1
|
Dixon S, O'connor AT, Brooks-Noreiga C, Clark MA, Levy A, Castejon AM. Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review. Cancer Chemother Pharmacol 2024; 94:1-23. [PMID: 38914751 DOI: 10.1007/s00280-024-04686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
Collapse
Affiliation(s)
- Sashana Dixon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| | - Ann Tenneil O'connor
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Chloe Brooks-Noreiga
- Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Michelle A Clark
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ana M Castejon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| |
Collapse
|
2
|
Chen J, Zhao H, Liu M, Chen L. A new perspective on the autophagic and non-autophagic functions of the GABARAP protein family: a potential therapeutic target for human diseases. Mol Cell Biochem 2024; 479:1415-1441. [PMID: 37440122 DOI: 10.1007/s11010-023-04800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Mammalian autophagy-related protein Atg8, including the LC3 subfamily and GABARAP subfamily. Atg8 proteins play a vital role in autophagy initiation, autophagosome formation and transport, and autophagy-lysosome fusion. GABARAP subfamily proteins (GABARAPs) share a high degree of homology with LC3 family proteins, and their unique roles are often overlooked. GABARAPs are as indispensable as LC3 in autophagy. Deletion of GABARAPs fails autophagy flux induction and autophagy lysosomal fusion, which leads to the failure of autophagy. GABARAPs are also involved in the transport of selective autophagy receptors. They are engaged in various particular autophagy processes, including mitochondrial autophagy, endoplasmic reticulum autophagy, Golgi autophagy, centrosome autophagy, and dorphagy. Furthermore, GABARAPs are closely related to the transport and delivery of the inhibitory neurotransmitter γ-GABAA and the angiotensin II AT1 receptor (AT1R), tumor growth, metastasis, and prognosis. GABARAPs also have been confirmed to be involved in various diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. In order to better understand the role and therapeutic potential of GABARAPs, this article comprehensively reviews the autophagic and non-autophagic functions of GABARAPs, as well as the research progress of the role and mechanism of GABARAPs in cancer, cardiovascular diseases and neurodegenerative diseases. It emphasizes the significance of GABARAPs in the clinical prevention and treatment of diseases, and may provide new therapeutic ideas and targets for human diseases. GABARAP and GABARAPL1 in the serum of cancer patients are positively correlated with the prognosis of patients, which can be used as a clinical biomarker, predictor and potential therapeutic target.
Collapse
Affiliation(s)
- Jiawei Chen
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong Zhao
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meiqing Liu
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
4
|
Naja K, Anwardeen N, Al-Hariri M, Al Thani AA, Elrayess MA. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023; 11:2164. [PMID: 37626661 PMCID: PMC10452592 DOI: 10.3390/biomedicines11082164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple beneficial effects and widespread use, there is considerable inter-individual variability in response to metformin. Our objective is to identify metabolic signatures associated with poor and good responses to metformin, which may improve our ability to predict outcomes for metformin treatment. In this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according to their HbA1C levels into good and poor responders. Differences in the level of metabolites between these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines, and glutathione metabolites. On the other hand, poor responders showed increased levels of metabolites resulting from glucose metabolism and gut microbiota metabolites. The results of this study have the potential to increase our knowledge of patient response variability to metformin and carry significant implications for enabling personalized medicine.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
5
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Wu XY, Xu WW, Huan XK, Wu GN, Li G, Zhou YH, Najafi M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol Cell Biochem 2023; 478:197-214. [PMID: 35771397 DOI: 10.1007/s11010-022-04502-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China
| | - Xiang-Kun Huan
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yu-Hong Zhou
- Digestive Endoscopy Center, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Li L, Huang J, Huang T, Yao J, Zhang Y, Chen M, Shentu H, Lou H. Effect of Metformin on the Prognosis of Gastric Cancer Patients with Type 2 Diabetes Mellitus: A Meta-Analysis Based on Retrospective Cohort Studies. Int J Endocrinol 2023; 2023:5892731. [PMID: 36915376 PMCID: PMC10008112 DOI: 10.1155/2023/5892731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Metformin is one of the most common drugs for type 2 diabetes mellitus (T2DM) treatment. In addition, metformin intends to have a positive effect on the prognosis of several cancers. However, the therapeutic effect of metformin on gastric cancer (GC) remains controversial. This study explores and updates the therapeutic effect of metformin in GC patients with T2DM. METHODS We searched through PubMed, Embase, Web of Science, and the Cochrane Library for relevant articles by July 2022. The relationship between metformin therapy and the prognosis of GC patients with T2DM was evaluated based on the hazard ratio (HR) at a 95% confidence interval (95% CI). Overall survival (OS), cancer-specific survival (CSS), and progression-free survival (PFS) were the primary outcomes analyzed. RESULTS Seven retrospective cohort studies with a combined 2,858 patients met the inclusion criteria. OS and CSS were reported in six studies, and PFS was reported in four studies. Pooled results showed that, compared to the nonmetformin group, the prolonged OS (HR = 0.72, p = 0.001), CSS (HR = 0.81, p = 0.001), and PFS (HR = 0.70, p = 0.008) of the experimental group may be associated with the exposure to metformin. CONCLUSION Metformin may have a beneficial effect on the prognosis of GC patients with T2DM.
Collapse
Affiliation(s)
- Lingna Li
- Pharmacy Department, The Affiliated Hospital of Ningbo University, Li Huili Hospital, Ningbo, China
| | - Jianing Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tongmin Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jie Yao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yeyuan Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Meiling Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haojie Shentu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiying Lou
- Department of Endocrinology, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
8
|
Metformin Mitigated Obesity-Driven Cancer Aggressiveness in Tumor-Bearing Mice. Int J Mol Sci 2022; 23:ijms23169134. [PMID: 36012397 PMCID: PMC9408975 DOI: 10.3390/ijms23169134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Metformin may offer benefits to certain cancer populations experiencing metabolic abnormalities. To extend the anticancer studies of metformin, a tumor model was established through the implantation of murine Lewis Lung Carcinoma (LLC) cells to Normal Diet (ND)-fed and High-Fat Diet (HFD)-fed C57BL/6 mice. The HFD-fed mice displayed metabolic and pro-inflammatory alterations together with accompanying aggressive tumor growth. Metformin mitigated tumor growth in HFD-fed mice, paralleled by reductions in circulating glucose, insulin, soluble P-selectin, TGF-β1 and High Mobility Group Box-1 (HMGB1), as well as tumor expression of cell proliferation, aerobic glycolysis, glutaminolysis, platelets and neutrophils molecules. The suppressive effects of metformin on cell proliferation, migration and oncogenic signaling molecules were confirmed in cell study. Moreover, tumor-bearing HFD-fed mice had higher contents of circulating and tumor immunopositivity of Neutrophil Extracellular Traps (NETs)-associated molecules, with a suppressive effect from metformin. Data taken from neutrophil studies confirmed the inhibitory effect that metformin has on NET formation induced by HMGB1. Furthermore, HMGB1 was identified as a promoting molecule to boost the transition process towards NETs. The current study shows that metabolic, pro-inflammatory and NET alterations appear to play roles in the obesity-driven aggressiveness of cancer, while also representing candidate targets for anticancer potential of metformin.
Collapse
|
9
|
Martinelli S, Amore F, Mello T, Mannelli M, Maggi M, Rapizzi E. Metformin Treatment Induces Different Response in Pheochromocytoma/Paraganglioma Tumour Cells and in Primary Fibroblasts. Cancers (Basel) 2022; 14:cancers14143471. [PMID: 35884532 PMCID: PMC9320533 DOI: 10.3390/cancers14143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours and are often non-metastatic. However, no effective treatment is available for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available concerning whether metformin is also able to inhibit PPGL metastatic spread. A tumour is a very complex system, comprising not only cancer cells, but also other cells that all together form the so-called tumour microenvironment. Cancer-associated fibroblasts are residential or recruited fibroblasts, transformed by cancer cells, to promote tumour growth and spread. Therefore, the interplay between tumour cells and cancer-associated fibroblasts has become an interesting target for cancer therapy. Here, we demonstrate that metformin has different effects on cancer cells and fibroblasts, providing evidence that metformin may hold promise for altering tumour microenvironment homeostasis. Improving our knowledge on malignant tumour microenvironment properties could lead to develop complementary strategies to target tumour spread and progression. Abstract Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours, often non-metastatic, but without available effective treatment for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available on the role of metformin on PPGL cells (two-dimension, 2D) and spheroids (three-dimension, 3D) migration/invasion. In this study, we observed that metformin exerts an antiproliferative effect on 2D and 3D cultures of pheochromocytoma mouse tumour tissue (MTT), either silenced or not for the SDHB subunit. However, metformin did not affect MTT migration. On the other hand, metformin did not have a short-term effect on the proliferation of mouse primary fibroblasts, but significantly decreased their ability to migrate. Although the metabolic changes induced by metformin were similar between MTT and fibroblasts (i.e., an overall decrease of ATP production and an increase in intracellular lactate concentration) the activated signalling pathways were different. Indeed, after metformin administration, MTT showed a reduced phosphorylation of Akt and Erk1/2, while fibroblasts exhibited a downregulation of N-Cadherin and an upregulation of E-Cadherin. Herein, we demonstrated that metformin has different effects on cell growth and spread depending on the cell type nature, underlining the importance of the tumour microenvironment in dictating the drug response.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2758245
| |
Collapse
|
10
|
Sharma S, Agnihotri N, Kumar S. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochem Pharmacol 2022; 198:114943. [DOI: 10.1016/j.bcp.2022.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
|
11
|
Halama A, Suhre K. Advancing Cancer Treatment by Targeting Glutamine Metabolism-A Roadmap. Cancers (Basel) 2022; 14:553. [PMID: 35158820 PMCID: PMC8833671 DOI: 10.3390/cancers14030553] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Tumor growth and metastasis strongly depend on adapted cell metabolism. Cancer cells adjust their metabolic program to their specific energy needs and in response to an often challenging tumor microenvironment. Glutamine metabolism is one of the metabolic pathways that can be successfully targeted in cancer treatment. The dependence of many hematological and solid tumors on glutamine is associated with mitochondrial glutaminase (GLS) activity that enables channeling of glutamine into the tricarboxylic acid (TCA) cycle, generation of ATP and NADPH, and regulation of glutathione homeostasis and reactive oxygen species (ROS). Small molecules that target glutamine metabolism through inhibition of GLS therefore simultaneously limit energy availability and increase oxidative stress. However, some cancers can reprogram their metabolism to evade this metabolic trap. Therefore, the effectiveness of treatment strategies that rely solely on glutamine inhibition is limited. In this review, we discuss the metabolic and molecular pathways that are linked to dysregulated glutamine metabolism in multiple cancer types. We further summarize and review current clinical trials of glutaminolysis inhibition in cancer patients. Finally, we put into perspective strategies that deploy a combined treatment targeting glutamine metabolism along with other molecular or metabolic pathways and discuss their potential for clinical applications.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| |
Collapse
|
12
|
Liu S, Washio J, Sato S, Abiko Y, Shinohara Y, Kobayashi Y, Otani H, Sasaki S, Wang X, Takahashi N. Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions. Int J Mol Sci 2022; 23:ijms23020989. [PMID: 35055173 PMCID: PMC8781974 DOI: 10.3390/ijms23020989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a metabolic disruptor, and its efficacy and effects on metabolic profiles under different oxygen and nutrient conditions remain unclear. Therefore, the present study examined the effects of metformin on cell growth, the metabolic activities and consumption of glucose, glutamine, and pyruvate, and the intracellular ratio of nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) under normoxic (21% O2) and hypoxic (1% O2) conditions. The efficacy of metformin with nutrient removal from culture media was also investigated. The results obtained show that the efficacy of metformin was closely associated with cell types and environmental factors. Acute exposure to metformin had no effect on lactate production from glucose, glutamine, or pyruvate, whereas long-term exposure to metformin increased the consumption of glucose and pyruvate and the production of lactate in the culture media of HeLa and HaCaT cells as well as the metabolic activity of glucose. The NAD+/NADH ratio decreased during growth with metformin regardless of its efficacy. Furthermore, the inhibitory effects of metformin were enhanced in all cell lines following the removal of glucose or pyruvate from culture media. Collectively, the present results reveal that metformin efficacy may be regulated by oxygen conditions and nutrient availability, and indicate the potential of the metabolic switch induced by metformin as combinational therapy.
Collapse
Affiliation(s)
- Shan Liu
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Correspondence: ; Tel.: +81-22-717-8295
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuta Shinohara
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuri Kobayashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Haruki Otani
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Shiori Sasaki
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| |
Collapse
|
13
|
Ganzleben I, Neurath MF, Becker C. Autophagy in Cancer Therapy-Molecular Mechanisms and Current Clinical Advances. Cancers (Basel) 2021; 13:cancers13215575. [PMID: 34771737 PMCID: PMC8583685 DOI: 10.3390/cancers13215575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy is the capability of cells to dismantle and recycle parts of themselves. This process is closely intertwined with other crucial cell functions, such as growth and control of metabolism. Autophagy is oftentimes dysregulated in cancer and offers established and advanced tumors protection against a lack of nutrients and an advantage regarding proliferation. This review will present an overview of the basics of human autophagy, its dysregulation in cancer, and approaches to target autophagy in cancer treatment in recent and current clinical trials as well as new findings of preclinical research. Abstract Autophagy is a crucial general survival tactic of mammalian cells. It describes the capability of cells to disassemble and partially recycle cellular components (e.g., mitochondria) in case they are damaged and pose a risk to cell survival or simply if their resources are urgently needed elsewhere at the time. Autophagy-associated pathomechanisms have been increasingly recognized as important disease mechanisms in non-malignant (neurodegeneration, diffuse parenchymal lung disease) and malignant conditions alike. However, the overall consequences of autophagy for the organism depend particularly on the greater context in which autophagy occurs, such as the cell type or whether the cell is proliferating. In cancer, autophagy sustains cancer cell survival under challenging, i.e., resource-depleted, conditions. However, this leads to situations in which cancer cells are completely dependent on autophagy. Accordingly, autophagy represents a promising yet complex target in cancer treatment with therapeutically induced increase and decrease of autophagic flux as important therapeutic principles.
Collapse
Affiliation(s)
- Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
14
|
Repas J, Zügner E, Gole B, Bizjak M, Potočnik U, Magnes C, Pavlin M. Metabolic profiling of attached and detached metformin and 2-deoxy-D-glucose treated breast cancer cells reveals adaptive changes in metabolome of detached cells. Sci Rep 2021; 11:21354. [PMID: 34725457 PMCID: PMC8560930 DOI: 10.1038/s41598-021-98642-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Anchorage-independent growth of cancer cells in vitro is correlated to metastasis formation in vivo. Metformin use is associated with decreased breast cancer incidence and currently evaluated in cancer clinical trials. The combined treatment with metformin and 2-deoxy-D-glucose (2DG) in vitro induces detachment of viable MDA-MB-231 breast cancer cells that retain their proliferation capacity. This might be important for cell detachment from primary tumors, but the metabolic changes involved are unknown. We performed LC/MS metabolic profiling on separated attached and detached MDA-MB-231 cells treated with metformin and/or 2DG. High 2DG and metformin plus 2DG altered the metabolic profile similarly to metformin, inferring that metabolic changes are necessary but not sufficient while the specific effects of 2DG are crucial for detachment. Detached cells had higher NADPH levels and lower fatty acids and glutamine levels compared to attached cells, supporting the role of AMPK activation and reductive carboxylation in supporting anchorage-independent survival. Surprisingly, the metabolic profile of detached cells was closer to untreated control cells than attached treated cells, suggesting detachment might help cells adapt to energy stress. Metformin treated cells had higher fatty and amino acid levels with lower purine nucleotide levels, which is relevant for understanding the anticancer mechanisms of metformin.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Elmar Zügner
- Joanneum Research Health - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Boris Gole
- Center for Human Molecular Genetics and Pharmacogenomics, Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Maruša Bizjak
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Pharmacy Institute, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Medical Faculty, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Christoph Magnes
- Joanneum Research Health - Institute for Biomedicine and Health Sciences, Graz, Austria.
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, Skvortsov S, Negro G, Aschenbrenner B, Skvortsova II, Mirtschink P, Lohaus F, Hölscher T, Neubauer H, Rivandi M, Labitzky V, Lange T, Franken A, Behrens B, Stoecklein NH, Toma M, Sommer U, Zschaeck S, Rehm M, Eisenhofer G, Schwager C, Abdollahi A, Groeben C, Kunz-Schughart LA, Baretton GB, Baumann M, Krause M, Peitzsch C, Dubrovska A. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics 2021; 11:7844-7868. [PMID: 34335968 PMCID: PMC8315064 DOI: 10.7150/thno.58655] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.
Collapse
Affiliation(s)
- Anna Mukha
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Uğur Kahya
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Oleg Chen
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Cell Signaling, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tiago C Alves
- Department for Clinical Pathobiochemistry, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vladyslav Telychko
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Giulia Negro
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Bertram Aschenbrenner
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Fabian Lohaus
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Bianca Behrens
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikolas H Stoecklein
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marieta Toma
- Institute of Pathology, University of Bonn, Bonn, Germany
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Maximilian Rehm
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Christer Groeben
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| |
Collapse
|
16
|
Aleidi SM, Dahabiyeh LA, Gu X, Al Dubayee M, Alshahrani A, Benabdelkamel H, Mujammami M, Li L, Aljada A, Abdel Rahman AM. Obesity Connected Metabolic Changes in Type 2 Diabetic Patients Treated With Metformin. Front Pharmacol 2021; 11:616157. [PMID: 33664666 PMCID: PMC7921791 DOI: 10.3389/fphar.2020.616157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Metformin is widely used in the treatment of Type 2 Diabetes Mellitus (T2DM). However, it is known to have beneficial effects in many other conditions, including obesity and cancer. In this study, we aimed to investigate the metabolic effect of metformin in T2DM and its impact on obesity. A mass spectrometry (MS)-based metabolomics approach was used to analyze samples from two cohorts, including healthy lean and obese control, and lean as well as obese T2DM patients on metformin regimen in the last 6 months. The results show a clear group separation and sample clustering between the study groups due to both T2DM and metformin administration. Seventy-one metabolites were dysregulated in diabetic obese patients (30 up-regulated and 41 down-regulated), and their levels were unchanged with metformin administration. However, 30 metabolites were dysregulated (21 were up-regulated and 9 were down-regulated) and then restored to obese control levels by metformin administration in obese diabetic patients. Furthermore, in obese diabetic patients, the level of 10 metabolites was dysregulated only after metformin administration. Most of these dysregulated metabolites were dipeptides, aliphatic amino acids, nucleic acid derivatives, and urea cycle components. The metabolic pattern of 62 metabolites was persistent, and their levels were affected by neither T2DM nor metformin in obesity. Interestingly, 9 metabolites were significantly dysregulated between lean and obese cohorts due to T2DM and metformin regardless of the obesity status. These include arginine, citrulline, guanidoacetic acid, proline, alanine, taurine, 5-hydroxyindoleacetic acid, and 5-hydroxymethyluracil. Understanding the metabolic alterations taking place upon metformin treatment would shed light on possible molecular targets of metformin, especially in conditions like T2DM and obesity.
Collapse
Affiliation(s)
- Shereen M Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia.,Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. J Cell Physiol 2021; 236:5512-5532. [PMID: 33580511 DOI: 10.1002/jcp.30276] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/05/2022]
Abstract
In cancerous cells, significant changes occur in the activity of signaling pathways affecting a wide range of cellular activities ranging from growth and proliferation to apoptosis, invasiveness, and metastasis. Extensive changes also happen with respect to the metabolism of a cancerous cell encompassing a wide range of functions that include: nutrient acquisition, biosynthesis of macromolecules, and energy generation. These changes are important and some therapeutic approaches for treating cancers have focused on targeting the metabolism of cancerous cells. Oncogenes and tumor suppressor genes have a significant effect on the metabolism of cells. There appears to be a close interaction between metabolism and the signaling pathways in a cancerous cell, in which the interaction provides the metabolic needs of a cancerous cell for uncontrolled proliferation, resistance to apoptosis, and metastasis. In this review, we have reviewed the latest findings in this regard and briefly review the most recent research findings regarding targeting the metabolism of cancer cells as a therapeutic approach for treatment of cancer.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, UK
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Sabahi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
El-Rashid M, Nguyen-Ngo D, Minhas N, Meijles DN, Li J, Ghimire K, Julovi S, Rogers NM. Repurposing of metformin and colchicine reveals differential modulation of acute and chronic kidney injury. Sci Rep 2020; 10:21968. [PMID: 33319836 PMCID: PMC7738483 DOI: 10.1038/s41598-020-78936-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a major health problem affecting millions of patients globally. There is no effective treatment for AKI and new therapies are urgently needed. Novel drug development, testing and progression to clinical trials is overwhelmingly expensive. Drug repurposing is a more cost-effective measure. We identified 2 commonly used drugs (colchicine and metformin) that alter inflammatory cell function and signalling pathways characteristic of AKI, and tested them in models of acute and chronic kidney injury to assess therapeutic benefit. We assessed the renoprotective effects of colchicine or metformin in C57BL/6 mice challenged with renal ischemia reperfusion injury (IRI), treated before or after injury. All animals underwent analysis of renal function and biomolecular phenotyping at 24 h, 48 h and 4 weeks after injury. Murine renal tubular epithelial cells were studied in response to in vitro mimics of IRI. Pre-emptive treatment with colchicine or metformin protected against AKI, with lower serum creatinine, improved histological changes and decreased TUNEL staining. Pro-inflammatory cytokine profile and multiple markers of oxidative stress were not substantially different between groups. Metformin augmented expression of multiple autophagic proteins which was reversed by the addition of hydroxychloroquine. Colchicine led to an increase in inflammatory cells within the renal parenchyma. Chronic exposure after acute injury to either therapeutic agent in the context of reduced renal mass did not mitigate the development of fibrosis, with colchicine significantly worsening an ischemic phenotype. These data indicate that colchicine and metformin affect acute and chronic kidney injury differently. This has significant implications for potential drug repurposing, as baseline renal disease must be considered when selecting medication.
Collapse
Affiliation(s)
- Maryam El-Rashid
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Danny Nguyen-Ngo
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia. .,Westmead Clinical Medical School, University of Sydney, Camperdown, NSW, Australia. .,Renal Division, Westmead Hospital, Sydney, NSW, Australia. .,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
20
|
Gąsiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pękala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs 2020; 39:538-563. [PMID: 33159673 PMCID: PMC7960624 DOI: 10.1007/s10637-020-01032-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Although cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
Collapse
Affiliation(s)
- Bartosz Mateusz Gąsiorkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
21
|
Liang Y, Tian R, Wang J, Shan Y, Gao H, Xie C, Li J, Zhang L, Xu M, Gu S. Melanotic neuroectodermal tumor of infancy successfully treated with metformin: A case report. Medicine (Baltimore) 2020; 99:e22303. [PMID: 33157911 PMCID: PMC7647562 DOI: 10.1097/md.0000000000022303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Melanotic neuroectodermal tumor of infancy (MNTI) is a rare tumor originated from neural crest cells with the potential for recurrence and metastasis. The peak age for the disease is during the first year after birth. The current therapy is primarily surgery. The patient reported here is the first case of MNTI treated with metformin. PATIENT CONCERNS A case of a 4-month-old infant with a history of swelling in the mouth for 1 month. DIAGNOSIS The tumor was diagnosed using radiology, pathology, and immunohistochemistry, and it was performed with complete surgical resection. Unfortunately, the tumor recurred 3 months after surgery. INTERVENTIONS We prescribed metformin for the infant. OUTCOMES Currently, after 9 months of treatment, the tumor is well controlled without apparent side effects. LESSONS The case presented suggested that metformin may be an underlying therapy for MNTI.
Collapse
|
22
|
Soraya H, Sani NA, Jabbari N, Rezaie J. Metformin Increases Exosome Biogenesis and Secretion in U87 MG Human Glioblastoma Cells: A Possible Mechanism of Therapeutic Resistance. Arch Med Res 2020; 52:151-162. [PMID: 33059952 DOI: 10.1016/j.arcmed.2020.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor. Metformin, an anti-diabetic drug, can suppress tumor cells. Exosomes from GBM cells contribute to intercellular communication, tumor aggressiveness, and therapeutic resistance. We studied the effect of metformin on the exosomal secretory pathway in U87 MG cells. METHODS Cell survival against metformin was investigated using MTT assay. Expression of miRNA-21, miRNA-155, and miRNA-182, as well as the genes involved in exosome biogenesis and secretion such as Rab27a, Rab27b, Rab11, CD63, and Alix were calculated by real time-PCR. The expression of CD63 protein was analyzed by western blotting, while the subcellular distribution of CD63 protein was monitored by flow cytometry. Exosomes were characterized by transmission and scanning electron microscopes, and flow cytometry. Amount of exosomes was assayed using acetylcholinesterase activity assay and ELISA. The expression of autophagic markers LC3 and P62 were assessed using ELISA. RESULTS Data showed that metformin decreased cell survival and expression of miRNA-21, miRNA-155, and miRNA-182 (p <0.05). Expression of Rab27a, Rab27b, Rab11, CD63, and Alix as well as protein level of CD63 up-regulated in treated cells (p <0.05). Concurrently, flow cytometry analysis showed that surface CD63/total CD63 ratio was increased in treated cells (p <0.05). We found that acetylcholinesterase activity and CD63 protein of exosomes from treated cells increased (p <0.05). The expression of LC3 and P62 was not affected by metformin (p >0.05). CONCLUSION Data indicates metformin could promote exosome biogenesis and secretion in U87 MG cells, proposing the therapeutic response against metformin.
Collapse
Affiliation(s)
- Hamid Soraya
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Neda Abbaspour Sani
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Nassrollah Jabbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Medical Physics and Imaging, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
23
|
Gong Y, Wang C, Jiang Y, Zhang S, Feng S, Fu Y, Luo Y. Metformin Inhibits Tumor Metastasis through Suppressing Hsp90α Secretion in an AMPKα1-PKCγ Dependent Manner. Cells 2020; 9:cells9010144. [PMID: 31936169 PMCID: PMC7016760 DOI: 10.3390/cells9010144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin has been documented in epidemiological studies to mitigate tumor progression. Previous reports show that metformin inhibits tumor migration in several cell lines, such as MCF-7 and H1299, but the mechanisms whereby metformin exerts its inhibitory effects on tumor metastasis remain largely unknown. The secreted proteins in cancer cell-derived secretome have been reported to play important roles in tumor metastasis, but whether metformin has an effect on tumor secretome remains unclear. Here we show that metformin inhibits tumor metastasis by suppressing Hsp90α (heat shock protein 90α) secretion. Mass spectrometry (MS) analysis and functional validation identify that eHsp90α (extracellular Hsp90α) is one of the most important secreted proteins for metformin to inhibit tumor cells migration, invasion and metastasis both in vitro and in vivo. Moreover, we find that metformin inhibits Hsp90α secretion in an AMPKα1 dependent manner. Our data elucidate that AMPKα1 (AMP-activated protein kinase α1) decreases the phosphorylation level of Hsp90α by inhibiting the kinase activity of PKCγ (protein kinase Cγ), which suppresses the membrane translocation and secretion of Hsp90α. Collectively, our results illuminate that metformin inhibits tumor metastasis by suppressing Hsp90α secretion in an AMPKα1 dependent manner.
Collapse
Affiliation(s)
- Yuanchao Gong
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Jiang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shaosen Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Correspondence: ; Tel.: +86-10-6277-2897; Fax: +86-10-6279-4691
| |
Collapse
|
24
|
Crocker CL, Baumgarner BL, Kinsey ST. β-guanidinopropionic acid and metformin differentially impact autophagy, mitochondria and cellular morphology in developing C2C12 muscle cells. J Muscle Res Cell Motil 2019; 41:221-237. [PMID: 31836952 DOI: 10.1007/s10974-019-09568-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
The serine/threonine kinase AMP-activated protein kinase (AMPK) is a drug target for the treatment of obesity and type 2 diabetes (T2D). Metformin, a widely prescribed anti-hyperglycemic agent, and β-guanidinopropionic acid (β-GPA), a dietary supplement and creatine analog, have been shown to increase activity of AMPK. Macroautophagy is an intracellular degradation pathway for aggregated proteins and dysfunctional organelles, which can be mediated by AMPK. The present study sought to elucidate how metformin and β-GPA affect cell morphology, AMPK activity, autophagy and mitochondrial morphology and function in developing C2C12 myotubes. β-GPA reduced myotube diameter and increased length throughout differentiation, while metformin increased myotube diameter only at the 48 h time point. β-GPA treatment enhanced AMPK signaling and expression of autophagy-related proteins. β-GPA treatment also increased the density of autophagosomes, autolysosomes, and lysosomes. Metformin also increased activation of AMPK after 48 h, but in contrast to β-GPA, led to a dramatic reduction in the density of autophagosomes and lysosomes. Both metformin and β-GPA reduced the mitochondrial oxygen consumption rate, and differentially altered mitochondrial morphology. Obesity and T2D have been shown to increase mitochondrial dysfunction and reduce autophagic flux in skeletal muscle cells. Therefore, β-GPA may help to alleviate the effects of metabolic disease by increasing autophagic flux in skeletal muscle cells. In contrast, the reduction of autophagy by metformin may lead to dysregulation of mitochondrial maintenance, as well as muscle development.
Collapse
Affiliation(s)
- Chelsea L Crocker
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Bradley L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA
| | - Stephen T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA.
| |
Collapse
|
25
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Advances in Autophagy, Tissue Injury, and Homeostasis: Cells Special Issue. Cells 2019; 8:cells8070743. [PMID: 31330980 PMCID: PMC6679422 DOI: 10.3390/cells8070743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
|