1
|
Qiu D, Li G, Hu X, Wang L, Dong Y. Preclinical evaluation on human platelet lysate for the treatment of secondary injury following intracerebral hemorrhage. Brain Res Bull 2025; 220:111153. [PMID: 39617130 DOI: 10.1016/j.brainresbull.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025]
Abstract
Intracerebral hemorrhage (ICH) is a condition with high mortality and disability. Secondary injury processes following ICH include neuroinflammation, oxidative stress, and neuronal apoptosis. Human platelet lysate (HPL), derived from crushed platelets, is rich in cytokines and has demonstrated therapeutic potential in neurological disorders in several studies. However, studies on HPL for ICH remain limited. In this study, we prepared HPL for intranasal administration in ICH treatment. We determined the concentration of growth factors in HPL, validated the targeting of HPL, and established a mouse model of ICH. We observed that HPL improved neuromotor deficits in ICH mice. Barnes maze training showed that HPL enhanced spatial memory and learning ability in mice. Furthermore, HPL reduced neuroinflammation, brain edema, oxidative stress, neuronal apoptosis, and neural axonal damage. Additionally, 5 % HPL demonstrated potent functional activity with no cytotoxicity in SH-5YSY cell cultures. These findings indicate that HPL is a promising therapeutic approach for mitigating secondary brain injury following ICH.
Collapse
Affiliation(s)
- Dachang Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, PR China
| | - Guangwei Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230000, PR China
| | - Xianchao Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, PR China
| | - Lanlan Wang
- Department of Geriatrics,The First Affiliated Hospital of USTC,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, PR China.
| | - Yongfei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, PR China.
| |
Collapse
|
2
|
Elnawam H, Abdallah A, Nouh S, Khalil NM, Elbackly R. Influence of extracellular matrix scaffolds on histological outcomes of regenerative endodontics in experimental animal models: a systematic review. BMC Oral Health 2024; 24:511. [PMID: 38689279 PMCID: PMC11061952 DOI: 10.1186/s12903-024-04266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Decellularized extracellular matrix (dECM) from several tissue sources has been proposed as a promising alternative to conventional scaffolds used in regenerative endodontic procedures (REPs). This systematic review aimed to evaluate the histological outcomes of studies utilizing dECM-derived scaffolds for REPs and to analyse the contributing factors that might influence the nature of regenerated tissues. METHODS The PRISMA 2020 guidelines were used. A search of articles published until April 2024 was conducted in Google Scholar, Scopus, PubMed and Web of Science databases. Additional records were manually searched in major endodontic journals. Original articles including histological results of dECM in REPs and in-vivo studies were included while reviews, in-vitro studies and clinical trials were excluded. The quality assessment of the included studies was analysed using the ARRIVE guidelines. Risk of Bias assessment was done using the (SYRCLE) risk of bias tool. RESULTS Out of the 387 studies obtained, 17 studies were included for analysis. In most studies, when used as scaffolds with or without exogenous cells, dECM showed the potential to enhance angiogenesis, dentinogenesis and to regenerate pulp-like and dentin-like tissues. However, the included studies showed heterogeneity of decellularization methods, animal models, scaffold source, form and delivery, as well as high risk of bias and average quality of evidence. DISCUSSION Decellularized ECM-derived scaffolds could offer a potential off-the-shelf scaffold for dentin-pulp regeneration in REPs. However, due to the methodological heterogeneity and the average quality of the studies included in this review, the overall effectiveness of decellularized ECM-derived scaffolds is still unclear. More standardized preclinical research is needed as well as well-constructed clinical trials to prove the efficacy of these scaffolds for clinical translation. OTHER The protocol was registered in PROSPERO database #CRD42023433026. This review was funded by the Science, Technology and Innovation Funding Authority (STDF) under grant number (44426).
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
da Fonseca L, Santos GS, Huber SC, Setti TM, Setti T, Lana JF. Human platelet lysate - A potent (and overlooked) orthobiologic. J Clin Orthop Trauma 2021; 21:101534. [PMID: 34386346 PMCID: PMC8339333 DOI: 10.1016/j.jcot.2021.101534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/25/2021] [Accepted: 07/25/2021] [Indexed: 01/03/2023] Open
Abstract
The knowledge of the essential role of platelets in tissue healing is gradually increasing and as regenerative medicine prompts new solutions, platelet-derived bioproducts have been proposed as a potential tool in this field. In orthopaedics and sports medicine, the use of PRP has been rapidly increasing in popularity as patients seek novel non-surgical approaches to acute and chronic musculoskeletal conditions. The concept of having platelets as a secretory organ other than a mere sponge-like coagulation component opens up new frontiers for the use of the platelet secretome. Platelet lysate is a solution saturated by growth factors, proteins, cytokines, and chemokines involved in crucial healing processes and is administered to treat different diseases such as alopecia, oral mucositis, radicular pain, osteoarthritis, and cartilage and tendon disorders. For this purpose, the abundant presence of growth factors and chemokines stored in platelet granules can be naturally released by different strategies, mostly through lyophilization, thrombin activation or ultrasound baths (ultrasonication). As a result, human platelet lysate can be produced and applied as a pure orthobiologic. This review outlines the current knowledge about human platelet lysate as a powerful adjuvant in the orthobiological use for the treatment of musculoskeletal injuries, without however failing to raise some of its most applicable basic science.
Collapse
Affiliation(s)
- Lucas da Fonseca
- Orthopaedic Department – UNIFESP/EPM, 715 Napoleão de Barros St – Vila Clementino, 04024-002, São Paulo, SP, Brazil
| | - Gabriel Silva Santos
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil,Corresponding author. IOC – Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – 2nd floor, Room #29, Indaiatuba, São Paulo, 13334-170, Brazil. Tel.: +551930174366, +5519989283863.
| | - Stephany Cares Huber
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| | - Taís Mazzini Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - Thiago Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - José Fábio Lana
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| |
Collapse
|
4
|
Filova E, Blanquer A, Knitlova J, Plencner M, Jencova V, Koprivova B, Lisnenko M, Kostakova EK, Prochazkova R, Bacakova L. The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts. NANOMATERIALS 2021; 11:nano11040995. [PMID: 33924537 PMCID: PMC8070234 DOI: 10.3390/nano11040995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/13/2023]
Abstract
Platelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% w/w). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA–PL nanomats. The bioactivity of the PVA–PL nanomats was proved in vitro using HaCaT keratinocytes, human saphenous endothelial cells (HSVECs) and 3T3 fibroblasts. The PVA–PL supported cell adhesion, proliferation, and viability. The improved phenotypic maturation of the HaCaT cells due to the PVA–PL was manifested via the formation of intermediate filaments positive for cytokeratin 10. The PVA–PL enhanced both the synthesis of the von Willebrand factor via HSVECs and HSVECs chemotaxis through membranes with 8 µm-sized pores. These results indicated the favorable effects of the PVA–PL nanomats on the three cell types involved in the wound healing process, and established PVA–PL nanomats as a promising candidate for further evaluation with respect to in vivo experiments.
Collapse
Affiliation(s)
- Elena Filova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 1083, 142 20 Prague, Czech Republic; (A.B.); (J.K.); (M.P.); (L.B.)
- Correspondence: ; Tel.: +420-2944-3742
| | - Andreu Blanquer
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 1083, 142 20 Prague, Czech Republic; (A.B.); (J.K.); (M.P.); (L.B.)
| | - Jarmila Knitlova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 1083, 142 20 Prague, Czech Republic; (A.B.); (J.K.); (M.P.); (L.B.)
| | - Martin Plencner
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 1083, 142 20 Prague, Czech Republic; (A.B.); (J.K.); (M.P.); (L.B.)
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic; (V.J.); (B.K.); (M.L.); (E.K.K.)
| | - Barbora Koprivova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic; (V.J.); (B.K.); (M.L.); (E.K.K.)
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic; (V.J.); (B.K.); (M.L.); (E.K.K.)
| | - Eva Kuzelova Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic; (V.J.); (B.K.); (M.L.); (E.K.K.)
| | - Renata Prochazkova
- Regional Hospital Liberec, Husova 357/10, 460 63 Liberec, Czech Republic;
- Faculty of Health Studies, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 1083, 142 20 Prague, Czech Republic; (A.B.); (J.K.); (M.P.); (L.B.)
| |
Collapse
|
5
|
Blanquer A, Musilkova J, Filova E, Taborska J, Brynda E, Riedel T, Klapstova A, Jencova V, Mullerova J, Kostakova EK, Prochazkova R, Bacakova L. The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System. NANOMATERIALS 2021; 11:nano11020457. [PMID: 33670150 PMCID: PMC7916860 DOI: 10.3390/nano11020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.
Collapse
Affiliation(s)
- Andreu Blanquer
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
- Correspondence: ; Tel.: +420-29-644-3741
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| | - Elena Filova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| | - Johanka Taborska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Eduard Brynda
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Tomas Riedel
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Andrea Klapstova
- Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
| | - Jana Mullerova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
- Institute of Nanomaterials, Advanced Technologies and Innovation, Bendlova 1409/7, 460 01 Liberec 1, Czech Republic
| | - Eva Kuzelova Kostakova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
| | - Renata Prochazkova
- Faculty of Health, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
- Regional Hospital Liberec, Husova 357/28, 460 01 Liberec 1, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| |
Collapse
|
6
|
Nguyen VT, Nardini M, Ruggiu A, Cancedda R, Descalzi F, Mastrogiacomo M. Platelet Lysate Induces in Human Osteoblasts Resumption of Cell Proliferation and Activation of Pathways Relevant for Revascularization and Regeneration of Damaged Bone. Int J Mol Sci 2020; 21:ijms21145123. [PMID: 32698534 PMCID: PMC7403959 DOI: 10.3390/ijms21145123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
To understand the regenerative effect of platelet-released molecules in bone repair one should investigate the cascade of events involving the resident osteoblast population during the reconstructive process. Here the in vitro response of human osteoblasts to a platelet lysate (PL) stimulus is reported. Quiescent or very slow dividing osteoblasts showed a burst of proliferation after PL stimulation and returned to a none or very slow dividing condition when the PL was removed. PL stimulated osteoblasts maintained a differentiation capability in vitro and in vivo when tested in absence of PL. Since angiogenesis plays a crucial role in the bone healing process, we investigated in PL stimulated osteoblasts the activation of hypoxia-inducible factor 1-alpha (HIF-1α) and signal transducer and activator of transcription 3 (STAT3) pathways, involved in both angiogenesis and bone regeneration. We observed phosphorylation of STAT3 and a strong induction, nuclear translocation and DNA binding of HIF-1α. In agreement with the induction of HIF-1α an enhanced secretion of vascular endothelial growth factor (VEGF) occurred. The double effect of the PL on quiescent osteoblasts, i.e., resumption of proliferation and activation of pathways promoting both angiogenesis and bone formation, provides a rationale to the application of PL as therapeutic agent in post-traumatic bone repair.
Collapse
Affiliation(s)
- Van Thi Nguyen
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (V.T.N.); (A.R.); (F.D.)
| | - Marta Nardini
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy;
- Biotherapy Unit, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandra Ruggiu
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (V.T.N.); (A.R.); (F.D.)
| | | | - Fiorella Descalzi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (V.T.N.); (A.R.); (F.D.)
| | - Maddalena Mastrogiacomo
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy;
- Biotherapy Unit, Ospedale Policlinico San Martino, 16132 Genova, Italy
- Center for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
- Correspondence: ; Tel.: +39-010-555-8203
| |
Collapse
|
7
|
Nardini M, Perteghella S, Mastracci L, Grillo F, Marrubini G, Bari E, Formica M, Gentili C, Cancedda R, Torre ML, Mastrogiacomo M. Growth Factors Delivery System for Skin Regeneration: An Advanced Wound Dressing. Pharmaceutics 2020; 12:pharmaceutics12020120. [PMID: 32028579 PMCID: PMC7076531 DOI: 10.3390/pharmaceutics12020120] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
Standard treatments of chronic skin ulcers based on the direct application of dressings still present several limits with regard to a complete tissue regeneration. Innovative strategies in tissue engineering offer materials that can tune cell behavior and promote growth tissue favoring cell recruitment in the early stages of wound healing. A combination of Alginate (Alg), Sericin (SS) with Platelet Lysate (PL), as a freeze-dried sponge, is proposed to generate a bioactive wound dressing to care skin lesions. Biomembranes at different composition were tested for the release of platelet growth factors, cytotoxicity, protective effects against oxidative stress and cell proliferation induction. The highest level of the growth factors release occurred within 48 h, an optimized time to burst a healing process in vivo; the presence of SS differently modulated the release of the factors by interaction with the proteins composing the biomembranes. Any cytotoxicity was registered, whereas a capability to protect cells against oxidative stress and induce proliferation was observed when PL was included in the biomembrane. In a mouse skin lesion model, the biomembranes with PL promoted the healing process, inducing an accelerated and more pronounced burst of inflammation, formation of granulation tissue and new collagen deposition, leading to a more rapid skin regeneration.
Collapse
Affiliation(s)
- Marta Nardini
- Department of Internal Medicine (DIMI), University of Genova, viale Benedetto XV 10, 16132 Genova, Italy;
- Biotherapy Unit, Ospedale Policlinico San Martino IRCCS, largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (S.P.); (G.M.); (E.B.); (M.L.T.)
| | - Luca Mastracci
- Ospedale Policlinico San Martino IRCCS, largo Rosanna Benzi 10, 16132 Genova, Italy; (L.M.); (F.G.); (M.F.)
- Anatomic Pathology, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genova, viale Benedetto XV 6, 16132 Genova, Italy
| | - Federica Grillo
- Ospedale Policlinico San Martino IRCCS, largo Rosanna Benzi 10, 16132 Genova, Italy; (L.M.); (F.G.); (M.F.)
- Anatomic Pathology, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genova, viale Benedetto XV 6, 16132 Genova, Italy
| | - Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (S.P.); (G.M.); (E.B.); (M.L.T.)
| | - Elia Bari
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (S.P.); (G.M.); (E.B.); (M.L.T.)
| | - Matteo Formica
- Ospedale Policlinico San Martino IRCCS, largo Rosanna Benzi 10, 16132 Genova, Italy; (L.M.); (F.G.); (M.F.)
- Orthopedic Clinic, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genova viale Benedetto XV 6, 16132 Genova, Italy
| | - Chiara Gentili
- Regenerative Medicine Laboratory, Department of Experimental Medicine (DIMES), University of Genova, via Leon Battista Alberti 2, 16132 Genova, Italy;
- Center for Biomedical Research (CEBR), University of Genova, viale Benedetto XV 9, 16132 Genova, Italy
| | - Ranieri Cancedda
- Endolife S.r.l., Piazza della Vittoria 15/23, 16121 Genova, Italy;
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (S.P.); (G.M.); (E.B.); (M.L.T.)
| | - Maddalena Mastrogiacomo
- Department of Internal Medicine (DIMI), University of Genova, viale Benedetto XV 10, 16132 Genova, Italy;
- Biotherapy Unit, Ospedale Policlinico San Martino IRCCS, largo Rosanna Benzi 10, 16132 Genova, Italy
- Center for Biomedical Research (CEBR), University of Genova, viale Benedetto XV 9, 16132 Genova, Italy
- Correspondence: ; Tel.: +39-010-555-8203
| |
Collapse
|
8
|
do Amaral RJFC, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella F, Simpson CR, Murphy CM, Sridharan R, González-Vázquez A, O'Sullivan B, O'Brien FJ, Kearney CJ. Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Front Bioeng Biotechnol 2019; 7:371. [PMID: 31921799 PMCID: PMC6915093 DOI: 10.3389/fbioe.2019.00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Porous collagen-glycosaminoglycan (collagen-GAG) scaffolds have shown promising clinical results for wound healing; however, these scaffolds do not replace the dermal and epidermal layer simultaneously and rely on local endogenous signaling to direct healing. Functionalizing collagen-GAG scaffolds with signaling factors, and/or additional matrix molecules, could help overcome these challenges. An ideal candidate for this is platelet-rich plasma (PRP) as it is a natural reservoir of growth factors, can be activated to form a fibrin gel, and is available intraoperatively. We tested the factors released from PRP (PRPr) and found that at specific concentrations, PRPr enhanced cell proliferation and migration and induced angiogenesis to a greater extent than fetal bovine serum (FBS) controls. This motivated us to develop a strategy to successfully incorporate PRP homogeneously within the pores of the collagen-GAG scaffolds. The composite scaffold released key growth factors for wound healing (FGF, TGFβ) and vascularization (VEGF, PDGF) for up to 14 days. In addition, the composite scaffold had enhanced mechanical properties (when compared to PRP gel alone), while providing a continuous upper surface of extracellular matrix (ECM) for keratinocyte seeding. The levels of the factors released from the composite scaffold were sufficient to sustain proliferation of key cells involved in wound healing, including human endothelial cells, mesenchymal stromal cells, fibroblasts, and keratinocytes; even in the absence of FBS supplementation. In functional in vitro and in vivo vascularization assays, our composite scaffold demonstrated increased angiogenic and vascularization potential, which is known to lead to enhanced wound healing. Upon pro-inflammatory induction, macrophages released lower levels of the pro-inflammatory marker MIP-1α when treated with PRPr; and released higher levels of the anti-inflammatory marker IL1-ra upon both pro- and anti-inflammatory induction when treated with the composite scaffold. Finally, our composite scaffold supported a co-culture system of human fibroblasts and keratinocytes that resulted in an epidermal-like layer, with keratinocytes constrained to the surface of the scaffold; by contrast, keratinocytes were observed infiltrating the PRP-free scaffold. This novel composite scaffold has the potential for rapid translation to the clinic by isolating PRP from a patient intraoperatively and combining it with regulatory approved scaffolds to enhance wound repair.
Collapse
Affiliation(s)
- Ronaldo J. F. C. do Amaral
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Noora M. A. Zayed
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Elena I. Pascu
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Chris Hobbs
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin (TCD), Dublin, Ireland
| | - Francesco Santarella
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Christopher R. Simpson
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Rukmani Sridharan
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Barry O'Sullivan
- Beaumont Hospital, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Cathal J. Kearney
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|