1
|
Lin YJ, Zimmermann J, Schülke S. Novel adjuvants in allergen-specific immunotherapy: where do we stand? Front Immunol 2024; 15:1348305. [PMID: 38464539 PMCID: PMC10920236 DOI: 10.3389/fimmu.2024.1348305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated immune responses directed against otherwise harmless environmental antigens. Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying treatment with the potential to re-establish clinical tolerance towards the corresponding allergen(s). However, conventional AIT has certain drawbacks, including long treatment durations, the risk of inducing allergic side effects, and the fact that allergens by themselves have a rather low immunogenicity. To improve AIT, adjuvants can be a powerful tool not only to increase the immunogenicity of co-applied allergens but also to induce the desired immune activation, such as promoting allergen-specific Th1- or regulatory responses. This review summarizes the knowledge on adjuvants currently approved for use in human AIT: aluminum hydroxide, calcium phosphate, microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been studied in recent years: oil-in-water emulsions, virus-like particles, viral components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct properties, such as prolonging allergen release at the injection site, inducing allergen-specific IgG production while also reducing IgE levels, as well as promoting differentiation and activation of different immune cells. In the future, better understanding of the immunological mechanisms underlying the effects of these adjuvants in clinical settings may help us to improve AIT.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- Section Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
2
|
Nguyen MT, Hu Z, Mohammad M, Schöttler H, Niemann S, Schultz M, Barczyk-Kahlert K, Jin T, Hayen H, Herrmann M. Bacterial Lipoproteins Shift Cellular Metabolism to Glycolysis in Macrophages Causing Bone Erosion. Microbiol Spectr 2023; 11:e0429322. [PMID: 37191536 PMCID: PMC10269925 DOI: 10.1128/spectrum.04293-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Belonging to a group of membrane proteins, bacterial lipoproteins (LPPs) are defined by a unique lipid structure at their N-terminus providing the anchor in the bacterial cell membrane. In Gram-positive bacteria, LPPs play a key role in host immune activation triggered through a Toll-like receptor 2 (TLR2)-mediated action resulting in macrophage stimulation and subsequent tissue damage demonstrated in in vivo experimental models. Yet the physiologic links between LPP activation, cytokine release, and any underlying switches in cellular metabolism remain unclear. In this study, we demonstrate that Staphylococcus aureus Lpl1 not only triggers cytokine production but also confers a shift toward fermentative metabolism in bone marrow-derived macrophages (BMDMs). Lpl1 consists of di- and tri-acylated LPP variants; hence, the synthetic P2C and P3C, mimicking di-and tri-acylated LPPs, were employed to reveal their effect on BMDMs. Compared to P3C, P2C was found to shift the metabolism of BMDMs and the human mature monocytic MonoMac 6 (MM6) cells more profoundly toward the fermentative pathway, as indicated by lactate accumulation, glucose consumption, pH reduction, and oxygen consumption. In vivo, P2C caused more severe joint inflammation, bone erosion, and lactate and malate accumulation than P3C. These observed P2C effects were completely abrogated in monocyte/macrophage-depleted mice. Taken together, these findings now solidly confirm the hypothesized link between LPP exposure, a macrophage metabolic shift toward fermentation, and ensuing bone destruction. IMPORTANCE Osteomyelitis caused by S. aureus is a severe infection of the bone, typically associated with severe bone function impairment, therapeutic failure, high morbidity, invalidity, and occasionally even death. The hallmark of staphylococcal osteomyelitis is the destruction of the cortical bone structures, yet the mechanisms contributing to this pathology are hitherto poorly understood. One bacterial membrane constituent found in all bacteria is bacterial lipoproteins (LPPs). Previously, we have shown that injection of purified S. aureus LPPs into wild-type mouse knee joints caused a TLR2-dependent chronic destructive arthritis but failed to elicit such effect in monocyte/macrophage-depleted mice. This observation stirred our interest in investigating the interaction of LPPs and macrophages and analyzing the underlying physiological mechanisms. This ascertainment of LPP-induced changes in the physiology of macrophages provides an important clue in the understanding of the mechanisms of bone disintegration, opening novel avenues to manage the course of S. aureus disease.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Zhicheng Hu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hannah Schöttler
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Michelle Schultz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Goretzki A, Lin YJ, Meier C, Dorn B, Wolfheimer S, Jamin A, Schott M, Wangorsch A, Vieths S, Jakob T, Scheurer S, Schülke S. Stimulation of naïve B cells with a fusion protein consisting of FlaA and Bet v 1 induces regulatory B cells ex vivo. Allergy 2023; 78:663-681. [PMID: 36196479 DOI: 10.1111/all.15542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The experimental fusion protein rFlaA:Betv1 was shown to efficiently suppress allergen-specific sensitization in mice. However, the detailed mechanism of rFlaA:Betv1-mediated immune modulation is not fully understood. In this study, we investigated the effect of rFlaA:Betv1 on naïve murine B cells. METHODS Immune modulating capacity of rFlaA:Betv1 was screened in IL-10 reporter mice. B cells were isolated from spleens of naïve C57Bl/6, TLR5-/- , or MyD88-/- mice, stimulated with rFlaA:Betv1 and controls, and monitored for the expression of the regulatory B cell markers CD1d, CD24, CD38, and surface IgM by flow cytometry. Secreted cytokines, antibodies, and reactivity of the induced antibodies were investigated by ELISA and intracellular flow cytometry. Suppressive capacity of rFlaA:Betv1-stimulated B cells was tested in mDC:CD4+ T cell:B cell triple cultures. RESULTS Upon in vivo application of rFlaA:Betv1 into IL-10-GFP reporter mice, CD19+ B cells were shown to produce anti-inflammatory IL-10, suggesting B cells to contribute to the immune-modulatory properties of rFlaA:Betv1. rFlaA:Betv1-induced IL-10 secretion was confirmed in human B cells isolated from buffy coats. In vitro stimulation of naïve murine B cells with rFlaA:Betv1 resulted in an mTOR- and MyD88-dependent production of IL-10 and rFlaA:Betv1 induced Bet v 1-reactive IgG production, which was not observed for IgA. rFlaA:Betv1-stimulated B cells formed a CD19+ CD24+ CD1d+ IgM+ CD38+ Breg subpopulation capable of suppressing Bet v 1-induced TH2 cytokine secretion in vitro. CONCLUSION rFlaA:Betv1 can act as a thymus-independent B cell antigen, stimulating the mTOR- and MyD88-dependent differentiation of B cells displaying a regulatory phenotype, IL-10 secretion, antigen-binding antibody production, and a suppressive capacity in vitro.
Collapse
Affiliation(s)
| | - Yen-Ju Lin
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Clara Meier
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Britta Dorn
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University, Gießen, Germany
| | | | - Annette Jamin
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Maike Schott
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University, Gießen, Germany
| | | | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
4
|
Lin YJ, Jamin A, Wolfheimer S, Fiedler A, Junker AC, Goretzki A, Scheurer S, Schülke S. A flagellin-conjugate protein induces dual NLRC4- and NLRP3-inflammasome activation which modulates inflammatory cytokine secretion from macrophages. Front Immunol 2023; 14:1136669. [PMID: 37026001 PMCID: PMC10070734 DOI: 10.3389/fimmu.2023.1136669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 04/08/2023] Open
Abstract
Background A recombinant fusion protein combining the adjuvant and TLR5-ligand flagellin with the major birch pollen allergen Bet v 1 (rFlaA:Betv1) has been suggested to prevent the manifestation of birch allergy. Noteworthy, rFlaA:Betv1 induced both pro- and anti-inflammatory responses which were differentially regulated. However, the mechanism by which flagellin fusion proteins modulate allergen-specific immune responses, especially the mechanisms underlying IL-1β secretion and their contribution to the overall immune responses remains elusive. Objective To investigate the mechanisms underlying the production of IL-1β from rFlaA:Betv1 stimulated macrophages. Methods Macrophages were derived from mouse peritoneal-, human buffy-coat-, and PMA-differentiated THP-1 (wild type or lacking either ASC, NLRP3, or NLRC4) cells. Macrophages were stimulated with non-modified rFlaA:Betv1, mutant variants lacking either the flagellin DC0 domain or a sequence motif formerly described to mediate TLR5-activation, and respective controls in the presence or absence of inhibitors interfering with MAPK- and NFκB-signaling. Cytokine secretion was analyzed by ELISA and intracellular signaling by Western Blot. To study the contribution of IL-1β to the overall immune responses, IL1R-deficient mouse peritoneal macrophages were used. Results rFlaA:Betv1 consistently activated all types of investigated macrophages, inducing higher IL-1β secretion compared with the equimolar mixture of both proteins. rFlaA:Betv1-induced activation of THP-1 macrophages was shown to be independent of either the TLR5-activating sequence motif or the flagellin DC0 domain but depended on both NLRP3- and NLRC4-inflammasomes. In addition, NFκB and SAP/JNK MAP kinases regulated rFlaA:Betv1-induced inflammasome activation and cytokine secretion by modulating pro-Caspase-1- and pro-IL-1β-expression in THP-1 macrophages. Finally, lack of IL-1β positive feedback via the IL1R strongly diminished the rFlaA:Betv1-induced secretion of IL-1β, IL-6, and TNF-α from peritoneal macrophages. Conclusion The mechanisms contributing to rFlaA:Betv1-induced IL-1β secretion from macrophages were shown to be complex, involving both NLRC4- and NLRP3-inflammsomes, as well as NFκB- and SAP/JNK MAP kinase-signaling. Better understanding the mechanisms regulating the activation of immune cells by novel therapeutic candidates like the rFlaA:Betv1 fusion protein will allow us to further improve and develop new treatment strategies when using flagellin as an adjuvant.
Collapse
|
5
|
Mishra R, Sharma S, Arora N. TLR-5 ligand conjugated with Per a 10 and T cell peptides potentiates Treg/Th1 response through PI3K/mTOR axis. Int Immunopharmacol 2022; 113:109389. [DOI: 10.1016/j.intimp.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
6
|
Goretzki A, Lin YJ, Zimmermann J, Rainer H, Junker AC, Wolfheimer S, Vieths S, Scheurer S, Schülke S. Role of Glycolysis and Fatty Acid Synthesis in the Activation and T Cell-Modulating Potential of Dendritic Cells Stimulated with a TLR5-Ligand Allergen Fusion Protein. Int J Mol Sci 2022; 23:ijms232012695. [PMID: 36293550 PMCID: PMC9604253 DOI: 10.3390/ijms232012695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Trained immune responses, based on metabolic and epigenetic changes in innate immune cells, are de facto innate immune memory and, therefore, are of great interest in vaccine development. In previous studies, the recombinant fusion protein rFlaA:Betv1, combining the adjuvant and toll-like receptor (TLR)5-ligand flagellin (FlaA) and the major birch pollen allergen Bet v 1 into a single molecule, significantly suppressed allergic sensitization in vivo while also changing the metabolism of myeloid dendritic cells (mDCs). Within this study, the immune-metabolic effects of rFlaA:Betv1 during mDC activation were elucidated. In line with results for other well-characterized TLR-ligands, rFlaA:Betv1 increased glycolysis while suppressing oxidative phosphorylation to different extents, making rFlaA:Betv1 a suitable model to study the immune-metabolic effects of TLR-adjuvanted vaccines. In vitro pretreatment of mDCs with cerulenin (inhibitor of fatty acid biosynthesis) led to a decrease in both rFlaA:Betv1-induced anti-inflammatory cytokine Interleukin (IL) 10 and T helper cell type (TH) 1-related cytokine IL-12p70, while the pro-inflammatory cytokine IL 1β was unaffected. Interestingly, pretreatment with the glutaminase inhibitor BPTES resulted in an increase in IL-1β, but decreased IL-12p70 secretion while leaving IL-10 unchanged. Inhibition of the glycolytic enzyme hexokinase-2 by 2-deoxyglucose led to a decrease in all investigated cytokines (IL-10, IL-12p70, and IL-1β). Inhibitors of mitochondrial respiration had no effect on rFlaA:Betv1-induced IL-10 level, but either enhanced the secretion of IL-1β (oligomycin) or decreased IL-12p70 (antimycin A). In extracellular flux measurements, mDCs showed a strongly enhanced glycolysis after rFlaA:Betv1 stimulation, which was slightly increased after respiratory shutdown using antimycin A. rFlaA:Betv1-stimulated mDCs secreted directly antimicrobial substances in a mTOR- and fatty acid metabolism-dependent manner. In co-cultures of rFlaA:Betv1-stimulated mDCs with CD4+ T cells, the suppression of Bet v 1-specific TH2 responses was shown to depend on fatty acid synthesis. The effector function of rFlaA:Betv1-activated mDCs mainly relies on glycolysis, with fatty acid synthesis also significantly contributing to rFlaA:Betv1-mediated cytokine secretion, the production of antimicrobial molecules, and the modulation of T cell responses.
Collapse
|
7
|
|
8
|
Lin YJ, Flaczyk A, Wolfheimer S, Goretzki A, Jamin A, Wangorsch A, Vieths S, Scheurer S, Schülke S. The Fusion Protein rFlaA:Betv1 Modulates DC Responses by a p38-MAPK and COX2-Dependent Secretion of PGE 2 from Epithelial Cells. Cells 2021; 10:3415. [PMID: 34943923 PMCID: PMC8700022 DOI: 10.3390/cells10123415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Developing new adjuvants/vaccines and better understanding their mode-of-action is an important task. To specifically improve birch pollen allergy treatment, we designed a fusion protein consisting of major birch pollen allergen Betv1 conjugated to the TLR5-ligand flagellin (rFlaA:Betv1). This study investigates the immune-modulatory effects of rFlaA:Betv1 on airway epithelial cells. LA-4 mouse lung epithelial cells were stimulated with rFlaA:Betv1 in the presence/absence of various inhibitors with cytokine- and chemokine secretion quantified by ELISA and activation of intracellular signaling cascades demonstrated by Western blot (WB). Either LA-4 cells or LA-4-derived supernatants were co-cultured with BALB/c bone marrow-derived myeloid dendritic cells (mDCs). Compared to equimolar amounts of flagellin and Betv1 provided as a mixture, rFlaA:Betv1 induced higher secretion of IL-6 and the chemokines CCL2 and CCL20 from LA-4 cells and a pronounced MAPK- and NFκB-activation. Mechanistically, rFlaA:Betv1 was taken up more strongly and the induced cytokine production was inhibited by NFκB-inhibitors, while ERK- and p38-MAPK-inhibitors only suppressed IL-6 and CCL2 secretion. In co-cultures of LA-4 cells with mDCs, rFlaA:Betv1-stimulated LA-4 cells p38-MAPK- and COX2-dependently secreted PGE2, which modulated DC responses by suppressing pro-inflammatory IL-12 and TNF-α secretion. Taken together, these results contribute to our understanding of the mechanisms underlying the strong immune-modulatory effects of flagellin-containing fusion proteins.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Adam Flaczyk
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sonja Wolfheimer
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Alexandra Goretzki
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Annette Jamin
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Andrea Wangorsch
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Stephan Scheurer
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| |
Collapse
|
9
|
β-(1→4)-Mannobiose Acts as an Immunostimulatory Molecule in Murine Dendritic Cells by Binding the TLR4/MD-2 Complex. Cells 2021; 10:cells10071774. [PMID: 34359943 PMCID: PMC8305851 DOI: 10.3390/cells10071774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Some β-mannans, including those in coffee bean and soy, contain a mannose backbone with β-(1→4) bonds. Such mannooligosaccharides could have immunological functions involving direct interaction with immune cells, in addition to acting as prebiotics. This study aimed at assessing the immunological function of mannooligosaccharides with β-(1→4) bond, and elucidating their mechanism of action using bone marrow-derived murine dendritic cells (BMDCs). When BMDCs were stimulated with the mannooligosaccharides, only β-Man-(1→4)-Man significantly induced production of cytokines that included IL-6, IL-10, TNF-α, and IFN-β, and enhanced CD4+ T-cell stimulatory capacity. Use of putative receptor inhibitors revealed the binding of β-Man-(1→4)-Man to TLR4/MD2 complex and involvement with the complement C3a receptor (C3aR) for BMDC activation. Interestingly, β-Man-(1→4)-Man prolonged the production of pro-inflammatory cytokines (IL-6 and TNF-α), but not of the IL-10 anti-inflammatory cytokine during extended culture of BMDCs, associated with high glucose consumption. The results suggest that β-Man-(1→4)-Man is an immunostimulatory molecule, and that the promotion of glycolysis could be involved in the production of pro-inflammatory cytokine in β-Man-(1→4)-Man-stimulated BMDCs. This study could contribute to development of immune-boosting functional foods and a novel vaccine adjuvant.
Collapse
|
10
|
Sudaramoorthy A, Shanmugam G, Shanmugam N. Inhibitory effect of Salvia coccinea on inflammatory responses through NF-κB signaling pathways in THP-1 cells and acute rat diabetes mellitus. Acta Histochem 2021; 123:151735. [PMID: 34052674 DOI: 10.1016/j.acthis.2021.151735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Hyperglycemia-induced oxidative stress has been implicated in diabetes and its complications. Medicinal plants possessing antioxidant activity may decrease oxidative stress by scavenging radicals and reducing power activity and would be a promising strategy for the treatment of inflammatory disorders like diabetes. This study was designed to evaluate the antioxidant effect of Aqueous Extract of S.coccinea leaf (AESL) in HG treated THP-1 cells and streptozotocin (STZ)-induced diabetic Wistar rats. AESL and the standard antidiabetic drug glibenclamide were administered orally by intragastric tube for 14 days and pre-treated HG grown THP-1 cells. AESL treatment reduced HG induced increase in ROS production, NF-κB dependent proinflammatory gene expression by influencing NF-κB nuclear translocation in THP-1 cells. Oral administration of AESL inhibited STZ-induced increase in serum lipid peroxidation, aspartate transaminase, alanine transaminase, and Lactate dehydrogenase of diabetic rats. Significant increase in activity of superoxide dismutase, catalase and glutathione peroxidase, and a reduced level of glutathione, were observed in AESL treatment. The results demonstrate that AESL is useful in controlling blood glucose and also has antioxidant potential to influence the translocation of NF-κB, protect damage caused by hyperglycemia-induced inflammation.
Collapse
Affiliation(s)
- Arun Sudaramoorthy
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Gobinath Shanmugam
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Narkunaraja Shanmugam
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
11
|
Jakubczyk D, Górska S. Impact of Probiotic Bacteria on Respiratory Allergy Disorders. Front Microbiol 2021; 12:688137. [PMID: 34234762 PMCID: PMC8256161 DOI: 10.3389/fmicb.2021.688137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory allergy is a common disease with an increased prevalence worldwide. The effective remedy is still unknown, and a new therapeutic approach is highly desirable. The review elaborates the influence of probiotic bacteria on respiratory allergy prevention and treatment with particular emphasis on the impact of the current methods of their administration – oral and intranasal. The background of the respiratory allergy is complex thus, we focused on the usefulness of probiotics in the alleviation of different allergy factors, in particular involved in pathomechanism, local hypersensitive evidence and the importance of epithelial barrier. In this review, we have shown that (1) probiotic strains may vary in modulatory potential in respiratory allergy, (2) probiotic bacteria are beneficial in oral and intranasal administration, (3) recombinant probiotic bacteria can modulate the course of respiratory allergy.
Collapse
Affiliation(s)
- Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
12
|
Liu X, Xia X, Wang X, Zhou J, Sung LA, Long J, Geng X, Zeng Z, Yao W. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Front Immunol 2021; 11:587441. [PMID: 33552047 PMCID: PMC7856346 DOI: 10.3389/fimmu.2020.587441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. Upon maturation, DCs express costimulatory molecules and migrate to the lymph nodes to present antigens to T cells. The actin cytoskeleton plays key roles in multiple aspects of DC functions. However, little is known about the mechanisms and identities of actin-binding proteins that control DC maturation and maturation-associated functional changes. Tropomodulin1 (Tmod1), an actin-capping protein, controls actin depolymerization and nucleation. We found that Tmod1 was expressed in bone marrow-derived immature DCs and was significantly upregulated upon lipopolysaccharide (LPS)-induced DC maturation. By characterizing LPS-induced mature DCs (mDCs) from Tmod1 knockout mice, we found that compared with Tmod1+/+ mDCs, Tmod1-deficient mDCs exhibited lower surface expression of costimulatory molecules and chemokine receptors and reduced secretion of inflammatory cytokines, suggesting that Tmod1 deficiency retarded DC maturation. Tmod1-deficient mDCs also showed impaired random and chemotactic migration, deteriorated T-cell stimulatory ability, and reduced F-actin content and cell stiffness. Furthermore, Tmod1-deficient mDCs secreted high levels of IFN-β and IL-10 and induced immune tolerance in an experimental autoimmune encephalomyelitis (EAE) mouse model. Mechanistically, Tmod1 deficiency affected TLR4 signaling transduction, resulting in the decreased activity of MyD88-dependent NFκB and MAPK pathways but the increased activity of the TRIF/IRF3 pathway. Rescue with exogenous Tmod1 reversed the effect of Tmod1 deficiency on TLR4 signaling. Therefore, Tmod1 is critical in regulating DC maturation and immune functions by regulating TLR4 signaling and the actin cytoskeleton. Tmod1 may be a potential target for modulating DC functions, a strategy that would be beneficial for immunotherapy for several diseases.
Collapse
Affiliation(s)
- Xianmei Liu
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Xia
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jinhua Long
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhu Zeng
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, China
| |
Collapse
|
13
|
Hoober JK, Eggink LL, Cote R. Stories From the Dendritic Cell Guardhouse. Front Immunol 2019; 10:2880. [PMID: 31921144 PMCID: PMC6919295 DOI: 10.3389/fimmu.2019.02880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells [dendritic cells (DCs), macrophages, monocytes, neutrophils, and mast cells] utilize C-type (Ca2+-dependent) lectin-like (CLEC) receptors to identify and internalize pathogens or danger signals. As monitors of environmental imbalances, CLEC receptors are particularly important in the function of DCs. Activation of the immune system requires, in sequence, presentation of antigen to the T cell receptor (TCR) by DCs, interaction of co-stimulatory factors such as CD40/80/86 on DCs with CD40L and CD28 on T cells, and production of IL-12 and/or IFN-α/β to amplify T cell differentiation and expansion. Without this sequence of events within an inflammatory environment, or in a different order, antigen-specific T cells become unresponsive, are deleted or become regulatory T cells. Thus, the mode by which CLEC receptors on DCs are engaged can either elicit activation of T cells to achieve an immune response or induce tolerance. This minireview illustrates these aspects with Dectin-1, DEC205, the mannose receptor and CLEC10A as examples.
Collapse
Affiliation(s)
| | | | - Robert Cote
- Susavion Biosciences, Inc., Tempe, AZ, United States
| |
Collapse
|