT + RT appears to hold the potential to reverse or slow down bone loss following SCI if provided over a longer period. INTRODUCTION Persons with SCI experience bone loss below the level of injury. The combined effects of resistance training and TT on bone quality following SCI remain unknown. METHODS Men with SCI were randomized into 16-week treatments receiving TT or TT + RT. Magnetic resonance imaging (MRI) of the right lower extremity before participation and post-intervention was used to visualize the proximal, middle, and distal femoral shaft, the quadriceps tendon, and the intermuscular fascia of the quadriceps. For the TT + RT group, MRI microarchitecture techniques were utilized to elucidate trabecular changes around the knee. Individual mixed models were used to estimate effect sizes. RESULTS Twenty participants completed the pilot trial. A small effect for yellow marrow in the distal femur was indicated as increases following TT and decreases following TT + RT were observed. Another small effect was observed as the TT + RT group displayed greater increases in intermuscular fascia length than the TT arm. Distal femur trabecular changes for the TT + RT group were generally small in effect (decreased trabecular thickness variability, spacing, and spacing variability; increased network area). Medium effects were generally observed in the proximal tibia (increased plate width, trabecular thickness, and network area; decreased trabecular spacing and spacing variability). CONCLUSIONS This pilot suggests longer TT + RT interventions may be a viable rehabilitation technique to combat bone loss following SCI. CLINICAL TRIAL REGISTRATION Registered with clinicaltrials.gov : NCT01652040 (07/27/2012).
Collapse
Affiliation(s)
- M E Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - G Chang
- Department of Radiology, NYU School of Medicine, New York, NY, 10016, USA
| | - M P Ghatas
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - P K Saha
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - X Zhang
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - M R Khan
- Department of Radiology, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A P Sima
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - R A Adler
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA.
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
13
|
Epro G, König M, James D, Lambrianides Y, Werth J, Hunter S, Karamanidis K. Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters. J Biomech 2021; 120:110364. [PMID: 33743395 DOI: 10.1016/j.jbiomech.2021.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Differences in the adaptation processes between muscle and tendon in response to mechanical loading can lead to non-uniform mechanical properties within the muscle-tendon unit (MTU), potentially increasing injury risk. The current study analysed the mechanical properties of the triceps surae (TS) MTU in 10 young (YS; 22 ± 3 yrs) and 10 older (OS; age 65 ± 8 yrs; i.e. master) (inter)national level sprinters and 11 young recreationally active adults (YC; 23 ± 3 yrs) to detect possible non-uniformities in muscle and tendon adaptation due to habitual mechanical loading and ageing. Triceps surae muscle strength, tendon stiffness and maximal tendon strain were assessed in both legs during maximal voluntary isometric plantarflexion contractions via dynamometry and ultrasonography. Irrespective of the leg, OS and YC in comparison to YS demonstrated significantly (P < 0.05) lower TS muscle strength and tendon stiffness, with no differences between OS and YC. Furthermore, no group differences were detected in the maximal tendon strain (average of both legs: OS 3.7 ± 0.8%, YC 4.4 ± 0.8% and YS 4.3 ± 0.9%) as well as in the inter-limb symmetry indexes in muscle strength, tendon stiffness and maximal tendon strain (range across groups: -5.8 to 4.9%; negative value reflects higher value for the non-preferred leg). Thus, the findings provide no clear evidence for a disruption in the TS MTU uniformity in master sprinters, demonstrating that ageing tendons can maintain their integrity to meet the increased functional demand due to elite sports.
Collapse
Affiliation(s)
- G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom.
| | - M König
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - D James
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - Y Lambrianides
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - J Werth
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - S Hunter
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| |
Collapse
|
14
|
Misir A, Kizkapan TB, Arikan Y, Akbulut D, Onder M, Yildiz KI, Ozkocer SE. Repair within the first 48 h in the treatment of acute Achilles tendon ruptures achieves the best biomechanical and histological outcomes. Knee Surg Sports Traumatol Arthrosc 2020; 28:2788-2797. [PMID: 31119340 DOI: 10.1007/s00167-019-05536-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To compare the biomechanical and histological properties of Achilles tendons repaired at different time points during the acute injury period. METHODS Thirty-six skeletally mature Sprague-Dawley rats underwent bilateral mid-substance Achilles tenotomy. The Achilles tendons were repaired either in the first 24 h (group 1), 24-48 h (group 2), 48-72 h (group 3), or > 72 h (mean: 120 ± 5.2 h) (group 4) after tenotomy. Six weeks after repair, nine tendons per group were assessed biomechanically and histologically. The Stoll histological scoring system was used for histological examination. The groups were compared with each other and native tendons (control group). The correlations between biomechanical and histological results were analysed. RESULTS There were no significant differences between groups 1, 2 and 3 regarding the mean load to failure; it was significantly lower in group 4. Healed tendons in groups 1, 2 and 3 had significantly greater stiffness than native tendons and group 4 tendons. All healed tendons had a larger cross-sectional area than native tendons. There was no significant difference in tendon length between the groups. There was no significant difference in Young's modulus between the groups; Young's modulus was lower in all the groups than in the control group. Group 1 had significantly higher extracellular matrix organization, cell alignment, cell distribution and nucleus morphology scores and total scores than group 4. Group 1 had significantly higher extracellular matrix organization, cell distribution, vascularization and inflammation scores and total scores than group 3. A significant positive correlation was detected between the maximum load to failure and total histological score. CONCLUSION Repair of acute Achilles tendon rupture within 48 h, and especially in the first 24 h, provides better biomechanical and histological outcomes. In the clinical practice, the data could be used to decrease re-rupture rates, to achieve more anatomical tendon healing and to implement more effective post-operative rehabilitation programme.
Collapse
Affiliation(s)
- Abdulhamit Misir
- Department of Orthopedics and Traumatology, Sanliurfa Training and Research Hospital, Akpıyar Mah. 4061. Sk. Yaşamkent Park evleri no:29 B blok d:21 Karaköprü, Şanlıurfa, Turkey.
| | - Turan Bilge Kizkapan
- Department of Orthopedics and Traumatology, Bursa Cekirge State Hospital, Bursa, Turkey
| | - Yavuz Arikan
- Department of Orthopedics and Traumatology, Baltalimani Bone and Joint Diseases Training and Research Hospital, Istanbul, Turkey
| | - Deniz Akbulut
- Department of Orthopedics and Traumatology, Bitlis Tatvan State Hospital, Bitlis, Turkey
| | - Murat Onder
- Department of Orthopedics and Traumatology, Baltalimani Bone and Joint Diseases Training and Research Hospital, Istanbul, Turkey
| | - Kadir Ilker Yildiz
- Department of Orthopedics and Traumatology, Baltalimani Bone and Joint Diseases Training and Research Hospital, Istanbul, Turkey
| | - Suheyla Esra Ozkocer
- Gazi University Faculty of Medicine Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
15
|
Myotendinous junction adaptations to ladder-based resistance training: identification of a new telocyte niche. Sci Rep 2020; 10:14124. [PMID: 32839490 PMCID: PMC7445244 DOI: 10.1038/s41598-020-70971-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
The present study shows chronic adjustments in the myotendinous junction (MTJ) in response to different ladder-based resistance training (LRT) protocols. Thirty adult male Wistar rats were divided into groups: sedentary (S), calisthenics (LRT without additional load [C]), and resistance-trained (LRT with extra weight [R]). We demonstrated longer lengths of sarcoplasmatic invaginations in the trained groups; however, evaginations were seen mainly in group R. We showed a greater thickness of sarcoplasmatic invaginations in groups C and R, in addition to greater evaginations in R. We also observed thinner basal lamina in trained groups. The support collagen layer (SCL) adjacent to the MTJ and the diameters of the transverse fibrils were larger in R. We also discovered a niche of telocytes in the MTJ with electron micrographs of the plantar muscle and with immunostaining with CD34+ in the gastrocnemius muscle near the blood vessels and pericytes. We concluded that the continuous adjustments in the MTJ ultrastructure were the result of tissue plasticity induced by LRT, which is causally related to muscle hypertrophy and, consequently, to the remodeling of the contact interface. Also, we reveal the existence of a collagen layer adjacent to MTJ and discover a new micro anatomic location of telocytes.
Collapse
|
16
|
de Sousa Neto IV, Tibana RA, da Silva LGDO, de Lira EM, do Prado GPG, de Almeida JA, Franco OL, Durigan JLQ, Adesida AB, de Sousa MV, Ricart CAO, Damascena HL, Castro MS, Fontes W, Prestes J, Marqueti RDC. Paternal Resistance Training Modulates Calcaneal Tendon Proteome in the Offspring Exposed to High-Fat Diet. Front Cell Dev Biol 2020; 8:380. [PMID: 32656202 PMCID: PMC7325979 DOI: 10.3389/fcell.2020.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
The increase in high-energy dietary intakes is a well-known risk factor for many diseases, and can also negatively impact the tendon. Ancestral lifestyle can mitigate the metabolic harmful effects of offspring exposed to high-fat diet (HF). However, the influence of paternal exercise on molecular pathways associated to offspring tendon remodeling remains to be determined. We investigated the effects of 8 weeks of paternal resistance training (RT) on offspring tendon proteome exposed to standard diet or HF diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, three times per week, with 8–12 dynamic movements per climb in a stair climbing apparatus). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (five animals per group): offspring from sedentary fathers were exposed either to control diet (SFO-C), or to high-fat diet (SFO-HF); offspring from trained fathers were exposed to control diet (TFO-C) or to a high-fat diet (TFO-HF). The Nano-LC-MS/MS analysis revealed 383 regulated proteins among offspring groups. HF diet induced a decrease of abundance in tendon proteins related to extracellular matrix organization, transport, immune response and translation. On the other hand, the changes in the offspring tendon proteome in response to paternal RT were more pronounced when the offspring were exposed to HF diet, resulting in positive regulation of proteins essential for the maintenance of tendon integrity. Most of the modulated proteins are associated to biological pathways related to tendon protection and damage recovery, such as extracellular matrix organization and transport. The present study demonstrated that the father’s lifestyle could be crucial for tendon homeostasis in the first generation. Our results provide important insights into the molecular mechanisms involved in paternal intergenerational effects and potential protective outcomes of paternal RT.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Ramires Alsamir Tibana
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil.,Graduate Program in Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | | | - Eliene Martins de Lira
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Gleyce Pires Gonçalves do Prado
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Jeeser Alves de Almeida
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil.,Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Octavio Luiz Franco
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Universidade Católicade Brasília, Distrito Federal, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Adetola B Adesida
- University of Alberta, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, AB, Canada
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Hylane Luiz Damascena
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|