1
|
Khavari B, Barnett MM, Mahmoudi E, Geaghan MP, Graham A, Cairns MJ. microRNA and the Post-Transcriptional Response to Oxidative Stress during Neuronal Differentiation: Implications for Neurodevelopmental and Psychiatric Disorders. Life (Basel) 2024; 14:562. [PMID: 38792584 PMCID: PMC11121913 DOI: 10.3390/life14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress is one of the most important environmental exposures associated with psychiatric disorders, but the underlying molecular mechanisms remain to be elucidated. In a previous study, we observed a substantial alteration of the gene expression landscape in neuron-like cells that were differentiated from SH-SY5Y cells after or during exposure to oxidative stress, with a subset of dysregulated genes being enriched for neurodevelopmental processes. To further explore the regulatory mechanisms that might account for such profound perturbations, we have now applied small RNA-sequencing to investigate changes in the expression of miRNAs. These molecules are known to play crucial roles in brain development and response to stress through their capacity to suppress gene expression and influence complex biological networks. Through these analyses, we observed more than a hundred differentially expressed miRNAs, including 80 previously reported to be dysregulated in psychiatric disorders. The seven most influential miRNAs associated with pre-treatment exposure, including miR-138-5p, miR-96-5p, miR-34c-5p, miR-1287-5p, miR-497-5p, miR-195-5p, and miR-16-5p, supported by at least 10 negatively correlated mRNA connections, formed hubs in the interaction network with 134 genes enriched with neurobiological function, whereas in the co-treatment condition, miRNA-mRNA interaction pairs were enriched in cardiovascular and immunity-related disease ontologies. Interestingly, 12 differentially expressed miRNAs originated from the DLK1-DIO3 location, which encodes a schizophrenia-associated miRNA signature. Collectively, our findings suggest that early exposure to oxidative stress, before and during prenatal neuronal differentiation, might increase the risk of mental illnesses in adulthood by disturbing the expression of miRNAs that regulate neurodevelopmentally significant genes and networks.
Collapse
Affiliation(s)
- Behnaz Khavari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michelle M. Barnett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Adam Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Wang Z, Heid B, He J, Xie H, Reilly CM, Dai R, Ahmed SA. Egr2 Deletion in Autoimmune-Prone C57BL6/lpr Mice Suppresses the Expression of Methylation-Sensitive Dlk1-Dio3 Cluster MicroRNAs. Immunohorizons 2023; 7:898-907. [PMID: 38153351 PMCID: PMC10759154 DOI: 10.4049/immunohorizons.2300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
We previously demonstrated that the upregulation of microRNAs (miRNAs) at the genomic imprinted Dlk1-Dio3 locus in murine lupus is correlated with global DNA hypomethylation. We now report that the Dlk1-Dio3 genomic region in CD4+ T cells of MRL/lpr mice is hypomethylated, linking it to increased Dlk1-Dio3 miRNA expression. We evaluated the gene expression of methylating enzymes, DNA methyltransferases (DNMTs), and demethylating ten-eleven translocation proteins (TETs) to elucidate the molecular basis of DNA hypomethylation in lupus CD4+ T cells. There was a significantly elevated expression of Dnmt1 and Dnmt3b, as well as Tet1 and Tet2, in CD4+ T cells of three different lupus-prone mouse strains compared to controls. These findings suggest that the hypomethylation of murine lupus CD4+ T cells is likely attributed to a TET-mediated active demethylation pathway. Moreover, we found that deletion of early growth response 2 (Egr2), a transcription factor gene in B6/lpr mice markedly reduced maternally expressed miRNA genes but not paternally expressed protein-coding genes at the Dlk1-Dio3 locus in CD4+ T cells. EGR2 has been shown to induce DNA demethylation by recruiting TETs. Surprisingly, we found that deleting Egr2 in B6/lpr mice induced more hypomethylated differentially methylated regions at either the whole-genome level or the Dlk1-Dio3 locus in CD4+ T cells. Although the role of methylation in EGR2-mediated regulation of Dlk1-Dio3 miRNAs is not readily apparent, these are the first data to show that in lupus, Egr2 regulates Dlk1-Dio3 miRNAs, which target major signaling pathways in autoimmunity. These data provide a new perspective on the role of upregulated EGR2 in lupus pathogenesis.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jianlin He
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
3
|
Male-specific coordinated changes in expression of miRNA genes, but not other genes within the DLK1-DIO3 locus in multiple sclerosis. Gene 2022; 836:146676. [PMID: 35714798 DOI: 10.1016/j.gene.2022.146676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
The role of miRNAs, small non-coding regulatory RNAs, in the molecular mechanisms of multiple sclerosis (MS) development has been intensively studied. MiRNAs tend to be clustered within imprinted regions, and the largest number of miRNA genes is observed in the DLK1-DIO3 locus. Earlier using RNA-seq we identified sex-specific upregulation of the set of miRNA genes from this locus in peripheral blood mononuclear cells (PBMC) of treatment-naive relapsing-remitting MS (RRMS) patients. In the present study we set up to independently investigate the expression of a vast array of genes present in the DLK1-DIO3 imprinted locus. First, we analyzed the expression of miRNA genes, which levels in RRMS were mostly inconsistent based on RNA-seq data and not previously explored using qPCR. We identified that all selected miRNAs - miR-337-3p and -665 from 14q32.2 cluster and miR-370c, -380, -494, -654-3p, -300, -539, -668, and -323b-5p - were upregulated in MS men, but not women when compared to controls, regardless of conflicting RNA-seq data. The expression of miRNAs from the DLK1-DIO3 locus was highly correlated, indicating the existence of a common regulatory mechanism(s) that controls miRNA expression, regardless of the position of their genes within this region. Second, we performed the expression analysis of non-miRNA genes within the locus. The genes encoding proteins (DLK1, DIO3, RTL1), long non-coding RNAs (MEG3, MEG8, and MEG9) and small nucleolar RNAs (SNORD112, SNORD113-5, SNORD113-7, SNORD114-3, SNORD114-8, SNORD114-19) were not dysregulated in RRMS both in men and women. DNA methylation analysis of selected CpG sites within the differentially methylated regions IG-DMR, MEG3-DMR, and MEG8-DMR of the DLK1-DIO3 imprinted locus pointed out that they were not involved in the regulation of miRNA gene expression in RRMS, at least in PBMC population. The question of whether the observed changes in expression of miRNA genes (given that there is a constant expression of other non-miRNA genes of the DLK1-DIO3 locus) are involved in the development of RRMS or are they a consequence of the disease progress, remains open and needs further investigation.
Collapse
|
4
|
Machine Learning-Based Models for Detection of Biomarkers of Autoimmune Diseases by Fragmentation and Analysis of miRNA Sequences. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Thanks to high-throughput data technology, microRNA analysis studies have evolved in early disease detection. This work introduces two complete models to detect the biomarkers of two autoimmune diseases, multiple sclerosis and rheumatoid arthritis, via miRNA analysis. Based on work the authors published previously, both introduced models involve complete pipelines of text mining methods, integrated with traditional machine learning methods, and LSTM deep learning. This work also studies the fragmentation of miRNA sequences to reduce the needed processing time and computational power. Moreover, this work studies the impact of obtaining two different library preparation kits (NEBNEXT and NEXTFLEX) on the detection accuracy for rheumatoid arthritis. Additional experiments are applied to the proposed models based on three different transcriptomic datasets. The results denote that the transcriptomic fragmentation model reported a biomarker detection accuracy of 96.45% on a sequence fragment size of 0.2, indicating a significant reduction in execution power while retaining biomarker detection accuracy. On the other hand, the LSTM model obtained a promising detection accuracy of 72%, implying savings in feature engineering processing. Additionally, the fragmentation model and the LSTM model reported 22.4% and 87.5% less execution time than work in the literature, respectively, denoting a considerable execution power reduction.
Collapse
|
5
|
Cell Differentiation and Proliferation in the Bone Marrow and Other Organs of 2D2 Mice during Spontaneous Development of EAE Leading to the Production of Abzymes. Molecules 2022; 27:molecules27072195. [PMID: 35408594 PMCID: PMC9000721 DOI: 10.3390/molecules27072195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The exact cellular and molecular mechanisms of multiple sclerosis and other autoimmune diseases have not been established. Autoimmune pathologies are known to be associated with faults in the immune system and changes in the differentiation profiles of bone marrow stem cells. This study analyzed various characteristics of experimental autoimmune encephalomyelitis (EAE) in 2D2 mice. Differentiation profiles of six hematopoietic stem cells of bone marrow were found to significantly differ in 2D2 male and female mice during the spontaneous development of EAE. In addition, we found various properties of B and T cells, CD4+ and CD8+ lymphocytes in blood and several organs (bone marrow, spleen, thymus, and lymph nodes) of 2D2 male and female mice to be considerably different. These changes in hematopoietic stem cells differentiation profiles and level of lymphocyte proliferation in various organs of 2D2 mice were found to induce the production of IgGs against DNA, myelin basic protein, and myelin oligodendrocyte glycoprotein, increasing the number of autoantibodies hydrolyzing these substrates. We compared the changes of these immunological and biochemical parameters in 2D2 mice with those of mice of two other lines (Th and C57BL/6), also prone to spontaneous development of EAE. Some noticeable and even extreme variations were found in the time-related development of parameters between male and female mice of 2D2, Th, and C57BL/6 lines. Despite some differences, mice of all three lines demonstrated the changes in hematopoietic stem cells profiles, lymphocyte content, and production of catalytic autoantibodies. Given that these changes are harmful to mice, we believe them to cause the development of experimental autoimmune encephalomyelitis.
Collapse
|
6
|
Xu Z, Shi J, Zhang Y, Liu Y, Zhao J, Chen Q, Song C, Geng S, Xie W, Wu F, Bai Y, Yang Y, Li X. Zfp57 Exerts Maternal and Sexually Dimorphic Effects on Genomic Imprinting. Front Cell Dev Biol 2022; 10:784128. [PMID: 35252168 PMCID: PMC8895500 DOI: 10.3389/fcell.2022.784128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 12/05/2022] Open
Abstract
Zfp57 has both maternal and zygotic functions in mouse. It maintains genomic imprinting at most known imprinted regions and controls allelic expression of the target imprinted genes in mouse embryos. The DNA methylation imprint at many imprinting control regions (ICRs) is lost when both maternal and zygotic Zfp57 are absent in Zfp57 maternal–zygotic mutant mouse embryos. Interestingly, we found that DNA methylation at a few ICRs was partially lost without maternal Zfp57 in Zfp57 heterozygous mouse embryos derived from Zfp57 homozygous female mice. This suggests that maternal Zfp57 is essential for the maintenance of DNA methylation at a small subset of imprinted regions in mouse embryos. This maternal effect of Zfp57 was applied to allelic expression switch as well as expression levels of the corresponding imprinted genes. It is rather surprising that DNA methylation imprint was affected differently at Rasgrf1 and AK008011 imprinted regions in the female or male Zfp57 maternal–zygotic mutant embryos, with more significant loss of DNA methylation observed in the male mutant embryos. Loss of ZFP57 resulted in gender-specific differences in allelic expression switch and expression level changes of some imprinted genes in female or male mutant embryos. These results indicate maternal and sexually dimorphic effects of ZFP57 on genomic imprinting in mouse.
Collapse
Affiliation(s)
- Zhen Xu
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuhan Liu
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Junzheng Zhao
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Qian Chen
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Chenglin Song
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Shuhui Geng
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Feizhen Wu
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, ShanghaiChina
- *Correspondence: Xiajun Li,
| |
Collapse
|
7
|
Sha H, Gan Y, Xu F, Zhu Y, Zou R, Peng W, Wu Z, Ma R, Wu J, Feng J. MicroRNA-381 in human cancer: Its involvement in tumour biology and clinical applications potential. J Cell Mol Med 2022; 26:977-989. [PMID: 35014178 PMCID: PMC8831973 DOI: 10.1111/jcmm.17161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non‐coding RNAs that regulate gene expression at the post‐transcriptional level. MiRNAs are involved in the development and progression of a wide range of cancers. Among such cancer‐associated miRNAs, miR‐381 has been a major focus of research. The expression pattern and role of miR‐381 vary among different cancer types. MiR‐381 modulates various cellular behaviours in cancer, including proliferation, apoptosis, cell cycle progression, migration and invasion. MiR‐381 is also involved in angiogenesis and lymphangiogenesis, as well as in the resistance to chemotherapy and radiotherapy. MiR‐381 itself is regulated by several factors, such as long noncoding RNAs, circular RNAs and cytokines. Aberrant expression of miR‐381 in blood samples indicates that it can be used as a diagnostic marker in cancer. Tissue miR‐381 expression may serve as a prognostic factor for the clinicopathological characteristics of cancers and survival of patients. Metformin and icaritin regulate miR‐381 expression and present anticancer properties. This review comprehensively summarizes the effect of miR‐381 on tumour biological behaviours, as well as the clinical application potential of miR‐381 for the treatment of cancer.
Collapse
Affiliation(s)
- Huanhuan Sha
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yujie Gan
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Zhu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Renrui Zou
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Peng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiya Wu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Ma
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianzhong Wu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Baulina N, Kabaeva A, Boyko A, Favorova O. Expression analysis of miRNAs from the DLK1-DIO3 locus in CD4+ and CD14+ cells in patients with relapsing-remitting multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:52-59. [DOI: 10.17116/jnevro202212207252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Boyko A. Tyrosine kinases: a target of epigenetic influences and a new direction in the treatment of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:27-30. [DOI: 10.17116/jnevro202212207227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Dai R, Wang Z, Ahmed SA. Epigenetic Contribution and Genomic Imprinting Dlk1-Dio3 miRNAs in Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:680. [PMID: 34062726 PMCID: PMC8147206 DOI: 10.3390/genes12050680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that afflicts multiple organs, especially kidneys and joints. In addition to genetic predisposition, it is now evident that DNA methylation and microRNAs (miRNAs), the two major epigenetic modifications, are critically involved in the pathogenesis of SLE. DNA methylation regulates promoter accessibility and gene expression at the transcriptional level by adding a methyl group to 5' cytosine within a CpG dinucleotide. Extensive evidence now supports the importance of DNA hypomethylation in SLE etiology. miRNAs are small, non-protein coding RNAs that play a critical role in the regulation of genome expression. Various studies have identified the signature lupus-related miRNAs and their functional contribution to lupus incidence and progression. In this review, the mutual interaction between DNA methylation and miRNAs regulation in SLE is discussed. Some lupus-associated miRNAs regulate DNA methylation status by targeting the DNA methylation enzymes or methylation pathway-related proteins. On the other hand, DNA hyper- and hypo-methylation are linked with dysregulated miRNAs expression in lupus. Further, we specifically discuss the genetic imprinting Dlk1-Dio3 miRNAs that are subjected to DNA methylation regulation and are dysregulated in several autoimmune diseases, including SLE.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
11
|
Baulina N, Kiselev I, Favorova O. Imprinted Genes and Multiple Sclerosis: What Do We Know? Int J Mol Sci 2021; 22:1346. [PMID: 33572862 PMCID: PMC7866243 DOI: 10.3390/ijms22031346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system that arises from interplay between non-genetic and genetic risk factors. The epigenetics functions as a link between these factors, affecting gene expression in response to external influence, and therefore should be extensively studied to improve the knowledge of MS molecular mechanisms. Among others, the epigenetic mechanisms underlie the establishment of parent-of-origin effects that appear as phenotypic differences depending on whether the allele was inherited from the mother or father. The most well described manifestation of parent-of-origin effects is genomic imprinting that causes monoallelic gene expression. It becomes more obvious that disturbances in imprinted genes at the least affecting their expression do occur in MS and may be involved in its pathogenesis. In this review we will focus on the potential role of imprinted genes in MS pathogenesis.
Collapse
Affiliation(s)
- Natalia Baulina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ivan Kiselev
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
| | - Olga Favorova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
12
|
Honda S, Chatterjee A, Leichter AL, Miyagi H, Minato M, Fujiyoshi S, Ara M, Kitagawa N, Tanaka M, Tanaka Y, Shinkai M, Hatanaka KC, Taketomi A, Eccles MR. A MicroRNA Cluster in the DLK1-DIO3 Imprinted Region on Chromosome 14q32.2 Is Dysregulated in Metastatic Hepatoblastomas. Front Oncol 2020; 10:513601. [PMID: 33282720 PMCID: PMC7689214 DOI: 10.3389/fonc.2020.513601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver neoplasm in children. Despite progress in HB therapy, outcomes for patients with metastatic disease remain poor. Dysregulation of miRNA expression is one of the potential epigenetic mechanisms associated with pathogenesis of HB. However, miRNA profiles related to the different stages of HB tissues and cells, in particular of lung metastatic tumor cells, are unknown. In the present study, using array-based miRNA expression and DNA methylation analysis on formalin-fixed paraffin-embedded tissues, we aimed to identify miRNA changes that can discriminate between lung metastatic tumors, primary tumors (fetal and embryonal subtypes), and nontumorous surrounding livers. Our analysis demonstrated that a large cluster of microRNAs and snoRNAs located within the 14q32.2 DLK1-DIO3 region showed a strikingly upregulated expression pattern in HB tumors, especially metastatic tumors, compared to normal liver tissues. This revealed dysregulation of miRNAs similar to that seen in a malignant stem-like subtype of hepatocellular carcinoma associated with poor prognosis. These findings in HB mirror similar findings made in multiple other cancer types. With further analysis this may in future allow stratification of different stages and types of HB tumors based on their miRNA profiles, which could lead to new approaches to diagnosis and treatment in progressive HB patients.
Collapse
Affiliation(s)
- Shohei Honda
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hisayuki Miyagi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Minato
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sunao Fujiyoshi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Momoko Ara
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masato Shinkai
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Kakan SS, Janga SR, Cooperman B, Craig DW, Edman MC, Okamoto CT, Hamm-Alvarez SF. Small RNA Deep Sequencing Identifies a Unique miRNA Signature Released in Serum Exosomes in a Mouse Model of Sjögren's Syndrome. Front Immunol 2020; 11:1475. [PMID: 32849505 PMCID: PMC7396589 DOI: 10.3389/fimmu.2020.01475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and loss of function of moisture-producing exocrine glands as well as systemic inflammation. SS diagnosis is cumbersome, subjective and complicated by manifestation of symptoms that overlap with those of other rheumatic and ocular diseases. Definitive diagnosis averages 4–5 years and this delay may lead to irreversible tissue damage. Thus, there is an urgent need for diagnostic biomarkers for earlier detection of SS. Extracellular vesicles called exosomes carry functional small non-coding RNAs which play a critical role in maintaining cellular homeostasis via transcriptional and translational regulation of mRNA. Alterations in levels of specific exosomal miRNAs may be predictive of disease status. Here, we have assessed serum exosomal RNA using next generation sequencing in a discovery cohort of the NOD mouse, a model of early-intermediate SS, to identify dysregulated miRNAs that may be indicative of SS. We found five miRNAs upregulated in serum exosomes of NOD mice with an adjusted p < 0.05—miRNA-127-3p, miRNA-409-3p, miRNA-410-3p, miRNA-541-5p, and miRNA-540-5p. miRNAs 127-3p and 541-5p were also statistically significantly upregulated in a validation cohort of NOD mice. Pathway analysis and existing literature indicates that differential expression of these miRNAs may dysregulate pathways involved in inflammation. Future studies will apply these findings in a human cohort to understand how they are correlated with manifestations of SS as well as understanding their functional role in systemic autoimmunity specific to SS.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth R Janga
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Cooperman
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - David W Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Budkova Z, Sigurdardottir AK, Briem E, Bergthorsson JT, Sigurdsson S, Magnusson MK, Traustadottir GA, Gudjonsson T, Hilmarsdottir B. Expression of ncRNAs on the DLK1-DIO3 Locus Is Associated With Basal and Mesenchymal Phenotype in Breast Epithelial Progenitor Cells. Front Cell Dev Biol 2020; 8:461. [PMID: 32612992 PMCID: PMC7308478 DOI: 10.3389/fcell.2020.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process mesenchymal-to-epithelial transition (MET) play a critical role in epithelial plasticity during development and cancer progression. Among important regulators of these cellular processes are non-coding RNAs (ncRNAs). The imprinted DLK1-DIO3 locus, containing numerous maternally expressed ncRNAs including the lncRNA maternally expressed gene 3 (MEG3) and a cluster of over 50 miRNAs, has been shown to be a modulator of stemness in embryonic stem cells and in cancer progression, potentially through the tumor suppressor role of MEG3. In this study we analyzed the expression pattern and functional role of ncRNAs from the DLK1-DIO3 locus in epithelial plasticity of the breast. We studied their expression in various cell types of breast tissue and revisit the role of the locus in EMT/MET using a breast epithelial progenitor cell line (D492) and its isogenic mesenchymal derivative (D492M). Marked upregulation of ncRNAs from the DLK1-DIO3 locus was seen after EMT induction in two cell line models of EMT. In addition, the expression of MEG3 and the maternally expressed ncRNAs was higher in stromal cells compared to epithelial cell types in primary breast tissue. We also show that expression of MEG3 is concomitant with the expression of the ncRNAs from the DLK1-DIO3 locus and its expression is therefore likely indicative of activation of all ncRNAs at the locus. MEG3 expression is correlated with stromal markers in normal tissue and breast cancer tissue and negatively correlated with the survival of breast cancer patients in two different cohorts. Overexpression of MEG3 using CRISPR activation in a breast epithelial cell line induced partial EMT and enriched for a basal-like phenotype. Conversely, knock down of MEG3 using CRISPR inhibition in a mesenchymal cell line reduced the mesenchymal and basal-like phenotype of the cell line. In summary our study shows that maternally expressed ncRNAs are markers of EMT and suggests that MEG3 is a novel regulator of EMT/MET in breast tissue. Nevertheless, further studies are needed to fully dissect the molecular pathways influenced by non-coding RNAs at the DLK1-DIO3 locus in breast tissue.
Collapse
Affiliation(s)
- Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jon Thor Bergthorsson
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Snævar Sigurdsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Karl Magnusson
- Department of Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali - University Hospital, Reykjavik, Iceland
| |
Collapse
|
15
|
Boyko A, Melnikov M. Prevalence and Incidence of Multiple Sclerosis in Russian Federation: 30 Years of Studies. Brain Sci 2020; 10:E305. [PMID: 32443404 PMCID: PMC7288193 DOI: 10.3390/brainsci10050305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
In the Russian Federation, multiple sclerosis prevalence rates vary from 10 to 80 cases per 100,000, depending on region and the nationality of the population. The main characteristics of multiple sclerosis epidemiology in the XX century in this big territory are: (1) steady increase in multiple sclerosis prevalence and incidence rates, maybe because of better diagnosis and treatment, but also changes in environmental/epigenetic risk profile and/or lifestyle factors; (2) increase of the female to male ratio, increase in multiple sclerosis incidence mainly in females; (3) appearance and increasing frequency of multiple sclerosis in ethnic groups, previously free of multiple sclerosis (Northern Tribes, Yakuts and others). The latest data show that in European Russia, the multiple sclerosis prevalence varies from 30 to 80 cases, in Siberia-from 20 to 70 cases, with steady increases, especially in women.
Collapse
Affiliation(s)
- Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetic, Prirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia;
- Department of Neuroimmunology, Federal Center of Brain and Neurotechnology, Federal Medical-Biological Agency of Russia, 1-10 Ostrovityanova st., Moscow 117997, Russia
- Scientific-Practical Center of Pediatric Psychoneurology, Michurinsky Prospekt 74, Moscow 119602, Russia
| | - Mikhail Melnikov
- Department of Neurology, Neurosurgery and Medical Genetic, Prirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia;
- Department of Neuroimmunology, Federal Center of Brain and Neurotechnology, Federal Medical-Biological Agency of Russia, 1-10 Ostrovityanova st., Moscow 117997, Russia
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Kashirskoe shosse 24, Moscow 115478, Russia
| |
Collapse
|
16
|
Coban N, Pirim D, Erkan AF, Dogan B, Ekici B. Hsa-miR-584-5p as a novel candidate biomarker in Turkish men with severe coronary artery disease. Mol Biol Rep 2019; 47:1361-1369. [PMID: 31863331 DOI: 10.1007/s11033-019-05235-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022]
Abstract
Coronary artery disease (CAD) is still the preliminary cause of mortality and morbidity in the developed world. Identification of novel predictive and therapeutic biomarkers is crucial for accurate diagnosis, prognosis and treatment of the CAD. The aim of this study was to detect novel candidate miRNA biomarker that may be used in the management of CAD. We performed miRNA profiling in whole blood samples of angiographically confirmed Turkish men with CAD and non-CAD controls with insignificant coronary stenosis. Validation of microarray results was performed by qRT-PCR in a larger cohort of 62 samples. We subsequently assessed the diagnostic value of the miRNA and correlations of miRNA with clinical parameters. miRNA-target identification and network analyses were conducted by Ingenuity Pathway Analysis (IPA) software. Hsa-miR-584-5p was one of the top significantly dysregulated miRNA observed in miRNA microarray. Men-specific down-regulation (p = 0.040) of hsa-miR-584-5p was confirmed by qRT-PCR. ROC curve analysis highlighted the potential diagnostic value of hsa-miR-584-5p with a power area under the curve (AUC) of 0.714 and 0.643 in men and in total sample, respectively. The expression levels of hsa-miR-584-5p showed inverse correlation with stenosis and Gensini scores. IPA revealed CDH13 as the only CAD related predicted target for the miRNA with biological evidence of its involvement in CAD. This study suggests that hsa-miR-584-5p, known to be tumor suppressor miRNA, as a candidate biomarker for CAD and highlighted its putative role in the CAD pathogenesis. The validation of results in larger samples incorporating functional studies warrant further research.
Collapse
Affiliation(s)
- Neslihan Coban
- Department of Genetics, Aziz Sancar Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Dilek Pirim
- Faculty of Arts & Science, Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Turkey
| | - Aycan Fahri Erkan
- Faculty of Medicine, Department of Cardiology, Ufuk University, Ankara, Turkey
| | - Berkcan Dogan
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Bursa Uludag University, Bursa, Turkey
| | - Berkay Ekici
- Faculty of Medicine, Department of Cardiology, Ufuk University, Ankara, Turkey
| |
Collapse
|
17
|
Fan J, Du W, Zhang H, Wang Y, Li K, Meng Y, Wang J. Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5. FEBS Lett 2019; 594:466-476. [PMID: 31562641 DOI: 10.1002/1873-3468.13624] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers in males and particularly tends to metastasize to bone. Currently, metastatic bone disease is incurable, and new therapies need to be developed. Our study aims to determine the role of miR-127-3p in PCa metastasis to bone. The results demonstrate that miR-127-3p is markedly reduced in bone metastasis-positive PCa tissues relative to that in bone metastasis-negative PCa tissues. Furthermore, overexpressing miR-127-3p inhibits PCa cell invasion and migration in vitro by targeting the proteasome β-subunit PSMB5. Moreover, CCCTC-binding factor (CTCF) transcriptionally inhibits miR-127-3p by interacting with the miR-127-3p promoter. Collectively, this study uncovers a novel mechanism of the CTCF/miR-127-3p/PSMB5 axis in promoting PCa bone metastasis, indicating that miR-127-3p could function as a promising therapeutic target against bone metastasis.
Collapse
Affiliation(s)
- Jiaxing Fan
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Wenzhi Du
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Yunchao Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kai Li
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yong Meng
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jianning Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|