1
|
Zhang YL, Ma MX, Xing LN, Zhang JN, Guo XN, Qiao SK. Downregulation of autophagy is associated with poor clinical outcome after immunochemotherapy in patients with diffuse large B-cell lymphoma. Exp Hematol 2024; 139:104638. [PMID: 39244145 DOI: 10.1016/j.exphem.2024.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to determine the expression levels of the autophagy markers Beclin-1 and p62 in patients with diffuse large B-cell lymphoma (DLBCL) and explore the association between autophagy and disease prognosis. The expression of Beclin-1 and p62 was investigated in patients with DLBCL and patients with reactive lymphoproliferative disease (RLD) using immunohistochemistry. The association between the clinical characteristics of patients with DLBCL and autophagy status was further analyzed. Beclin-1 levels were increased in RLD patients compared with those with DLBCL, but the difference was not statistically significant (p > 0.05). p62 levels in DLBCL patients were significantly higher than those in RLD patients (p < 0.05). Beclin-1 expression was associated only with the Ann Arbor stage (p < 0.05), whereas p62 expression was associated with the Ann Arbor stage, IPI score, extranodal involvement, and Ki-67 index (p < 0.05). Beclin-1 and p62 levels were not associated with short-term treatment efficacy in DLBCL patients. Survival analysis showed that Beclin-1 expression had no significant effect on 2-year progression-free survival (PFS) or overall survival (OS) (p > 0.05). However, high p62 expression in DLBCL patients was associated with reduced 2-year PFS compared with that of patients with low p62 expression (p < 0.05); the 2-year OS was not affected (p > 0.05). Our results demonstrate that autophagic activity affects the prognosis of DLBCL patients; the lower the autophagic activity, the shorter the PFS. Targeted p62 knockout may be a novel therapeutic strategy for the treatment of DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/therapy
- Male
- Female
- Autophagy
- Middle Aged
- Beclin-1/metabolism
- Beclin-1/genetics
- Aged
- Adult
- Down-Regulation
- Prognosis
- Treatment Outcome
- Aged, 80 and over
- Sequestosome-1 Protein/metabolism
- Sequestosome-1 Protein/genetics
- Immunotherapy
Collapse
Affiliation(s)
- Ya-Li Zhang
- Department of General Medical, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meng-Xue Ma
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Na Xing
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing-Nan Zhang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Nan Guo
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shu-Kai Qiao
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Ding L, Chen D, Li Y, Xie Y, Sun X, Wang D. Saracatinib prompts hemin-induced K562 erythroid differentiation but suppresses erythropoiesis of hematopoietic stem cells. Hum Cell 2024; 37:648-665. [PMID: 38388899 PMCID: PMC11016514 DOI: 10.1007/s13577-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Human myeloid leukemia cells (such as K562) could be used for the study of erythropoiesis, and mature erythroid markers and globins could be induced during leukemia cell differentiation; however, the pathways involved are different compared with those of hematopoietic stem cells (HSCs).We identified the differentially expressed genes (DEGs) of K562 cells and HSCs associated with stem cells and erythroid differentiation. Furthermore, we showed that hemin-induced differentiation of K562 cells could be induced by serum starvation or treatment with the tyrosine kinase inhibitor saracatinib. However, erythroid differentiation of HSCs was inhibited by the deprivation of the important serum component erythropoietin (EPO) or treatment with saracatinib. Finally, we found that the mRNA expression of K562 cells and HSCs was different during saracatinib-treated erythroid differentiation, and the DEGs of K562 cells and HSCs associated with tyrosine-protein kinase were identified.These findings elucidated the cellular phenomenon of saracatinib induction during erythroid differentiation of K562 cells and HSCs, and the potential mechanism is the different mRNA expression profile of tyrosine-protein kinase in K562 cells and HSCs.
Collapse
Affiliation(s)
- Lina Ding
- Department of Obstetrics, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Dongguan, 523326, Guangdong, China
| | - Diyu Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
| | - Yuanshuai Li
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
3
|
Dong Y, Cai R, Fang M, Chen Y, Li P, Guo C, Ma X. A defined serum-free culture system for human long-term haematopoietic stem cells. Br J Haematol 2024; 204:268-282. [PMID: 38066715 DOI: 10.1111/bjh.19204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 01/11/2024]
Abstract
Long-term repopulating haematopoietic stem cells (LT-HSCs) have the ability to reconstitute the entire haematopoietic system following transplantation permanently. Despite great achievements in HSC transplantation, the limited transplantable HSC number, especially LT-HSCs, remains critical for successful transplantation and broader applications. In this study, we established a defined serum-free culture system for in vitro expansion of LT-HSCs. This culture system (E1) expanded LT-HSCs from umbilical cord blood, human mobilization peripheral blood and bone marrow. These E1-expanded HSCs reconstituted the haematopoietic and immune systems in primary and secondary transplanted mice in a short time. Better haematopoietic reconstitution was observed in secondary xenografted mice. Moreover, we obtained the comprehensive expression profile and cellular components of LT-HSCs from umbilical cord blood. Our study provides a valuable tool for LT-HSC research and may improve clinical applications of HSCs.
Collapse
Affiliation(s)
- Yichao Dong
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Ruikun Cai
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Mingxia Fang
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Yuqi Chen
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Peng Li
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Changlong Guo
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
4
|
Ren R, Li Y. STIM1 in tumor cell death: angel or devil? Cell Death Discov 2023; 9:408. [PMID: 37932320 PMCID: PMC10628139 DOI: 10.1038/s41420-023-01703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) is involved in mediating the store-operated Ca2+ entry (SOCE), driving the influx of the intracellular second messenger calcium ion (Ca2+), which is closely associated with tumor cell proliferation, metastasis, apoptosis, autophagy, metabolism and immune processes. STIM1 is not only regulated at the transcriptional level by NF-κB and HIF-1, but also post-transcriptionally modified by miRNAs and degraded by ubiquitination. Recent studies have shown that STIM1 or Ca2+ signaling can regulate apoptosis, autophagy, pyroptosis, and ferroptosis in tumor cells and act discrepantly in different cancers. Furthermore, STIM1 contributes to resistance against antitumor therapy by influencing tumor cell death. Further investigation into the mechanisms through which STIM1 controls other forms of tumor cell death could aid in the discovery of novel therapeutic targets. Moreover, STIM1 has the ability to regulate immune cells within the tumor microenvironment. Here, we review the basic structure, function and regulation of STIM1, summarize the signaling pathways through which STIM1 regulates tumor cell death, and propose the prospects of antitumor therapy by targeting STIM1.
Collapse
Affiliation(s)
- Ran Ren
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, 400044, Chongqing, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, 400044, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| |
Collapse
|
5
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
6
|
Salwa A, Ferraresi A, Secomandi E, Vallino L, Moia R, Patriarca A, Garavaglia B, Gaidano G, Isidoro C. High BECN1 Expression Negatively Correlates with BCL2 Expression and Predicts Better Prognosis in Diffuse Large B-Cell Lymphoma: Role of Autophagy. Cells 2023; 12:1924. [PMID: 37566004 PMCID: PMC10417641 DOI: 10.3390/cells12151924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by high molecular and clinical heterogeneity. Autophagy, a lysosome-driven catabolic process devoted to macromolecular turnover, is fundamental in maintaining normal hematopoietic stem cells and progenitors homeostasis, and its dysregulation plays a critical role in the initiation and progression of hematological malignancies. One main regulator of autophagy is BECLIN-1, which may interact alternatively with either BCL-2, thus allowing apoptosis, or PI3KC3, thus promoting autophagy. The altered expression of BCL2 and BECN1 correlates with lymphoma outcomes, but whether this is associated with dysregulated cross-talk between autophagy and apoptosis remains to be elucidated. Analysis of the TCGA database revealed that BCL2 and BECN1 mRNA expression were inversely correlated in DLBCL patients. In representative DLBCL cell lines exposed to doxorubicin, the cells highly expressing BCL-2 were resistant, while the ones highly expressing BECLIN-1 were sensitive, and this correlated with low and high autophagy flux, respectively. Venetoclax targeting of BCL-2 increased while the spautin-1-mediated inhibition of BECLIN-1-dependent autophagy reversed doxorubicin sensitivity in the former and in the latter, respectively. By interrogating the TCGA DLBCL dataset, we found that BCL2 and BECN1 acted as negative and positive prognostic markers for DLBCL, respectively. The differentially expressed gene analysis in the respective cohorts revealed that BCL2 positively correlated with oncogenic pathways (e.g., glucose transport, HIF1A signaling, JAK-STAT signaling, PI3K-AKT-mTOR pathway) and negatively correlated with autophagy-related transcripts, while BECN1 showed the opposite trend. Notably, patients with high BECN1 expression displayed longer survival. Our data reveal, for the first time, that the modulation of BECLIN-1-dependent autophagy influences the prognosis of DLBCL patients and provide a mechanistic explanation supporting the therapeutic use of drugs that, by stimulating autophagy, can sensitize lymphoma cells to chemotherapy.
Collapse
Affiliation(s)
- Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| |
Collapse
|
7
|
Saulle E, Spinello I, Quaranta MT, Labbaye C. Advances in Understanding the Links between Metabolism and Autophagy in Acute Myeloid Leukemia: From Biology to Therapeutic Targeting. Cells 2023; 12:1553. [PMID: 37296673 PMCID: PMC10252746 DOI: 10.3390/cells12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance. The high frequency of disease relapse caused by relapse-initiating leukemic cells resistant to therapy occurs in acute myeloid leukemia (AML), and depends on the AML subtypes and treatments used. Targeting autophagy may represent a promising strategy to overcome therapeutic resistance in AML, for which prognosis remains poor. In this review, we illustrate the role of autophagy and the impact of its deregulation on the metabolism of normal and leukemic hematopoietic cells. We report updates on the contribution of autophagy to AML development and relapse, and the latest evidence indicating autophagy-related genes as potential prognostic predictors and drivers of AML. We review the recent advances in autophagy manipulation, combined with various anti-leukemia therapies, for an effective autophagy-targeted therapy for AML.
Collapse
Affiliation(s)
- Ernestina Saulle
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| | | | | | - Catherine Labbaye
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| |
Collapse
|
8
|
Rahman MA, Rahman MS, Parvez MAK, Kim B. The Emerging Role of Autophagy as a Target of Environmental Pollutants: An Update on Mechanisms. TOXICS 2023; 11:135. [PMID: 36851010 PMCID: PMC9965655 DOI: 10.3390/toxics11020135] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/09/2023]
Abstract
Autophagy is an evolutionarily conserved cellular system crucial for cellular homeostasis that protects cells from a broad range of internal and extracellular stresses. Autophagy decreases metabolic load and toxicity by removing damaged cellular components. Environmental contaminants, particularly industrial substances, can influence autophagic flux by enhancing it as a protective response, preventing it, or converting its protective function into a pro-cell death mechanism. Environmental toxic materials are also notorious for their tendency to bioaccumulate and induce pathophysiological vulnerability. Many environmental pollutants have been found to influence stress which increases autophagy. Increasing autophagy was recently shown to improve stress resistance and reduce genetic damage. Moreover, suppressing autophagy or depleting its resources either increases or decreases toxicity, depending on the circumstances. The essential process of selective autophagy is utilized by mammalian cells in order to eliminate particulate matter, nanoparticles, toxic metals, and smoke exposure without inflicting damage on cytosolic components. Moreover, cigarette smoke and aging are the chief causes of chronic obstructive pulmonary disease (COPD)-emphysema; however, the disease's molecular mechanism is poorly known. Therefore, understanding the impacts of environmental exposure via autophagy offers new approaches for risk assessment, protection, and preventative actions which will counter the harmful effects of environmental contaminants on human and animal health.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Republic of Korea
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Bednarczyk M, Kociszewska K, Grosicka O, Grosicki S. The role of autophagy in acute myeloid leukemia development. Expert Rev Anticancer Ther 2023; 23:5-18. [PMID: 36563329 DOI: 10.1080/14737140.2023.2161518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autophagy is a highly conservative self-degradative process. It aims at elimination-impaired proteins and cellular organelles. Previous research confirmed the autophagy role in cancer pathogenesis. AREAS COVERED This article discusses the role of autophagy in the development of AML. Autophagy seems to be a 'double-sword' mechanism, hence, either its suppression or induction could promote neoplasm growth. This mechanism could also be the aim of the 'molecular targeted therapy.' Chemo- and radiotherapy induce cellular stress in neoplasm cells with subsequent autophagy suppression. Simultaneously, it is claimed that the autophagy suppression increases chemosensitivity 'in neoplastic cells. Some agents, like bortezomib, in turn could promote autophagy process, e.g. in AML (acute myeloid leukemia). However, currently there are not many studies focusing on the role of autophagy in patients suffering for AML. In this review, we summarize the research done so far on the role of autophagy in the development of AML. EXPERT OPINION The analysis of autophagy genes expression profiling in AML could be a relevant factor in the diagnostic process and treatment 'individualization.' Autophagy modulation seems to be a relevant target in the oncological therapy - it could limit disease progression and increase the effectiveness of treatment.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Karolina Kociszewska
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Sebastian Grosicki
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
10
|
Upregulation of Actin-Related Protein 2 (ACTR2) Exacerbated the Malignancy of Diffuse Large B-Cell Lymphoma through Activating Wnt Signaling. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9351921. [PMID: 36570337 PMCID: PMC9771665 DOI: 10.1155/2022/9351921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
This investigation mainly explores the roles of actin-related protein 2 (ACTR2) in diffuse large B-cell lymphoma (DLBCL). We first assessed the level of ACTR2 and its association with the overall survival (OS) of DLBCL. The results indicated that ACTR2 was upregulated in DLBCL and was associated with unfavorable prognosis of DLBCL. Next, the effect of ACTR2 knockdown or overexpression on DLBCL was evaluated in vitro. Our investigation revealed that ACTR2 depletion inhibited the malignant behaviors of DLBCL cells; whereas, ACTR2 abundance promoted those behaviors. Besides, ACTR2 activated the Wnt signaling in DLBCL and exerted its oncogenic influence on DLBCL through Wnt signaling in vitro and in vivo. To summarize, our study implicated that ACTR2 was a promising therapeutic target for DLBCL, which might become a novel direction to improve our understanding on DLBCL.
Collapse
|
11
|
Autophagy in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14205072. [PMID: 36291856 PMCID: PMC9600546 DOI: 10.3390/cancers14205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Autophagy is a dynamic and tightly regulated process that seems to have dual effects in cancer. In some contexts, it can induce carcinogenesis and promote cancer cell survival, whereas in others, it acts preventing tumor cell growth and tumor progression. Thus, autophagy functions seem to strictly depend on cancer ontogenesis, progression, and type. Here, we will dive into the current knowledge of autophagy in hematological malignancies and will highlight the main genetic components involved in each cancer type. Abstract Autophagy is a highly conserved metabolic pathway via which unwanted intracellular materials, such as unfolded proteins or damaged organelles, are digested. It is activated in response to conditions of oxidative stress or starvation, and is essential for the maintenance of cellular homeostasis and other vital functions, such as differentiation, cell death, and the cell cycle. Therefore, autophagy plays an important role in the initiation and progression of tumors, including hematological malignancies, where damaged autophagy during hematopoiesis can cause malignant transformation and increase cell proliferation. Over the last decade, the importance of autophagy in response to standard pharmacological treatment of hematological tumors has been observed, revealing completely opposite roles depending on the tumor type and stage. Thus, autophagy can promote tumor survival by attenuating the cellular damage caused by drugs and/or stabilizing oncogenic proteins, but can also have an antitumoral effect due to autophagic cell death. Therefore, autophagy-based strategies must depend on the context to create specific and safe combination therapies that could contribute to improved clinical outcomes. In this review, we describe the process of autophagy and its role on hematopoiesis, and we highlight recent research investigating its role as a potential therapeutic target in hematological malignancies. The findings suggest that genetic variants within autophagy-related genes modulate the risk of developing hemopathies, as well as patient survival.
Collapse
|
12
|
Živanović A, Stamatović D, Strelić N, Magić Z, Tarabar O, Miljanović O, Mišović M, Đukić S, Cikota-Aleksić B. Association of ATG16L1 rs2241880 and TP53 rs1042522 with characteristics and course of diffuse large B-cell lymphoma. Pathol Res Pract 2022; 237:154033. [PMID: 35872366 DOI: 10.1016/j.prp.2022.154033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) represents the most frequent lymphoma in adults. Prognosis for DLBCL patients may be evaluated through the most prominent clinical/laboratory parameters or pattern of gene expression. In order to improve prognostic/prediction scores or provide new therapeutic targets, novel genetic markers are needed. This study evaluates the association of ATG16L1 rs2241880 and TP53 rs1042522 with clinical characteristics and course of DLBCL. METHODS The study included 108 DLCBL patients treated with R-CHOP. Of these, 44 patients were subjected to stem cell transplantation and 55 to radiotherapy. Genotyping was performed by TaqMan genotyping assays. RESULTS Amongst analyzed characteristics and prognostic scores, genotypes were associated with clinical stage (TP53 CG+CC vs GG p = 0.06), extranodal disease (ATG16L1 AG vs AA p = 0.07; AG vs GG p = 0.04), lymphocyte-to-monocyte ratio (LMR) (ATG16L1 AA vs AG+GG, p = 0.052; AA vs GG, p = 0.054) and neutrophils-to-lymphocytes ratio (NLR) (ATG16L1 AA vs AG+GG, p = 0.033; AA vs GG, p = 0.003). Analyzed genotypes didn't impact response to therapy, relapse and therapy-related complications. Considering outcome, patients with ATG16L1 AA had higher survival rate than GG carriers (p = 0.04). In all patients, duration of overall survival (OS) and relapse free survival (RFS) was not affected by analyzed genotypes. When subjected to radiotherapy, patients with ATG16L1 A allele (p = 0.05) or AA genotype (p = 0.03) had superior OS. CONCLUSION Our results demonstrated the association of TP53 rs1042522 with clinical stage and ATG16L1 rs2241880 with extranodal disease, LMR and NLR. The impact of ATG16L1 genotypes on OS in patients subjected to radiotherapy, indicates significance of individual single nucleotide polymorphisms (SNPs) in particular subgroups of DLBCL.
Collapse
Affiliation(s)
- Anđelina Živanović
- Clinic of Hematology, Military Medical Academy, 17 Crnotravska str, 11000 Belgrade, Serbia; MediGroup General Hospital, 3 Milutina Milankovića str, 11070 Belgrade, Serbia
| | - Dragana Stamatović
- Clinic of Hematology, Military Medical Academy, 17 Crnotravska str, 11000 Belgrade, Serbia
| | - Nataša Strelić
- Institute of Medical Research, Military Medical Academy, 17 Crnotravska str, 11000 Belgrade, Serbia
| | - Zvonko Magić
- Serbian Medical Society, Academy of Medical Sciences, 19 Džordža Vašingtona str, 11000 Belgrade, Serbia
| | - Olivera Tarabar
- Clinic of Hematology, Military Medical Academy, 17 Crnotravska str, 11000 Belgrade, Serbia
| | - Olivera Miljanović
- Center of Medical Genetics and Immunology, Clinical Center of Montenegro, bb Ljubljanska str, Podgorica, Montenegro
| | - Miroslav Mišović
- Institute of Radiology, Military Medical Academy, 17 Crnotravska str, 11000 Belgrade, Serbia
| | - Svetlana Đukić
- Department of Internal Medicine, Faculty of Medical Sciences, 69 Svetozara Markovića str, 34000 Kragujevac, Serbia
| | - Bojana Cikota-Aleksić
- Center of Clinical Pharmacology, Military Medical Academy, 17 Crnotravska str, 11000 Belgrade, Serbia.
| |
Collapse
|
13
|
Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022; 49:3307-3320. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
Abstract
Chemokines are chemoattractants that can regulate cell movement and adhesion. SDF-1 [stromal cell-derived factor-1 (SDF-1)] is a homeostatic CXC chemokine. SDF-1 and its receptors [CXC chemokine receptor 4 (CXCR4)] form a signaling pathway that plays critical roles in different pathological and physiological mechanisms, including embryogenesis, wound healing, angiogenesis, tumor growth, and proliferation. Therefore, the current review aimed to summarize the related studies that addressed the molecular signature of the SDF-1/CXCR4 pathway and to explain how this axis is involved in normal events.
Collapse
Affiliation(s)
- Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran. .,Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
14
|
TRAIL Triggers CRAC-Dependent Calcium Influx and Apoptosis through the Recruitment of Autophagy Proteins to Death-Inducing Signaling Complex. Cells 2021; 11:cells11010057. [PMID: 35011619 PMCID: PMC8750441 DOI: 10.3390/cells11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively kills various cancer cell types, but also leads to the activation of signaling pathways that favor resistance to cell death. Here, we investigated the as yet unknown roles of calcium signaling and autophagy regulatory proteins during TRAIL-induced cell death in leukemia cells. Taking advantage of the Gene Expression Profiling Interactive Analysis (GEPIA) project, we first found that leukemia patients present a unique TRAIL receptor gene expression pattern that may reflect their resistance to TRAIL. The exposure of NB4 acute promyelocytic leukemia cells to TRAIL induces intracellular Ca2+ influx through a calcium release-activated channel (CRAC)-dependent mechanism, leading to an anti-apoptotic response. Mechanistically, we showed that upon TRAIL treatment, two autophagy proteins, ATG7 and p62/SQSTM1, are recruited to the death-inducing signaling complex (DISC) and are essential for TRAIL-induced Ca2+ influx and cell death. Importantly, the treatment of NB4 cells with all-trans retinoic acid (ATRA) led to the upregulation of p62/SQSTM1 and caspase-8 and, when added prior to TRAIL stimulation, significantly enhanced DISC formation and the apoptosis induced by TRAIL. In addition to uncovering new pleiotropic roles for autophagy proteins in controlling the calcium response and apoptosis triggered by TRAIL, our results point to novel therapeutic strategies for sensitizing leukemia cells to TRAIL.
Collapse
|
15
|
Targeting CAMKK2 and SOC Channels as a Novel Therapeutic Approach for Sensitizing Acute Promyelocytic Leukemia Cells to All-Trans Retinoic Acid. Cells 2021; 10:cells10123364. [PMID: 34943872 PMCID: PMC8699360 DOI: 10.3390/cells10123364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium ions (Ca2+) play important and diverse roles in the regulation of autophagy, cell death and differentiation. Here, we investigated the impact of Ca2+ in regulating acute promyelocytic leukemia (APL) cell fate in response to the anti-cancer agent all-trans retinoic acid (ATRA). We observed that ATRA promotes calcium entry through store-operated calcium (SOC) channels into acute promyelocytic leukemia (APL) cells. This response is associated with changes in the expression profiles of ORAI1 and STIM1, two proteins involved in SOC channels activation, as well as with a significant upregulation of several key proteins associated to calcium signaling. Moreover, ATRA treatment of APL cells led to a significant activation of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and its downstream effector AMP-activated protein kinase (AMPK), linking Ca2+ signaling to autophagy. Pharmacological inhibition of SOC channels and CAMKK2 enhanced ATRA-induced cell differentiation and death. Altogether, our results unravel an ATRA-elicited signaling pathway that involves SOC channels/CAMKK2 activation, induction of autophagy, inhibition of cellular differentiation and suppression of cell death. We suggest that SOC channels and CAMKK2 may constitute novel drug targets for potentiating the anti-cancer effect of ATRA in APL patients.
Collapse
|
16
|
Xue K, Wu JC, Li XY, Li R, Zhang QL, Chang JJ, Liu YZ, Xu CH, Zhang JY, Sun XJ, Gu JJ, Guo WJ, Wang L. Chidamide triggers BTG1-mediated autophagy and reverses the chemotherapy resistance in the relapsed/refractory B-cell lymphoma. Cell Death Dis 2021; 12:900. [PMID: 34599153 PMCID: PMC8486747 DOI: 10.1038/s41419-021-04187-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Rituximab/chemotherapy relapsed and refractory B cell lymphoma patients have a poor overall prognosis, and it is urgent to develop novel drugs for improving the therapy outcomes. Here, we examined the therapeutic effects of chidamide, a new histone deacetylase (HDAC) inhibitor, on the cell and mouse models of rituximab/chemotherapy resistant B-cell lymphoma. In Raji-4RH/RL-4RH cells, the rituximab/chemotherapy resistant B-cell lymphoma cell lines (RRCL), chidamide treatment induced growth inhibition and G0/G1 cell cycle arrest. The primary B-cell lymphoma cells from Rituximab/chemotherapy relapsed patients were sensitive to chidamide. Interestingly, chidamide triggered the cell death with the activation of autophagy in RRCLs, likely due to the lack of the pro-apoptotic proteins. Based on the RNA-seq and chromatin immunoprecipitation (ChIP) analysis, we identified BTG1 and FOXO1 as chidamide target genes, which control the autophagy and the cell cycle, respectively. Moreover, the combination of chidamide with the chemotherapy drug cisplatin increased growth inhibition on the RRCL in a synergistic manner, and significantly reduced the tumor burden of a mouse lymphoma model established with engraftment of RRCL. Taken together, these results provide a theoretic and mechanistic basis for further evaluation of the chidamide-based treatment in rituximab/chemotherapy relapsed and refractory B-cell lymphoma patients.
Collapse
Affiliation(s)
- Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ji-Chuan Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun-Ling Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jin-Jia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yi-Zhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan J Gu
- Department of Medicine & Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wei-Jian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
The Dual Role of Autophagy in Crizotinib-Treated ALK + ALCL: From the Lymphoma Cells Drug Resistance to Their Demise. Cells 2021; 10:cells10102517. [PMID: 34685497 PMCID: PMC8533885 DOI: 10.3390/cells10102517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy has been described as harboring a dual role in cancer development and therapy. Depending on the context, it can exert either pro-survival or pro-death functions. Here, we review what is known about autophagy in crizotinib-treated ALK+ ALCL. We first present our main findings on the role and regulation of autophagy in these cells. Then, we provide literature-driven hypotheses that could explain mechanistically the pro-survival properties of autophagy in crizotinib-treated bulk and stem-like ALK+ ALCL cells. Finally, we discuss how the potentiation of autophagy, which occurs with combined therapies (ALK and BCL2 or ALK and RAF1 co-inhibition), could convert it from a survival mechanism to a pro-death process.
Collapse
|
18
|
Kuroda Y, Koyama D, Kikuchi J, Mori S, Ichinohe T, Furukawa Y. Autophagic degradation of NOXA underlies stromal cell-mediated resistance to proteasome inhibitors in mantle cell lymphoma. Leuk Res 2021; 111:106672. [PMID: 34332177 DOI: 10.1016/j.leukres.2021.106672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Mantle cell lymphoma (MCL) is usually resistant to the current standard-of-care regimens and also to novel agents such as the proteasome inhibitor bortezomib. A better prognosis of leukemic variants of MCL suggests that MCL cells acquire drug resistance in nodal and/or bone marrow microenvironments via interaction with supporting cells. Bortezomib exerts cytotoxic action in MCL cells via stabilization of the pro-apoptotic BCL-2 family protein NOXA. Here we show that autophagic degradation of NOXA is a mechanism of bortezomib resistance in MCL cells in a tumor microenvironment. First, we demonstrated that interaction with bone marrow-derived or nodal stromal cells conferred bortezomib resistance to MCL cells in vitro and in a murine model. Co-culture of MCL cells with stromal cells enhanced bortezomib-induced ubiquitination and subsequent binding of NOXA to the p62 adaptor, which escorted NOXA to the lysosome for autophagic degradation. Finally, we found that not only direct contact with stromal cells but also stroma-derived humoral factors, especially interleukin-6, promoted selective autophagy and NOXA degradation in MCL cells. Targeting protective autophagy, for example, using the lysosome inhibitor chloroquine, might increase the efficacy of bortezomib-containing regimens in MCL.
Collapse
Affiliation(s)
- Yoshiaki Kuroda
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Hematology, National Hospital Organization Hiroshimanishi Medical Center, 4-1-1 Kuba, Otake, Hiroshima, 739-0696, Japan
| | - Daisuke Koyama
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shigehisa Mori
- Medical Education Center, Saitama Medical University, 38 Morohongo, Saitama, 350-0495, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
19
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|
20
|
Lambrou GI, Karakonstantakis T, Vlahopoulos S, Zaravinos A. Dual Mechanisms of Metabolism and Gene Expression of the CCRF-CEM Leukemia Cells under Glucocorticoid Treatment. Int J Mol Sci 2021; 22:ijms22115889. [PMID: 34072627 PMCID: PMC8198442 DOI: 10.3390/ijms22115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glucocorticoids play an essential part in anti-leukemic therapies, but resistance is a crucial event for the prognosis of the disease. Glucocorticoids influence the metabolic properties of leukemic cells. The inherent plasticity of clinically evolving cancer cells justifies the characterization of drug-induced early oncogenic pathways, which represent a likely source of detrimental secondary effects. AIM The present work aims to investigate the effect of glucocorticoids in metabolic pathways in the CCRF-CEM leukemic cells. Metabolic factors and gene expression profiles were examined in order to unravel the possible mechanisms of the CCRF-CEM leukemic cell growth dynamics. METHODS CCRF-CEM cells were used as a model. Cells were treated with prednisolone with concentrations 0-700 μM. Cell culture supernatants were used for glucose, lactic acid, LDH, Na+, K+ and Ca++ measurements. Cytotoxicity was determined with flow cytometry. Microarray analysis was performed using two different chips of 1.2 k and 4.8 k genes. Gene Ontology enrichment analysis was applied to find metabolism- and GC-related genes. RESULTS Higher prednisolone concentrations inhibited glucose uptake, without exhibiting any cytotoxic effects. Glucose consumption did not correlate with the total cell population, or the viable population, indicating that growth is not directly proportional to glucose consumption. Neither of the subpopulations, i.e., viable, necrotic, or apoptotic cells, contributed to this. CONCLUSIONS Different types of leukemic cells seem to exhibit different patterns of glucose metabolism. Both resistant and sensitive CCRF-CEM cells followed the aerobic pathway of glycolysis. There is probably a rapid change in membrane permeability, causing a general shutdown towards everything that is outside the cell. This could in part also explain the observed resistance. Glucocorticoids do not enter the cell passively anymore and therefore no effects are observed. Based on our observations, ion concentrations are measurable factors both in vitro and in vivo, which makes them possible markers of glucocorticoid cytotoxic action.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-746-7427 (G.I.L.)
| | | | - Spiros Vlahopoulos
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-746-7427 (G.I.L.)
| |
Collapse
|
21
|
Liu T, Guo Q, Zheng S, Liu Y, Yang H, Zhao M, Yao L, Zeng K, Tu P. Cephalotaxine Inhibits the Survival of Leukemia Cells by Activating Mitochondrial Apoptosis Pathway and Inhibiting Autophagy Flow. Molecules 2021; 26:molecules26102996. [PMID: 34070111 PMCID: PMC8158396 DOI: 10.3390/molecules26102996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Cephalotaxine (CET) is a natural alkaloid with potent antileukemia effects. However, its underlying molecular mechanism has not been well understood. In this study, we verified that CET significantly inhibited the viability of various leukemia cells, including HL-60, NB4, Jurkat, K562, Raji and MOLT-4. RNA-sequencing and bioinformatics analysis revealed that CET causes mitochondrial function change. Mechanism research indicated that CET activated the mitochondrial apoptosis pathway by reducing the mitochondrial membrane potential, downregulating anti-apoptotic Bcl-2 protein and upregulating pro-apoptotic Bak protein. In addition, the autophagy signaling pathway was highly enriched by RNA-seq analysis. Then, we found that CET blocked the fluorescence colocation of MitoTracker Green and LysoTracker Red and upregulated the level of LC3-II and p62, which indicated that autophagy flow was impaired. Further results demonstrated that CET could impair lysosomal acidification and block autophagy flow. Finally, inhibiting autophagy flow could aggravate apoptosis of HL-60 cells induced by CET. In summary, this study demonstrated that CET exerted antileukemia effects through activation of the mitochondria-dependent pathway and by impairing autophagy flow. Our research provides new insights into the molecular mechanisms of CET in the treatment of leukemia.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China;
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Shuze Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Meimei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
- Correspondence: (K.Z.); (P.T.)
| | - Pengfei Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China;
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
- Correspondence: (K.Z.); (P.T.)
| |
Collapse
|
22
|
Chong ZX, Yeap SK, Ho WY. Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 2021; 28:21. [PMID: 33761957 PMCID: PMC7992789 DOI: 10.1186/s12929-021-00715-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
23
|
The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int J Mol Sci 2021; 22:ijms22031271. [PMID: 33525345 PMCID: PMC7865748 DOI: 10.3390/ijms22031271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.
Collapse
|
24
|
Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118926. [PMID: 33316295 DOI: 10.1016/j.bbamcr.2020.118926] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/07/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
Cellular homeostasis and adaptation to various environmental conditions are importantly regulated by the sophisticated mechanism of autophagy and its crosstalk with Wnt signaling and other developmental pathways. Both autophagy and Wnt signaling are involved in embryogenesis and differentiation. Autophagy is responsible for degradation and recycling of cytosolic materials by directing them to lysosomes through the phagophore compartment. A dual feedback mechanism regulates the interface between autophagy and Wnt signaling pathways. During nutrient deprivation, β-catenin and Dishevelled (essential Wnt signaling proteins) are targeted for autophagic degradation by LC3. When Wnt signaling is activated, β-catenin acts as a corepressor of one of the autophagy proteins, p62. In contrast, another key Wnt signaling protein, GSK3β, negatively regulates the Wnt pathway and has been shown to induce autophagy by phosphorylation of the TSC complex. This article reviews the interplay between autophagy and Wnt signaling, describing how β-catenin functions as a key cellular integration point coordinating proliferation with autophagy, and it discusses the clinical importance of the crosstalk between these mechanisms.
Collapse
|
25
|
Wen T, Yang A, Wang T, Jia M, Lai X, Meng J, Liu J, Han B, Xu H. Ultra-small platinum nanoparticles on gold nanorods induced intracellular ROS fluctuation to drive megakaryocytic differentiation of leukemia cells. Biomater Sci 2020; 8:6204-6211. [PMID: 33078787 DOI: 10.1039/d0bm01547d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic myeloid leukemia (CML) is a kind of hematological malignancy featured with retarded differentiation that is highly linked to the level of intracellular reactive oxygen species (ROS). In this work, ultra-small platinum nanoparticles deposited on gold nanorods (Au@Pt) were synthesized and applied on the CML cells. It was shown that Au@Pt had multienzyme-like activities that induced a fluctuation of the intracellular ROS level over the incubation time, depending on their temporal locations in the cells. The ROS fluctuation triggered cellular autophagy and enhanced the level of autophagic protein Beclin-1, which caused the degradation of fusion protein BCR-ABL, the key factor of retarded differentiation and led to the downregulation of phosphorylation of PI3K and AKT. These interactions together broke retarded differentiation and drove the CML cells to differentiate towards megakaryocytes, which is of great significance in enhancing leukemic cell apoptosis. Therefore, Au@Pt exhibited a novel function and promising therapeutic potential for the CML treatment.
Collapse
Affiliation(s)
- Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Aiyun Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Tao Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Mengfan Jia
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Xinning Lai
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Jie Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Bing Han
- Department of hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Beijing 100730, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| |
Collapse
|
26
|
Sorrentino D, Frentzel J, Mitou G, Blasco RB, Torossian A, Hoareau-Aveilla C, Pighi C, Farcé M, Meggetto F, Manenti S, Espinos E, Chiarle R, Giuriato S. High Levels of miR-7-5p Potentiate Crizotinib-Induced Cytokilling and Autophagic Flux by Targeting RAF1 in NPM-ALK Positive Lymphoma Cells. Cancers (Basel) 2020; 12:cancers12102951. [PMID: 33066037 PMCID: PMC7650725 DOI: 10.3390/cancers12102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Anaplastic lymphoma kinase positive anaplastic large cell lymphomas are a pediatric disease, which still needs treatment improvement. Crizotinib was the first ALK-targeted inhibitor used in clinics, but relapses are now known to occur. Current research efforts indicate that combined therapies could represent a superior strategy to eradicate malignant cells and prevent tumor recurrence. Autophagy is a self-digestion cellular process, known to be induced upon diverse cancer therapies. Our present work demonstrates that the potentiation of the crizotinib-induced autophagy flux, through the serine/threonine kinase RAF1 downregulation, drives ALK+ ALCL cells to death. These results should encourage further investigations on the therapeutic modulation of autophagy in this particular cancer settings and other ALK-related malignancies. Abstract Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment. In this context, we studied whether autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling pathway, known to be associated with either cell survival or cell death depending on the cancer and therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+ lymphoma cells and that its further intensification was associated with cell death. In line with these results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition, using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may account for the enforced autophagy and cytokilling effect. Altogether, our results support the development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.
Collapse
Affiliation(s)
- Domenico Sorrentino
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Julie Frentzel
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Merck Serono S.A., Department of Biotechnology Process Sciences, Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland
| | - Géraldine Mitou
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Rafael B. Blasco
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
| | - Avédis Torossian
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Coralie Hoareau-Aveilla
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Chiara Pighi
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Manon Farcé
- Pôle Technologique du CRCT—Plateau de Cytométrie et Tri cellulaire—INSERM U1037, F-31037 Toulouse, France;
| | - Fabienne Meggetto
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Roberto Chiarle
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sylvie Giuriato
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +33-(5)-82-74-16-35
| |
Collapse
|
27
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
28
|
Zheng Z, Wang L, Cheng S, Wang Y, Zhao W. Autophagy and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:601-613. [PMID: 32671778 DOI: 10.1007/978-981-15-4272-5_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leukemia is a malignant clonal disease that originates from hematopoietic stem cells. As in-depth research examines the molecular biology and immunology of the hematopoietic system, leukemia treatment has evolved from a single cytotoxic drug to treatments that inducing differentiation and apoptosis. Meanwhile, autophagy has become a growing concern as a new form of cell death. The immune response, hematopoietic stem cell differentiation, and drug resistance of tumor cells are all potentially affected by autophagy. Regulating autophagy may become one of the promising directions in the field of targeted therapy.
Collapse
Affiliation(s)
- Zhong Zheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Mandhair HK, Arambasic M, Novak U, Radpour R. Molecular modulation of autophagy: New venture to target resistant cancer stem cells. World J Stem Cells 2020; 12:303-322. [PMID: 32547680 PMCID: PMC7280868 DOI: 10.4252/wjsc.v12.i5.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly regulated catabolic process in which superfluous, damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance, autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Miroslav Arambasic
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
30
|
Humbert M, Morán M, de la Cruz-Ojeda P, Muntané J, Wiedmer T, Apostolova N, McKenna SL, Velasco G, Balduini W, Eckhart L, Janji B, Sampaio-Marques B, Ludovico P, Žerovnik E, Langer R, Perren A, Engedal N, Tschan MP. Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot. BIOLOGY 2020; 9:E59. [PMID: 32245178 PMCID: PMC7150830 DOI: 10.3390/biology9030059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the fact that autophagy is characterized by the flux of substrates whereas histology informs only about amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years. The importance of establishing clear-cut autophagy markers that can be used for tissue analysis cannot be underestimated. In this review, we attempt to summarize known techniques to quantify autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations that should be taken into consideration to improve the reliability and the interpretation of autophagy biomarkers in human tissue samples.
Collapse
Grants
- none Bernese Cancer League
- none Stiftung für klinisch-experimentelle Tumorforschung
- none Werner and Hedy Berger-Janser Foundation for Cancer Research
- PI14/01085 and PI17/00093 FIS and FEDER funds from the EU
- CPII16/00023 ISCIII and FSE funds
- RTI2018-096748-B-100 the Spanish Minsitry of Science, Innovation and Universities
- none University Professor Training Fellowship, Ministry of Science, Innovation and University, Government of Spain
- PI18/00442 the State Plan for R & D + I2013-2016 and funded by the Instituto de Salud Carlos III
- none European Regional Development Fund
- C18/BM/12670304/COMBATIC Luxembourg National Research Fund
- NORTE-01-0145-FEDER-000013 Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, by the European Regional Development Fund (FEDER), through the Competitiveness Factors Operational Programme (COMPETE)
- POCI-01-0145-FEDER-028159 and POCI-01-0145-FEDER-030782 FEDER, through the COMPETE
- none National funds, through the Foundation for Science and Technology (FCT
- none ARRS - the Slovenian research agency, programme P1-0140: Proteolysis and its regulation
- KFS-3360-02-2014 the Swiss Cancer Research
- KFS-3409-02-2014 the Swiss Cancer Research
- 31003A_173219 Swiss National Science Foundation
Collapse
Affiliation(s)
- Magali Humbert
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland; (T.W.); (R.L.); (A.P.)
| | - María Morán
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital ‘12 de Octubre’ (‘imas12’), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain;
- Department of Surgery, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Jordi Muntané
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain;
- Department of Surgery, School of Medicine, University of Seville, 41009 Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Tabea Wiedmer
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland; (T.W.); (R.L.); (A.P.)
| | - Nadezda Apostolova
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
| | - Sharon L. McKenna
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Cancer Research at UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Guillermo Velasco
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Walter Balduini
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Leopold Eckhart
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Bassam Janji
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology—Luxembourg Institute of Health, 1526 Luxembourg City, Luxembourg
| | - Belém Sampaio-Marques
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula Ludovico
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eva Žerovnik
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Rupert Langer
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland; (T.W.); (R.L.); (A.P.)
| | - Aurel Perren
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland; (T.W.); (R.L.); (A.P.)
| | - Nikolai Engedal
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Mario P. Tschan
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain; (M.M.); (J.M.); (N.A.); (S.L.M.); (G.V.); (W.B.); (L.E.); (B.J.); (B.S.-M.); (P.L.); (E.Ž.); (N.E.)
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland; (T.W.); (R.L.); (A.P.)
| |
Collapse
|
31
|
Mu J, Sun P, Ma Z, Sun P. Bromodomain and extraterminal domain inhibitor enhances the antitumor effect of imatinib in gastrointestinal stromal tumours. J Cell Mol Med 2020; 24:2519-2530. [PMID: 31957165 PMCID: PMC7028844 DOI: 10.1111/jcmm.14945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
In gastrointestinal stromal tumours (GISTs), the function of bromodomain-containing 4 (BRD4) remains underexplored. BRD4 mRNA abundance was quantified in GISTs. In the current study, we investigated the role of BRD4 in GISTs. Our results show a significant enhancement in BRD4 mRNA and a shift from very low-risk/low-risk to high-risk levels as per NCCN specifications. Overexpression of BRD4 correlated with unfavourable genotype, nongastric location, enhanced risk and decreased disease-free survival, which were predicted independently. Knockout of BRD4 in vitro suppressed KIT expression, which led to inactivation of the KIT/PI3K/AKT/mTOR pathway, impeded migration and cell growth and made the resistant GIST cells sensitive to imatinib. The expression of KIT was repressed by a BRD4 inhibitor JQ1, which also induced myristoylated-AKT-suppressible caspases 3 and 9 activities, induced LC3-II, exhibited dose-dependent therapeutic synergy with imatinib and attenuated the activation of the PI3K/AKT/mTOR pathway. In comparison with their single therapy, the combination of JQ1/imatinib more efficiently suppressed the growth of xenografts and exhibited a reduction in KIT phosphorylation, a decrease in Ki-67 and in the levels of phosphorylated PI3K/AKT/mTOR and enhanced TUNEL staining. Thus, we characterized the biological, prognostic and therapeutic implications of overexpressed BRD4 in GIST and observed that JQ1 suppresses KIT transactivation and nullifies the activation of PI3K/AKT/mTOR, providing a potential strategy for treating imatinib-resistant GIST through dual blockade of KIT and BRD4.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastric and Colorectal SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Pengfei Sun
- Changchun Railway Medical Insurance Management OfficeChangchunChina
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe second hospital of Jilin UniversityChangchunChina
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe second hospital of Jilin UniversityChangchunChina
| |
Collapse
|
32
|
Koschade SE, Brandts CH. Selective Autophagy in Normal and Malignant Hematopoiesis. J Mol Biol 2020; 432:261-282. [DOI: 10.1016/j.jmb.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
33
|
Robert G, Jacquel A, Auberger P. Chaperone-Mediated Autophagy and Its Emerging Role in Hematological Malignancies. Cells 2019; 8:E1260. [PMID: 31623164 PMCID: PMC6830112 DOI: 10.3390/cells8101260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) ensures the selective degradation of cellular proteins endowed with a KFERQ-like motif by lysosomes. It is estimated that 30% of all cellular proteins can be directed to the lysosome for CMA degradation, but only a few substrates have been formally identified so far. Mechanistically, the KFERQ-like motifs present in substrate proteins are recognized by the molecular chaperone Hsc70c (Heat shock cognate 71 kDa protein cytosolic), also known as HSPA8, and directed to LAMP2A, which acts as the CMA receptor at the lysosomal surface. Following linearization, the protein substrate is next transported to the lumen of the lysosomes, where it is degraded by resident proteases, mainly cathepsins and eventually recycled to sustain cellular homeostasis. CMA is induced by different stress conditions, including energy deprivation that also activates macro-autophagy (MA), that may make it difficult to decipher the relative impact of both pathways on cellular homeostasis. Besides common inducing triggers, CMA and MA might be induced as compensatory mechanisms when either mechanism is altered, as it is the often the case in different pathological settings. Therefore, CMA activation can compensate for alterations of MA and vice versa. In this context, these compensatory mechanisms, when occurring, may be targeted for therapeutic purposes. Both processes have received particular attention from scientists and clinicians, since modulation of MA and CMA may have a profound impact on cellular proteostasis, metabolism, death, differentiation, and survival and, as such, could be targeted for therapeutic intervention in degenerative and immune diseases, as well as in cancer, including hematopoietic malignancies. The role of MA in cancer initiation and progression is now well established, but whether and how CMA is involved in tumorigenesis has been only sparsely explored. In the present review, we encompass the description of the mechanisms involved in CMA, its function in the physiology and pathogenesis of hematopoietic cells, its emerging role in cancer initiation and development, and, finally, the potential therapeutic opportunity to target CMA or CMA-mediated compensatory mechanisms in hematological malignancies.
Collapse
Affiliation(s)
- Guillaume Robert
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| | - Arnaud Jacquel
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France
| | - Patrick Auberger
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| |
Collapse
|
34
|
Involvement of Actin in Autophagy and Autophagy-Dependent Multidrug Resistance in Cancer. Cancers (Basel) 2019; 11:cancers11081209. [PMID: 31434275 PMCID: PMC6721626 DOI: 10.3390/cancers11081209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023] Open
Abstract
Currently, autophagy in the context of cancer progression arouses a lot of controversy. It is connected with the possibility of switching the nature of this process from cytotoxic to cytoprotective and vice versa depending on the treatment. At the same time, autophagy of cytoprotective character may be one of the factors determining multidrug resistance, as intensification of the process is observed in patients with poorer prognosis. The exact mechanism of this relationship is not yet fully understood; however, it is suggested that one of the elements of the puzzle may be a cytoskeleton. In the latest literature reports, more and more attention is paid to the involvement of actin in the autophagy. The role of this protein is linked to the formation of autophagosomes, which are necessary element of the process. However, based on the proven effectiveness of manipulation of the actin pool, it seems to be an attractive alternative in breaking autophagy-dependent multidrug resistance in cancer.
Collapse
|
35
|
Moosavi MA, Djavaheri-Mergny M. Autophagy: New Insights into Mechanisms of Action and Resistance of Treatment in Acute Promyelocytic leukemia. Int J Mol Sci 2019; 20:E3559. [PMID: 31330838 PMCID: PMC6678259 DOI: 10.3390/ijms20143559] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy is one of the main cellular catabolic pathways controlling a variety of physiological processes, including those involved in self-renewal, differentiation and death. While acute promyelocytic leukemia (APL) cells manifest low levels of expression of autophagy genes associated with reduced autophagy activity, the introduction of all-trans retinoid acid (ATRA)-a differentiating agent currently used in clinical settings-restores autophagy in these cells. ATRA-induced autophagy is involved in granulocytes differentiation through a mechanism that involves among others the degradation of the PML-RARα oncoprotein. Arsenic trioxide (ATO) is another anti-cancer agent that promotes autophagy-dependent clearance of promyelocytic leukemia retinoic acid receptor alpha gene (PML-RARα) in APL cells. Hence, enhancing autophagy may have therapeutic benefits in maturation-resistant APL cells. However, the role of autophagy in response to APL therapy is not so simple, because some autophagy proteins have been shown to play a pro-survival role upon ATRA and ATO treatment, and both agents can activate ETosis, a type of cell death mediated by the release of neutrophil extracellular traps (ETs). This review highlights recent findings on the impact of autophagy on the mechanisms of action of ATRA and ATO in APL cells. We also discuss the potential role of autophagy in the development of resistance to treatment, and of differentiation syndrome in APL.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Mojgan Djavaheri-Mergny
- Equipe labellisée par la Ligue contre le cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris 75006, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France.
| |
Collapse
|