1
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024; 69:3978-3999. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Patel S, Khan MB, Kumar S, Vyavahare S, Mendhe B, Lee TJ, Cai J, Isales CM, Liu Y, Hess DC, Fulzele S. The impact of ischemic stroke on bone marrow microenvironment and extracellular vesicles: A study on inflammatory and molecular changes. Exp Neurol 2024; 379:114867. [PMID: 38914274 DOI: 10.1016/j.expneurol.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
An ischemic stroke (IS) is caused due to the lack of blood flow to cerebral tissue. Most of the studies have focused on how stroke affects the localized tissue, but it has been observed that a stroke can cause secondary complications in distant organs, such as Bone Marrow (BM). Our study focused on the effect of ischemic strokes on the bone marrow microenvironment. Bone marrow (BM) is a vital organ that maintains inflammatory homeostasis and aids in the repair of damaged tissue after injury/IS. We used the middle cerebral artery occlusion (MCAO) model of ischemic stroke on adult mice (6 months) and investigated the changes in the BM environment. BM cells were used for western blot and RT-PCR, and the BM supernatant was used for cytokine analysis and extracellular vesicle (EVs) isolation. We observed a significant increase in the total cell number within the BM and an increase in TNF-alpha and MCP-1, which are known for inducing a pro-inflammatory environment. Western blots analysis on the whole BM cell lysate demonstrated elevated levels of inflammatory factors (IL-6, TNF-alpha, and TLR-4) and senescence markers (p21 p16). EVs isolated from the BM supernatant showed no change in size or concentration; however, we found that the EVs carried increased miRNA-141-3p and miRNA-34a. Proteomic analysis on BM-derived EVs showed an alteration in the protein cargo of IS. We observed an increase in FgB, C3, Fn1, and Tra2b levels. The signaling pathway analysis showed mitochondrial function is most affected within the bone marrow. Our study demonstrated that IS induces changes in the BM environment and EVs secreted in the BM.
Collapse
Affiliation(s)
- Sagar Patel
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Augusta University, Augusta, GA, 30912, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Bharati Mendhe
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Zhang C, Li Q, Ye Z, Wang X, Zhao H, Wang Y, Zheng X. Mechanism of Circ_HECW2 regulating osteoblast apoptosis in osteoporosis by attenuating the maturation of miR-1224-5p. J Orthop Surg Res 2024; 19:40. [PMID: 38183099 PMCID: PMC10770914 DOI: 10.1186/s13018-023-04494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) poses a significant clinical challenge with escalating morbidity. This study explores Circ_HECW2 expression in OP patients and its regulatory role in lipopolysaccharide (LPS)-induced osteoblast apoptosis. METHODS Circ_HECW2 expression in OP patient serum and healthy controls was quantified using RT-qPCR. Diagnostic value of Circ_HECW2 for OP was assessed via ROC curve. Pearson's correlation model examined associations between indicators. Human osteoblasts HFOB1.19, treated with LPS, were analyzed for Circ_HECW2, pre-miR-1224, miR-1224-5p, and PDK2 mRNA levels. TUNEL assay determined cell apoptosis and Western blot assessed cleaved-caspase-3 protein levels. RNase R resistance assay and actinomycin D assay confirmed Circ_HECW2's cyclic structure. RNA pull-down and dual-luciferase reporter assay verified binding relationships between Circ_HECW2 and miR-1224 and between miR-1224-5p and PDK2. RESULTS Circ_HECW2 exhibited elevated expression in OP patients with diagnostic significance and a negative correlation with lumbar T-score. LPS co-culture increased Circ_HECW2 expression in HFOB1.19 cells, significantly elevating apoptosis index and cleaved-caspase-3. Circ_HECW2 downregulation inhibited HFOB1.19 apoptosis, reduced pre-miR-1224 expression, and elevated mature miR-1224-5p. Circ_HECW2 bound to pre-miR-1224, and inhibiting miR-1224-5p reversed the effect of Circ_HECW2 downregulation on osteoblast apoptosis. miR-1224-5p targeted PDK2 transcription. CONCLUSION Circ_HECW2, highly expressed in OP, holds diagnostic significance and reflects disease severity. Circ_HECW2 reduces mature miR-1224-5p by binding to pre-miR-1224, upregulating PDK2, and facilitating LPS-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Qiangqiang Li
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Zhongduo Ye
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Xiong Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Hui Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Yongping Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Xingxing Zheng
- Department of Ophthalmology, The Second Hospital of Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Ashique S, Pal R, Sharma H, Mishra N, Garg A. Unraveling the Emerging Niche Role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI). CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1357-1370. [PMID: 38351688 DOI: 10.2174/0118715273288155240201065041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 09/12/2024]
Abstract
Extracellular vesicles or exosomes, often known as EVs, have acquired significant attention in the investigations of traumatic brain injury (TBI) and have a distinct advantage in actively researching the fundamental mechanisms underlying various clinical symptoms and diagnosing the wide range of traumatic brain injury cases. The mesenchymal stem cells (MSCs) can produce and release exosomes, which offer therapeutic benefits. Exosomes are tiny membranous vesicles produced by various cellular entities originating from endosomes. Several studies have reported that administering MSC-derived exosomes through intravenous infusions improves neurological recovery and promotes neuroplasticity in rats with traumatic brain damage. The therapeutic advantages of exosomes can be attributed to the microRNAs (miRNAs), which are small non-coding regulatory RNAs that significantly impact the regulation of posttranscriptional genes. Exosome-based therapies, which do not involve cells, have lately gained interest as a potential breakthrough in enhancing neuroplasticity and accelerating neurological recovery for various brain injuries and neurodegenerative diseases. This article explores the benefits and drawbacks of exosome treatment for traumatic brain injury while emphasizing the latest advancements in this field with clinical significance.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Science, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Radheshyam Pal
- Department of Pharmaceutical Science, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP) 244001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Gwalior 474005, Madhya Pradesh, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P. 483001, India
| |
Collapse
|
6
|
Beylerli O, Tamrazov R, Gareev I, Ilyasova T, Shumadalova A, Bai Y, Yang B. Role of exosomal ncRNAs in traumatic brain injury. Noncoding RNA Res 2023; 8:686-692. [PMID: 37860267 PMCID: PMC10582766 DOI: 10.1016/j.ncrna.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex neurological disorder that often results in long-term disabilities, cognitive impairments, and emotional disturbances. Despite significant advancements in understanding the pathophysiology of TBI, effective treatments remain limited. In recent years, exosomal non-coding RNAs (ncRNAs) have emerged as potential players in TBI pathogenesis and as novel diagnostic and therapeutic targets. Exosomal ncRNAs are small RNA molecules that are secreted by cells and transported to distant sites, where they can modulate gene expression and cell signaling pathways. They have been shown to play important roles in various aspects of TBI, such as neuroinflammation, blood-brain barrier dysfunction, and neuronal apoptosis. The ability of exosomal ncRNAs to cross the blood-brain barrier and reach the brain parenchyma makes them attractive candidates for non-invasive biomarkers and drug delivery systems. However, significant challenges still need to be addressed before exosomal ncRNAs can be translated into clinical practice, including standardization of isolation and quantification methods, validation of their diagnostic and prognostic value, and optimization of their therapeutic efficacy and safety. This review aims to summarize the current knowledge regarding the role of exosomal ncRNAs in TBI, including their biogenesis, function, and potential applications in diagnosis, prognosis, and treatment. We also discuss the challenges and future perspectives of using exosomal ncRNAs as clinical tools for TBI management.
Collapse
Affiliation(s)
- Ozal Beylerli
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Rasim Tamrazov
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| |
Collapse
|
7
|
Fu R, Meng K, Zhang R, Du X, Jiao J. Bone marrow-derived exosomes promote inflammation and osteoclast differentiation in high-turnover renal osteodystrophy. Ren Fail 2023; 45:2264396. [PMID: 37870853 PMCID: PMC11001343 DOI: 10.1080/0886022x.2023.2264396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Renal osteodystrophy (ROD) is a type of bone metabolic disorder in patients with chronic kidney disease (CKD). Inflammation is associated with bone loss in ROD. However, its precise mechanism has not yet been elucidated. The present study was conducted to investigate whether exosomes (Exos) in bone marrow (BM) are involved in the pathogenesis of high-turnover ROD.Methods: Bone mass, osteoclast number, and pro-inflammatory cytokines levels of BM supernatant were detected in adenine-induced ROD rats. The effect of Exos derived from BM (BM-Exos) of ROD (ROD-Exos) on inflammatory genes and osteoclast differentiation of BM-derived macrophages (BMMs) were further examined. Then, exosomal miRNA sequencing was performed and an miRNA-mRNA-pathway network was constructed.Results: we found increased osteoclasts and decreased bone mass in ROD rats, as well as inflammatory activation in the BM niche. Furthermore, BMMs from ROD rats displayed overproduction of proinflammatory cytokines and increased osteoclast differentiation, accompanied by nuclear factor κB (NF-κB) signaling activation. Mechanistically, we found that ROD-Exos activates NF-κB signaling to promote the release of proinflammatory cytokines and increase osteoclast differentiation of BMMs. Meanwhile, a total of 24 differentially expressed miRNAs were identified between BM-Exos from ROD and normal control (NC). The miRNA-mRNA-pathway network suggests that rno-miR-9a-5p, rno-miR-133a-3p, rno-miR-30c-5p, rno-miR-206-3p, and rno-miR-17-5p might play pivotal roles in inflammation and osteoclast differentiation. Additionally, we validated that the expression of miR-9a-5p is upregulated in ROD-Exos.Conclusion: The BM niche of ROD alters the miRNA cargo of BM-Exos to promote inflammation and osteoclast differentiation of BMMs, at least partially contributing to the pathogenesis of high-turnover ROD.
Collapse
Affiliation(s)
- Rao Fu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Meng
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuanyi Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Nephrology, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Penolazzi L, Straudi S, Lamberti N, Lambertini E, Bianchini C, Manfredini F, Piva R. Clinically-driven design of novel methods of investigation on skeletal health status in neurological disorders. The case of the traumatic brain injuries. Front Neurol 2023; 14:1176420. [PMID: 37265470 PMCID: PMC10230040 DOI: 10.3389/fneur.2023.1176420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
|
9
|
Zhou W, Zhao L, Mao Z, Wang Z, Zhang Z, Li M. Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles. Cell Mol Neurobiol 2023:10.1007/s10571-023-01345-5. [PMID: 37067749 PMCID: PMC10106324 DOI: 10.1007/s10571-023-01345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
A number of substances released by the brain under physiological and pathological conditions exert effects on other organs. In turn, substances produced primarily by organs such as bone marrow, adipose tissue, or the heart may have an impact on the metabolism and function and metabolism of the healthy and diseased brain. Despite a mounting amount of evidence supports such bidirectional communication between the brain and other organs, research on the function of molecular mediators carried by extracellular vesicles (EVs) is in the early stages. In addition to being able to target or reach practically any organ, EVs have the ability to cross the blood-brain barrier to transport a range of substances (lipids, peptides, proteins, and nucleic acids) to recipient cells, exerting biological effects. Here, we review the function of EVs in bidirectional communication between the brain and other organs. In a small number of cases, the role has been explicitly proven; yet, in most cases, it relies on indirect evidence from EVs in cell culture or animal models. There is a dearth of research currently available on the function of EVs-carrying mediators in the bidirectional communication between the brain and bone marrow, adipose tissue, liver, heart, lungs, and gut. Therefore, more studies are needed to determine how EVs facilitate communication between the brain and other organs.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Lihong Zhao
- Department of Radiotherapy, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130012, Jilin, China
| | - Zelu Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
10
|
Wei X, Zhao G, Jia Z, Zhao Z, Chen N, Sun Y, Kelso M, Rathore G, Wang D. Macromolecular Dexamethasone Prodrug Ameliorates Neuroinflammation and Prevents Bone Loss Associated with Traumatic Brain Injury. Mol Pharm 2022; 19:4000-4009. [PMID: 36042532 PMCID: PMC9643620 DOI: 10.1021/acs.molpharmaceut.2c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability among children and young adults in the United States. In this manuscript, we assessed the utility of an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based dexamethasone (Dex) prodrug (P-Dex) in the treatment of TBI. Using a controlled cortical impact TBI mouse model, P-Dex was found to passively target and sustain at the traumatic/inflammatory brain tissue for over 14 days after systemic administration. The histological evidence supports P-Dex's therapeutic potential in ameliorating neuroinflammation and mitigating neurodegeneration. Behaviorally, the P-Dex-treated animals showed statistically significant improvement in balance recovery. A trend of neurological severity score improvement at the early time point post-TBI was also noted but did not achieve statistical significance. While probing the potential glucocorticoid side effects that may associate with P-Dex treatment, we discovered that the TBI mice develop osteopenia. Interestingly, the P-Dex-treated TBI mice demonstrated higher bone mineral density and better bone microarchitecture parameters when compared to free Dex and the saline control, revealing the osteoprotective effect of P-Dex in addition to its neuronal protection benefits post-TBI.
Collapse
Affiliation(s)
- Xin Wei
- Department of Pharmaceutical Sciences
| | - Gang Zhao
- Department of Pharmaceutical Sciences
| | | | | | | | | | | | - Geetanjali Rathore
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Children’s Hospital & Medical Center, Omaha, NE, 68114, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences
| |
Collapse
|
11
|
Hu L, Xie X, Xue H, Wang T, Panayi AC, Lin Z, Xiong Y, Cao F, Yan C, Chen L, Cheng P, Zha K, Sun Y, Liu G, Yu C, Hu Y, Tao R, Zhou W, Mi B, Liu G. MiR-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the Rap1 signaling target ADCY2. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:961-972. [PMID: 35831436 PMCID: PMC9355958 DOI: 10.1038/s12276-022-00799-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion. A microRNA called miR-1224-5p plays a key role in regulating the balance between bone formation and resorption, and may help in developing therapies for osteoporosis and hard-to-heal fractures. MicroRNAs are small, non-coding RNAs that regulate gene expression. Levels of miR-1224-5p were known to be low in patients with osteoporosis, caused by imbalanced bone resorption and formation, and high in patients with fractures. Guohui Liu and Bobin Mi at Union Hospital, Tongji Medical College, Huazhong University of Science and Technology in Wuhan, China, and coworkers hypothesized that miR-1224-5p might affect the bone resorption/formation balance. They found that miR-1224-5p levels correlated with fracture healing progress. Boosting levels in mice made bones stronger and improved fracture healing, whereas suppressing levels impaired fracture healing and accelerated osteoporosis. These results show that miR-1224-5p represents a potential target for treatment for osteoporosis and for bone-healing deficits. A proposed model illustrating (Supplementary materials e) miRNA-1224-5p-mediated bone cell differentiation. Schematic representation of the mechanism through which miRNA-1224-5p mediates bone cell differentiation in fracture healing and osteoporosis.
Collapse
Affiliation(s)
- Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Tiantian Wang
- Department of emergency medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Chengcheng Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Peng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yun Sun
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.,Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guodong Liu
- Medical Center of Trauma and War Injuries, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.
| |
Collapse
|
12
|
Cell-Derived Exosomes as Therapeutic Strategies and Exosome-Derived microRNAs as Biomarkers for Traumatic Brain Injury. J Clin Med 2022; 11:jcm11113223. [PMID: 35683610 PMCID: PMC9181755 DOI: 10.3390/jcm11113223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex, life-threatening condition that causes mortality and disability worldwide. No effective treatment has been clinically verified to date. Achieving effective drug delivery across the blood–brain barrier (BBB) presents a major challenge to therapeutic drug development for TBI. Furthermore, the field of TBI biomarkers is rapidly developing to cope with the many aspects of TBI pathology and enhance clinical management of TBI. Exosomes (Exos) are endogenous extracellular vesicles (EVs) containing various biological materials, including lipids, proteins, microRNAs, and other nucleic acids. Compelling evidence exists that Exos, such as stem cell-derived Exos and even neuron or glial cell-derived Exos, are promising TBI treatment strategies because they pass through the BBB and have the potential to deliver molecules to target lesions. Meanwhile, Exos have decreased safety risks from intravenous injection or orthotopic transplantation of viable cells, such as microvascular occlusion or imbalanced growth of transplanted cells. These unique characteristics also create Exos contents, especially Exos-derived microRNAs, as appealing biomarkers in TBI. In this review, we explore the potential impact of cell-derived Exos and exosome-derived microRNAs on the diagnosis, therapy, and prognosis prediction of TBI. The associated challenges and opportunities are also discussed.
Collapse
|
13
|
Signorelli F, Giordano M, Caccavella VM, Ioannoni E, Gelormini C, Caricato A, Olivi A, Montano N. A systematic review and meta-analysis of factors involved in bone flap resorption after decompressive craniectomy. Neurosurg Rev 2022; 45:1915-1922. [PMID: 35061139 DOI: 10.1007/s10143-022-01737-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 02/02/2023]
Abstract
Decompressive craniectomy (DC) is effective in controlling increasing intracranial pressure determined by a wide range of conditions, mainly traumatic brain injury (TBI) and stroke, and the subsequent cranioplasty (CP) displays potential therapeutic benefit in terms of overall neurological function. While autologous bone flap (ABF) harvested at the time of DC is the ideal material for skull defect reconstruction, it carries several risks. Aseptic bone flap resorption (BFR) is one of the most common complications, often leading to surgical failure. The aim of our study was to systematically review the literature and carry out a meta-analysis of possible factors involved in BFR in patients undergoing ABF cranioplasty after DC. A systematic review and meta-analysis was performed in accordance with the PRISMA guidelines. Different medical databases (PubMed, Embase, and Scopus) were screened for eligible scientific reports until April 30th 2021. The following data were collected for meta-analysis to assess their role in BFR: sex, age, the interval time between DC and CP, the presence of systemic factors, the etiology determining the DC, CP surgical time, CP features, VP shunt placement, CP infection. Studies including pediatric patients or with less than 50 patients were excluded. Fifteen studies were included. There was a statistically significant increased incidence of BFR in patients with CPF > 2 compared to patients with CPF ≤ 2 (54.50% and 22.76% respectively, p = 0.010). TBI was a significantly more frequent etiology in the BFR group compared to patients without BFR (61.95% and 47.58% respectively, p < 0.001). Finally, patients with BFR were significantly younger than patients without BFR (39.12 ± 15.36 years and 47.31 ± 14.78 years, respectively, p < 0.001). The funnel plots were largely symmetrical for all the studied factors. Bone flap fragmentation, TBI etiology, and young age significantly increase the risk of bone resorption. Further studies are needed to strengthen our results and to clarify if, in those cases, a synthetic implant for primary CP should be recommended.
Collapse
Affiliation(s)
- Francesco Signorelli
- Depatment of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - Martina Giordano
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valerio Maria Caccavella
- Depatment of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Rome, Italy. .,Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Eleonora Ioannoni
- Neurosurgical Intensive Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Camilla Gelormini
- Neurosurgical Intensive Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anselmo Caricato
- Neurosurgical Intensive Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Olivi
- Depatment of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Rome, Italy.,Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Montano
- Depatment of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Rome, Italy.,Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Wu B, Lu Y, Yu Y, Yue H, Wang J, Chong Y, Cui W. Effect of tranexamic acid on the prognosis of patients with traumatic brain injury undergoing craniotomy: study protocol for a randomised controlled trial. BMJ Open 2021; 11:e049839. [PMID: 34824110 PMCID: PMC8627390 DOI: 10.1136/bmjopen-2021-049839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Abnormal coagulation function aggravates the prognosis of patients with traumatic brain injury (TBI). It was reported that the antifibrinolytic drug tranexamic acid (TXA) could reduce intracranial haemorrhage and mortality in non-operative patients with TBI. However, there is a lack of evaluation of TXA in patients with TBI undergoing craniotomy. METHODS AND ANALYSIS This is a single-centre randomised controlled, double-blind, parallel study aiming to investigate the effectiveness and safety of TXA in patients with TBI during the perioperative period. Blood loss and transfusion, neurological function, adverse events, mortality and serum immune-inflammatory cytokines will be collected and analysed. ETHICS AND DISSEMINATION Ethical approval has been granted by the Medical Ethics Committee of Beijing Tian Tan Hospital, Capital Medical University (reference number KY 2020-136-03). The results of this study will be disseminated through presentations at scientific conferences and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ChiCTR2100041911.
Collapse
Affiliation(s)
- Bei Wu
- Department of Anaesthesiology, Beijing Tian Tan hospital, Capital Medical University, Beijing, China
| | - Yu Lu
- Department of Anaesthesiology, Beijing Tian Tan hospital, Capital Medical University, Beijing, China
| | - Yun Yu
- Department of Anaesthesiology, Beijing Tian Tan hospital, Capital Medical University, Beijing, China
| | - Hongli Yue
- Department of Anaesthesiology, Beijing Tian Tan hospital, Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Anaesthesiology, Beijing Tian Tan hospital, Capital Medical University, Beijing, China
| | - Yingzi Chong
- Department of Anaesthesiology, Beijing Tian Tan hospital, Capital Medical University, Beijing, China
| | - Weihua Cui
- Department of Anaesthesiology, Beijing Tian Tan hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2021; 37:770-781. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, and there are currently no pharmacological treatments known to improve patient outcomes. Unquestionably, contributing toward a lack of effective treatments is the highly complex and heterogenous nature of TBI. In this review, we highlight the recent surge of research that has demonstrated various central interactions with the periphery as a potential major contributor toward this heterogeneity and, in particular, the breadth of research from Australia. We describe the growing evidence of how extracranial factors, such as polytrauma and infection, can significantly alter TBI neuropathology. In addition, we highlight how dysregulation of the autonomic nervous system and the systemic inflammatory response induced by TBI can have profound pathophysiological effects on peripheral organs, such as the heart, lung, gastrointestinal tract, liver, kidney, spleen, and bone. Collectively, this review firmly establishes TBI as a systemic condition. Further, the central and peripheral interactions that can occur after TBI must be further explored and accounted for in the ongoing search for effective treatments.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jessica M Sharkey
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mujun Sun
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lola M Kaukas
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandy R Shultz
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renee J Turner
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys D Brady
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Complications of cranioplasty following decompressive craniectomy for traumatic brain injury: systematic review and meta-analysis. Acta Neurochir (Wien) 2021; 163:1423-1435. [PMID: 33759012 DOI: 10.1007/s00701-021-04809-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decompressive craniectomy (DC) is a common neurosurgical intervention for severe traumatic brain injury (TBI), as well as malignant stroke, malignancy and infection. DC necessitates subsequent cranioplasty. There are significant demographic differences between TBI and non-TBI patients undergoing cranioplasty, which may influence their relative risk profiles for infection, aseptic bone flap resorption (aBFR) and re-operation. OBJECTIVE Perform a meta-analysis to determine the relative infection, aBFR and re-operation risk profiles of TBI patients as compared to other indications for DC. METHODS A systematic review and meta-analysis was performed in accordance with the PRISMA guidelines. PubMed, MEDLINE, EMBASE and Google Scholar were searched until 26/11/2020. Studies detailing rates of infection, re-operation and/or aBFR in specific materials and the post-TBI population were included, while studies in paediatrics or craniosynostosis repair were excluded. RESULTS Twenty-six studies were included. There was no difference in relative risk of infection between TBI and non-TBI cohorts (RR 0.81, 95% CI 0.57-1.17), with insignificant heterogeneity (I2 = 33%). TBI was a risk factor for aBFR (RR 1.54, 95% CI 1.25-1.89), with no significant heterogeneity (I2 = 13%). TBI was a risk factor for re-operation in the autologous sub-group (RR 1.49, 95% CI 1.05-2.11) but not in the alloplastic sub-group (RR = 0.86, 95% CI 0.34-2.18). Heterogeneity was insignificant (I2 = 11%). CONCLUSION TBI is a risk factor for aBFR and re-operation following cranioplasty. Use of an alloplastic graft for primary cranioplasty in these patients may partially mitigate this increased risk.
Collapse
|
17
|
Wu Y, Liu J. Effect of exosome -derived non -coding RNA on traumatic brain injury. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:183-188. [PMID: 33678656 PMCID: PMC10929786 DOI: 10.11817/j.issn.1672-7347.2021.190702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 11/03/2022]
Abstract
Traumatic brain injury (TBI) is a main cause of death and disability worldwide, posing a serious threat to public health. But currently, the diagnosis and treatments for TBI are still very limited. Exosomes are a group of extracellular vesicles and participate in multiple physiological processes including intercellular communication and substance transport. Non-coding RNAs (ncRNA) are of great abundancy as cargo of exosomes. Previous studies have shown that ncRNAs are involved in several pathophysiological processes of TBI. However, the concrete mechanisms involved in the effects induced by exosome-derived ncRNA remain largely unknown. As an important component of exosomes, ncRNA is of great significance for diagnosis, precise treatment, response evaluation, prognosis prediction, and complication management after TBI.
Collapse
Affiliation(s)
- Yun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
18
|
Hu L, Liu J, Xue H, Panayi AC, Xie X, Lin Z, Wang T, Xiong Y, Hu Y, Yan C, Chen L, Abududilibaier A, Zhou W, Mi B, Liu G. miRNA-92a-3p regulates osteoblast differentiation in patients with concomitant limb fractures and TBI via IBSP/PI3K-AKT inhibition. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1345-1359. [PMID: 33717654 PMCID: PMC7920808 DOI: 10.1016/j.omtn.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Patients who sustain concomitant fractures and traumatic brain injury (TBI) are known to have significantly quicker fracture-healing rates than patients with isolated fractures. The mechanisms underlying this phenomenon have yet to be identified. In the present study, we found that the upregulation of microRNA-92a-3p (miRNA-92a-3p) induced by TBI correlated with a decrease in integrin binding sialoprotein (IBSP) expression in callus formation. In vitro, overexpressing miRNA-92a-3p inhibited IBSP expression and accelerated osteoblast differentiation, whereas silencing of miRNA-92a-3p inhibited osteoblast activity. A decrease in IBSP facilitated osteoblast differentiation via the Phosphatidylinositol 3-kinase/threonine kinase 1 (PI3K/AKT) signaling pathway. Through luciferase assays, we found evidence that IBSP is a miRNA-92a-3p target gene that negatively regulates osteoblast differentiation. Moreover, the present study confirmed that pre-injection of agomiR-92a-3p leads to increased bone formation. Collectively, these results indicate that miRNA-92a-3p overexpression may be a key factor underlying the improved fracture healing observed in TBI patients. Upregulation of miRNA-92a-3p may therefore be a promising therapeutic strategy for promoting fracture healing and preventing nonunion.
Collapse
Affiliation(s)
- Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston 02215, USA
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tiantian Wang
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Chengcheng Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Abudula Abududilibaier
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
19
|
Early Reciprocal Effects in a Murine Model of Traumatic Brain Injury and Femoral Fracture. Mediators Inflamm 2021; 2021:8835730. [PMID: 33531878 PMCID: PMC7834824 DOI: 10.1155/2021/8835730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major cause of death and disability in early adulthood. Concomitant extracranial injury such as long bone fracture was reported to exacerbate TBI pathology. However, early reciprocal effects and mechanisms have been barely investigated. To address this issue, C57BL/6N mice were subjected to either the controlled cortical impact (CCI) model of TBI, fracture of the left femur (FF), combined injury (CCI+FF), or sham procedure. Behavioral alterations were monitored until 5 days post injury (dpi), followed by (immuno-)histology, gene and protein expression analyses using quantitative PCR, western blot, and ELISA. We found that CCI+FF mice exhibited increased neurological impairments, reduced recovery, and altered anxiety-related behavior compared to single injury groups. At 5 dpi, cerebral lesion size was not affected by combined injury but exaggerated hippocampal substance loss and increased perilesional astrogliosis were observed in CCI+FF mice compared to isolated CCI. Bone gene expression of the osteogenic markers Runx2, osteocalcin, alkaline phosphatase, and bone sialoprotein was induced by fracture injury but attenuated by concomitant TBI. Plasma concentrations of the biomarkers osteopontin and progranulin were elevated in CCI+FF mice compared to other experimental groups. Taken together, using a murine model of TBI and femoral fracture, we report early reciprocal impairments of brain tissue maintenance, behavioral recovery, and bone repair gene expression. Increased circulating levels of the biomarkers osteopontin and progranulin indicate ongoing tissue inflammation and repair. Our results may have implications for future therapeutic approaches to interfere with the pathological crosstalk between TBI and concomitant bone fracture.
Collapse
|
20
|
Zhuang S, Liu B, Guo S, Xue Y, Wu L, Liu S, Zhang C, Ni X. Germacrone alleviates neurological deficits following traumatic brain injury by modulating neuroinflammation and oxidative stress. BMC Complement Med Ther 2021; 21:6. [PMID: 33402180 PMCID: PMC7786997 DOI: 10.1186/s12906-020-03175-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Germacrone (GM) is a terpenoid compound which is reported to have anti-inflammatory and anti-oxidative effects. However, its role in treating traumatic brain injury (TBI) remains largely unknown. METHODS Male C57BL/6 mice were divided into the following groups: control group, TBI group [controlled cortical impact (CCI) model], CCI + 5 mg/kg GM group, CCI + 10 mg/kg GM group and CCI + 20 mg/kg GM group. GM was administered via intraperitoneal injection. The neurological functions (including motor coordination, spatial learning and memory abilities) and brain edema were measured. Nissl staining was used to detect the neuronal apoptosis. Colorimetric assays and enzyme linked immunosorbent assay (ELISA) kits were used to determine the expression levels of oxidative stress markers including myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD), as well as the expressions of inflammatory markers, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Additionally, protein levels of Nrf2 and p-p65 were detected by Western blot assay. RESULTS GM significantly ameliorated motor dysfunction, spatial learning and memory deficits of the mice induced by TBI and it also reduced neuronal apoptosis and microglial activation in a dose-dependent manner. Besides, GM treatment reduced neuroinflammation and oxidative stress compared to those in the CCI group in a dose-dependent manner. Furthermore, GM up-regulated the expression of antioxidant protein Nrf2 and inhibited the expression of inflammatory response protein p-p65. CONCLUSIONS GM is a promising drug to improve the functional recovery after TBI via repressing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Sujing Zhuang
- Department of Neurology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Baogui Liu
- Department of Anesthesiology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Shifeng Guo
- Department of Neurology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Yanzhong Xue
- Department of Neurology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Lin Wu
- Department of Intensive Care Unit 2, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Shiqi Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Chunling Zhang
- Department of Intensive Care Unit 2, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Xiuyan Ni
- Department of Radiotherapy, Linyi Central Hospital, Linyi, 276400, Shandong, China.
| |
Collapse
|
21
|
Kelly RR, Sidles SJ, LaRue AC. Effects of Neurological Disorders on Bone Health. Front Psychol 2020; 11:612366. [PMID: 33424724 PMCID: PMC7793932 DOI: 10.3389/fpsyg.2020.612366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
Neurological diseases, particularly in the context of aging, have serious impacts on quality of life and can negatively affect bone health. The brain-bone axis is critically important for skeletal metabolism, sensory innervation, and endocrine cross-talk between these organs. This review discusses current evidence for the cellular and molecular mechanisms by which various neurological disease categories, including autoimmune, developmental, dementia-related, movement, neuromuscular, stroke, trauma, and psychological, impart changes in bone homeostasis and mass, as well as fracture risk. Likewise, how bone may affect neurological function is discussed. Gaining a better understanding of brain-bone interactions, particularly in patients with underlying neurological disorders, may lead to development of novel therapies and discovery of shared risk factors, as well as highlight the need for broad, whole-health clinical approaches toward treatment.
Collapse
Affiliation(s)
- Ryan R. Kelly
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sara J. Sidles
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Amanda C. LaRue
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
22
|
Yang J, Li Y, Sun Z, Zhan H. Macrophages in pancreatic cancer: An immunometabolic perspective. Cancer Lett 2020; 498:188-200. [PMID: 33122097 DOI: 10.1016/j.canlet.2020.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
As one of the most fatal gastrointestinal cancers, pancreatic cancer (PC) has a long-term survival rate that has shown limited improvement during recent decades and remains dismal. The poor prognosis is attributed to challenges in early detection, low opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are one of the most abundant infiltrating immune cells in PC stroma, and they can crosstalk with cancer cells, adipocytes and other stromal cells to modulate metabolism, inflammation and immune status, create an immunosuppressive tumor microenvironment (TME), and ultimately facilitate tumor initiation and progression. In this review, we summarize recent advances in our understanding of macrophage origin, distribution and polarization, as well as provide a thorough review of the role macrophages in PC carcinogenesis and development, as well as the underlying molecular mechanism. Additionally, we investigated macrophage targets in preclinical and clinical trials to evaluate their potential therapeutic value in PC.
Collapse
Affiliation(s)
- Jian Yang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yongzheng Li
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Zhaowei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
23
|
The Regulation of circRNA RNF13/miRNA-1224-5p Axis Promotes the Malignant Evolution in Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5654380. [PMID: 33083473 PMCID: PMC7557902 DOI: 10.1155/2020/5654380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Objective To study the biological function of circular RNA RNF13 (circRNF13) in acute myeloid leukemia (AML) and its relationship with prognosis. Methods We constructed stable AML cell lines with downregulated expression of circRNF13, and then, we explored the effect of downregulation of circRNF13 expression on the proliferation, migration, and invasion through qRT-PCR, MTT curve, colony formation, transwell migration and invasion experiment, cell cycle, apoptosis, Caspase 3/7 assay, and other experiments. We also studied the expression of C-myc and Tenascin-C by qRT-PCR to explore the role of circRNF13. Results When the expression of circRNF13 was downregulated, the proliferation rate of AML cells decreased significantly, the cell cycle was blocked to G1 phase, and apoptosis rate increased significantly. C-myc related to cell proliferation decreased significantly at RNA level. Furthermore, when the expression of circRNF13 was downregulated, the migration and invasion ability of AML cells was significantly reduced, and the expression of Tenascin-C related to migration and invasion also decreased significantly. The luciferase reporter assay system confirmed that miRNA-1224-5p was the direct target of circRNF13. Conclusion CircRNF13 inhibited the proliferation, migration, and invasion of AML cells by regulating the expression of miRNA-1224-5p. This study provides some clues for the diagnosis and treatment of AML.
Collapse
|
24
|
Nasoori A, Okamatsu-Ogura Y, Shimozuru M, Sashika M, Tsubota T. Hibernating bear serum hinders osteoclastogenesis in-vitro. PLoS One 2020; 15:e0238132. [PMID: 32853221 PMCID: PMC7451522 DOI: 10.1371/journal.pone.0238132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Bears do not suffer from osteoporosis during hibernation, which is associated with long-term inactivity, lack of food intake, and cold exposure. However, the mechanisms involved in bone loss prevention have scarcely been elucidated in bears. We investigated the effect of serum from hibernating Japanese black bears (Ursus thibetanus japonicus) on differentiation of peripheral blood mononuclear cells (PBMCs) to osteoclasts (OCs). PBMCs collected from 3 bears were separately cultured with 10% serum of 4 active and 4 hibernating bears (each individual serum type was assessed separately by a bear PBMCs), and differentiation were induced by treatment with macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL). PBMCs that were cultured with the active bear serum containing medium (ABSM) differentiated to multi-nucleated OCs, and were positive for TRAP stain. However, cells supplemented with hibernating bear serum containing medium (HBSM) failed to form OCs, and showed significantly lower TRAP stain (p < 0.001). On the other hand, HBSM induced proliferation of adipose derived mesenchymal stem cells (ADSCs) similarly to ABSM (p > 0.05), indicating no difference on cell growth. It was revealed that osteoclastogenesis of PBMCs is hindered by HBSM, implying an underlying mechanism for the suppressed bone resorption during hibernation in bears. In addition, this study for the first time showed the formation of bears’ OCs in-vitro.
Collapse
Affiliation(s)
- Alireza Nasoori
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
26
|
Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019. [PMID: 31330909 DOI: 10.3390/cells8070760.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5'AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain.
Collapse
|
27
|
Rehman SU, Ikram M, Ullah N, Alam SI, Park HY, Badshah H, Choe K, Kim MO. Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019; 8:E760. [PMID: 31330909 PMCID: PMC6678342 DOI: 10.3390/cells8070760] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5'AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain.
Collapse
Affiliation(s)
- Shafiq Ur Rehman
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Muhammad Ikram
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Najeeb Ullah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Sayed Ibrar Alam
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Young Park
- Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience|Alzheimer Center Limburg, Maastricht 6229ER, The Netherlands
| | - Haroon Badshah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kyonghwan Choe
- Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience|Alzheimer Center Limburg, Maastricht 6229ER, The Netherlands
| | - Myeong Ok Kim
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|