1
|
Singh SR, Bhaskar R, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Mladenov M, Hadzi-Petrushev N, Stojchevski R, Sinha JK, Avtanski D. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers (Basel) 2025; 17:1082. [PMID: 40227591 PMCID: PMC11988167 DOI: 10.3390/cancers17071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is complex because of the critical imbalance in genetic regulation as characterized by both the overexpression of oncogenes (OGs), mainly through mutations, amplifications, and translocations, and the inactivation of tumor-suppressor genes (TSGs), which entail the preservation of genomic integrity by inducing apoptosis to counter the malignant growth. Reviewing the intricate molecular interplay between OGs and TSGs draws attention to their cell cycle, apoptosis, and cancer metabolism regulation. In the present review, we discuss seminal discoveries, such as Knudson's two-hit hypothesis, which framed the field's understanding of cancer genetics, leading to the next breakthroughs with next-generation sequencing and epigenetic profiling, revealing novel insights into OG and TSG dysregulation with opportunities for targeted therapy. The key pathways, such as MAPK/ERK, PI3K/AKT/mTOR, and Wnt/β-catenin, are presented in the context of tumor progression. Importantly, we further highlighted the advances in therapeutic strategies, including inhibitors of KRAS and MYC and restoration of TSG function, despite which mechanisms of resistance and tumor heterogeneity pose daunting challenges. A high-level understanding of interactions between OG-TSGs forms the basis for effective, personalized cancer treatment-something to strive for in better clinical outcomes. This synthesis should integrate foundational biology with translation and, in this case, contribute to the ongoing effort against cancer.
Collapse
Affiliation(s)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, India
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
Huang P, Wang J, Yu Z, Lu J, Sun Z, Chen Z. Redefining bladder cancer treatment: innovations in overcoming drug resistance and immune evasion. Front Immunol 2025; 16:1537808. [PMID: 39911393 PMCID: PMC11794230 DOI: 10.3389/fimmu.2025.1537808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary system and has always presented great challenges in treatment due to its intricate biological features and high recurrence rates. Although great developments were achieved in immunotherapy and targeted therapies within the last decade, therapeutic outcomes for a great number of patients remain unsatisfactory, particularly as to long-term efficacy. Review discusses the molecular mechanisms developed during the process of bladder cancer progression: genetic and epigenetic alterations, dynamics of the tumor microenvironment (TME), and dysregulation and abnormal activation of various signaling pathways-all contributing to therapeutic resistance. It is genetic mutation, especially in both low- and high-grade tumors, that, alongside epigenetic modifications, plays a considerable role in tumor aggressiveness and drug resistance. TME, comprising cancer-associated fibroblasts (CAFs), immunosuppressive cells, and different components of the extracellular matrix (ECM), orchestrates a setting that fosters tumor growth and immune evasion and confers resistance on any therapeutic regime that might be used. The review also provides an overview of PI3K/AKT and MAPK signaling pathways in the progression of bladder cancer and the development of targeted therapies against them. Further, it discusses the challenges and mechanisms of resistance to immunotherapy, including those involving immune checkpoint inhibitors. Other promising approaches include the development of new therapeutic strategies that target not only the signaling pathways but also immune checkpoints in combination therapies. This review aims to contribute to the elaboration of more effective and personalized treatment strategies by fully understanding the underlying mechanisms involved in bladder cancer.
Collapse
Affiliation(s)
- Peng Huang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Jie Wang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Zongze Yu
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigui Chen
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| |
Collapse
|
3
|
Rodriguez Torres CS, Wicker NB, Puccini de Castro V, Stefinko M, Bennett DC, Bernhardt B, Garcia Montes de Oca M, Jallow S, Flitcroft K, Palalay JJS, Payán Parra OA, Stern YE, Koelle MR, Voisine C, Woods IG, Lo TW, Stern MJ, de la Cova CC. The Caenorhabditis elegans protein SOC-3 permits an alternative mode of signal transduction by the EGL-15 FGF receptor. Dev Biol 2024; 516:183-195. [PMID: 39173814 PMCID: PMC11488645 DOI: 10.1016/j.ydbio.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In Caenorhabditis elegans, the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by egl-15(n1457), an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of egl-15(n1457) were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed "Clear" that is suppressed by reduction of EGL-15 signaling, a phenotype termed "Suppressor of Clear" (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the clr-1; egl-15(n1457) genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the egl-15(n1457) mutation, loss of either soc-3, the GAB1 ortholog soc-1, or the SHP2 ortholog ptp-2, reduced MPK-1 activation. We generated alleles of soc-3 to test the requirement for the SEM-5-binding motifs, finding that residue Tyr356 is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.
Collapse
Affiliation(s)
| | - Nicole B Wicker
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | | | - Mariya Stefinko
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | | | | | | | - Sainabou Jallow
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Katelyn Flitcroft
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | | | - Omar A Payán Parra
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Yaakov E Stern
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | | | - Cindy Voisine
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Ian G Woods
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Te-Wen Lo
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Michael J Stern
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
4
|
Nakamura H, Kukita Y, Tamiya H, Takenaka S, Yagi T. Thoracic small round cell sarcoma with FGFR2::DCTN2 fusion. Histopathology 2024; 85:693-695. [PMID: 38859769 DOI: 10.1111/his.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Harumi Nakamura
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoji Kukita
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Hironari Tamiya
- Department of Orthopaedics, Osaka International Cancer Institute, Osaka, Japan
| | - Satoshi Takenaka
- Department of Orthopaedics, Osaka International Cancer Institute, Osaka, Japan
| | - Toshinari Yagi
- Department of Outpatient Chemotherapy, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
5
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
6
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
7
|
Kodada D, Hyblova M, Krumpolec P, Janostiakova N, Barath P, Grendar M, Blandova G, Petrovic O, Janega P, Repiska V, Minarik G. The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study. Int J Mol Sci 2023; 24:ijms24097811. [PMID: 37175518 PMCID: PMC10178554 DOI: 10.3390/ijms24097811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Endometrial cancer belongs to the most common gynecologic cancer types globally, with increasing incidence. There are numerous ways of classifying different cases. The most recent decade has brought advances in molecular classification, which show more accurate prognostic factors and the possibility of personalised adjuvant treatment. In addition, diagnostic approaches lag behind these advances, with methods causing patients discomfort while lacking the reproducibility of tissue sampling for biopsy. Minimally invasive liquid biopsies could therefore represent an alternative screening and diagnostic approach in patients with endometrial cancer. The method could potentially detect molecular changes in this cancer type and identify patients at early stages. In this pilot study, we tested such a detection method based on circulating tumour DNA isolated from the peripheral blood plasma of 21 Slovak endometrial cancer patients. We successfully detected oncomutations in the circulating DNA of every single patient, although the prognostic value of the detected mutations failed to offer certainty. Furthermore, we detected changes associated with clonal hematopoiesis, including DNMT3A mutations, which were present in the majority of circulating tumour DNA samples.
Collapse
Affiliation(s)
- Dominik Kodada
- Medirex Group Academy, 94905 Nitra, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | | | | - Nikola Janostiakova
- Medirex Group Academy, 94905 Nitra, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | | - Marian Grendar
- Medirex Group Academy, 94905 Nitra, Slovakia
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Gabriela Blandova
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | | - Pavol Janega
- Medirex Group Academy, 94905 Nitra, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Vanda Repiska
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | |
Collapse
|
8
|
Abstract
Biliary tract cancer (BTC) is the second most common primary liver cancer after hepatocellular carcinoma and accounts for 2% of cancer-related deaths. BTCs are classified according to their anatomical origin into intrahepatic (iCCA), perihilar, or distal cholangiocarcinoma, as well as gall bladder carcinoma. While the mutational profiles in these anatomical BTC subtypes overlap to a large extent, iCCA is notable for the high frequency of IDH1/2 mutations (10-22%) and the nearly exclusive occurrence of FGFR2 fusions in 10-15% of patients. In recent years, FGFR2 fusions have become one of the most promising targets for precision oncology targeting BTC, with FGFR inhibitors already approved in Europe and the United States for patients with advanced, pretreated iCCA. While the therapeutic potential of nonfusion alterations is still under debate, it is expected that the field of FGFR2-directed therapies will be subject to rapid further evolution and optimization. The scope of this review is to provide an overview of oncogenic FGFR signaling in iCCA cells and highlight the pathophysiology, diagnostic testing strategies, and therapeutic promises and challenges associated with FGFR2-altered iCCA.
Collapse
Affiliation(s)
- Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; .,Center for Personalized Medicine (ZPM), Hannover Medical School, Hannover, Germany
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; .,Center for Personalized Medicine (ZPM), Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Yao C, Wu S, Kong J, Sun Y, Bai Y, Zhu R, Li Z, Sun W, Zheng L. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0449. [PMID: 36647777 PMCID: PMC9843448 DOI: 10.20892/j.issn.2095-3941.2022.0449] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Angiogenesis, the process of formation of new blood vessels, is required for cancer cells to obtain nutrients and oxygen. HCC is a typical hypervascular solid tumor with an aberrant vascular network and angiogenesis that contribute to its growth, progression, invasion, and metastasis. Current anti-angiogenic therapies target mainly tyrosine kinases, vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR), and are considered effective strategies for HCC, particularly advanced HCC. However, because the survival benefits conferred by these anti-angiogenic therapies are modest, new anti-angiogenic targets must be identified. Several recent studies have determined the underlying molecular mechanisms, including pro-angiogenic factors secreted by HCC cells, the tumor microenvironment, and cancer stem cells. In this review, we summarize the roles of pro-angiogenic factors; the involvement of endothelial cells, hepatic stellate cells, tumor-associated macrophages, and tumor-associated neutrophils present in the tumor microenvironment; and the regulatory influence of cancer stem cells on angiogenesis in HCC. Furthermore, we discuss some of the clinically approved anti-angiogenic therapies and potential novel therapeutic targets for angiogenesis in HCC. A better understanding of the mechanisms underlying angiogenesis may lead to the development of more optimized anti-angiogenic treatment modalities for HCC.
Collapse
Affiliation(s)
- Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Yiwen Sun
- Department of Pathology, Peking University People’s Hospital, Peking University, Beijing 100044, China
| | - Yannan Bai
- Department of Hepatobiliary Pancreatic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Ruhang Zhu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Zhuxin Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
- Correspondence to: Wenbing Sun and Lemin Zheng, E-mail: and
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Beijing 100083, China
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100050, China
- Correspondence to: Wenbing Sun and Lemin Zheng, E-mail: and
| |
Collapse
|
10
|
Bosi E, Marselli L, Suleiman M, Tesi M, De Luca C, Del Guerra S, Cnop M, Eizirik D, Marchetti P. A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes. NAR Genom Bioinform 2022; 4:lqac084. [DOI: 10.1093/nargab/lqac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/04/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa , Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Silvia Del Guerra
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
- Division of Endocrinology, Erasmus Hospital , Université Libre de Bruxelles, Brussels , Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| |
Collapse
|
11
|
Zingg D, Bhin J, Yemelyanenko J, Kas SM, Rolfs F, Lutz C, Lee JK, Klarenbeek S, Silverman IM, Annunziato S, Chan CS, Piersma SR, Eijkman T, Badoux M, Gogola E, Siteur B, Sprengers J, de Klein B, de Goeij-de Haas RR, Riedlinger GM, Ke H, Madison R, Drenth AP, van der Burg E, Schut E, Henneman L, van Miltenburg MH, Proost N, Zhen H, Wientjens E, de Bruijn R, de Ruiter JR, Boon U, de Korte-Grimmerink R, van Gerwen B, Féliz L, Abou-Alfa GK, Ross JS, van de Ven M, Rottenberg S, Cuppen E, Chessex AV, Ali SM, Burn TC, Jimenez CR, Ganesan S, Wessels LFA, Jonkers J. Truncated FGFR2 is a clinically actionable oncogene in multiple cancers. Nature 2022; 608:609-617. [PMID: 35948633 PMCID: PMC9436779 DOI: 10.1038/s41586-022-05066-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/03/2022] [Indexed: 12/13/2022]
Abstract
Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1–9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1–E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies. Truncation of exon 18 of FGFR2 (FGFR2ΔE18) is a potent driver mutation in mice and humans, and FGFR-targeted therapy should be considered for patients with cancer expressing stable FGFR2ΔE18 variants.
Collapse
Affiliation(s)
- Daniel Zingg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jinhyuk Bhin
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia Yemelyanenko
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Frank Rolfs
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Sjoerd Klarenbeek
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Stefano Annunziato
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Chang S Chan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Timo Eijkman
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Madelon Badoux
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Bjørn Siteur
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Justin Sprengers
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bim de Klein
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Richard R de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gregory M Riedlinger
- Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.,Department of Pathology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Hua Ke
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA
| | | | - Anne Paulien Drenth
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ellen Wientjens
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ute Boon
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Bastiaan van Gerwen
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luis Féliz
- Incyte Biosciences International, Morges, Switzerland
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, MA, USA.,Upstate University Hospital, Upstate Medical University, Syracuse, NY, USA
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Edwin Cuppen
- Oncode Institute, Utrecht, The Netherlands.,Hartwig Medical Foundation, Amsterdam, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. .,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, The Netherlands. .,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Altaf S, Saleem F, Sher AA, Ali A. Potential therapeutic strategies to combat HCC. Curr Mol Pharmacol 2022; 15:929-942. [PMID: 34979895 DOI: 10.2174/1874467215666220103111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a complex, life threatening and most common neoplasm in the world. HCC tumors are genetically and phenotypically heterogeneous and involve various molecular mechanisms and stimulation of several signaling pathways such as Vascular Endothelial Growth Factor, Epidermal Growth Factor Receptors (EGFR), Insulin growth factor, Ras/extracellular signal-stimulated kinase, mammalian goal of rapamycin (mTOR), c-mesenchymal-epithelial transition factor-1 (c-Met), Hedgehog, Wnt and apoptotic signaling. Lately, in patient's multi-kinase cascade blockers such as sorafenib, selumetinib and regorafenib have increased survival rate of progressive HCC. This development presents a step forward towards the therapy of liver cancer infection and attests that molecular systemic rehabilitations can be useful in HCC treatment. The development of these systemic therapeutic agents has further expanded the research area for surplus molecular mediators to auxiliary increase cure rate of patients. This article reviews the complete consideration of focus on cascades, current enduring clinical tests by means of HCC therapeutic mediators, and imminent prospects in the cure of HCC.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Faiza Saleem
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Azam Ali Sher
- Department of Epidemiology, Michigan State University, Michigan, USA
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
13
|
Xie H, Alem Glison DM, Kim RD. FGFR4 inhibitors for the treatment of hepatocellular carcinoma: a synopsis of therapeutic potential. Expert Opin Investig Drugs 2021; 31:393-400. [PMID: 34913780 DOI: 10.1080/13543784.2022.2017879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The mainstay pharmacological approaches to patients with hepatocellular carcinoma (HCC) are tyrosine kinase inhibitors, antiangiogenic agents, and immune checkpoint inhibitors in combination therapy. Aberrant signaling of fibroblast growth factor 19 (FGF19) and its corresponding receptor, fibroblast growth factor receptor 4 (FGFR4), are a driver of HCC cell growth and survival. However, the clinical potential of agents targeting aberrant FGF19/FGFR4 signaling has not been adequately explored. AREAS COVERED We evaluate the existing literature on aberrant signaling of FGF19/FGFR4 in HCC and address the recent preclinical and clinical advances of selective FGFR4 inhibitors in the treatment of advanced HCC. Our literature search was performed in September 2021 on clinical trials and ongoing studies published in journals or presented in conferences for cancer research. EXPERT OPINION Preclinical studies show selective FGFR4 inhibitors to be highly potent. These inhibitors also show promise in clinical trials and demonstrate manageable on-target side effects. An emphasis should be placed on the development of predictive biomarkers and on enhancing the understanding of primary and acquired resistance mechanisms. This will inspire rationale combination therapy strategies for testing in future clinical trials.
Collapse
Affiliation(s)
- Hao Xie
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Diego M Alem Glison
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Richard D Kim
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Roy S, Banerjee P, Ekser B, Bayless K, Zawieja D, Alpini G, Glaser SS, Chakraborty S. Targeting Lymphangiogenesis and Lymph Node Metastasis in Liver Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2052-2063. [PMID: 34509441 PMCID: PMC8647434 DOI: 10.1016/j.ajpath.2021.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Increased lymphangiogenesis and lymph node metastasis, the important prognostic indicators of aggressive hepatobiliary malignancies such as hepatocellular cancer and cholangiocarcinoma, are associated with poor patient outcome. The liver produces 25% to 50% of total lymphatic fluid in the body and has a dense network of lymphatic vessels. The lymphatic system plays critical roles in fluid homeostasis and inflammation and immune response. Yet, lymphatic vessel alterations and function are grossly understudied in the context of liver pathology. Expansion of the lymphatic network has been documented in clinical samples of liver cancer; and although largely overlooked in the liver, tumor-induced lymphangiogenesis is an important player, increasing tumor metastasis in several cancers. This review aims to provide a detailed perspective on the current knowledge of alterations in the hepatic lymphatic system during liver malignancies, as well as various molecular signaling mechanisms and growth factors that may provide future targets for therapeutic intervention. In addition, the review also addresses current mechanisms and bottlenecks for effective therapeutic targeting of tumor-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kayla Bayless
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - David Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, Indiana; Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| | - Shannon S Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
| |
Collapse
|
15
|
Szybowska P, Kostas M, Wesche J, Haugsten EM, Wiedlocha A. Negative Regulation of FGFR (Fibroblast Growth Factor Receptor) Signaling. Cells 2021; 10:cells10061342. [PMID: 34071546 PMCID: PMC8226934 DOI: 10.3390/cells10061342] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
FGFR (fibroblast growth factor receptor) signaling controls fundamental processes in embryonic, fetal and adult human life. The magnitude, duration, and location of FGFR signaling must be strictly controlled in order to induce the correct biological response. Uncontrolled receptor signaling has been shown to lead to a variety of diseases, such as skeletal disorders and cancer. Here we review the numerous cellular mechanisms that regulate and turn off FGFR signaling, once the receptor is activated. These mechanisms include endocytosis and endocytic sorting, phosphatase activity, negative regulatory proteins and negative feedback phosphorylation events. The mechanisms act together simultaneously or sequentially, controlling the same or different steps in FGFR signaling. Although more work is needed to fully understand the regulation of FGFR signaling, it is clear that the cells in our body have evolved an extensive repertoire of mechanisms that together keep FGFR signaling tightly controlled and prevent excess FGFR signaling.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| |
Collapse
|
16
|
Eguchi A, Ueki A, Hoshiyama J, Kuwata K, Chikaoka Y, Kawamura T, Nagatoishi S, Tsumoto K, Ueki R, Sando S. A DNA Aptamer That Inhibits the Aberrant Signaling of Fibroblast Growth Factor Receptor in Cancer Cells. JACS AU 2021; 1:578-585. [PMID: 34467321 PMCID: PMC8395645 DOI: 10.1021/jacsau.0c00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 06/13/2023]
Abstract
Growth factor receptors are activated through dimerization by the binding of their ligands and play pivotal roles in normal cell function. However, the aberrant activity of the receptors has been associated with cancer malignancy. One of the main causes of the aberrant receptor activation is the overexpression of receptors and the resultant formation of unliganded receptor dimers, which can be activated in the absence of external ligand molecules. Thus, the unliganded receptor dimer is a promising target to inhibit aberrant signaling in cancer. Here, we report an aptamer that specifically binds to fibroblast growth factor receptor 2b and inhibits the aberrant receptor activation and signaling. Our investigation suggests that this aptamer inhibits the formation of the receptor dimer occurring in the absence of external ligand molecules. This work presents a new inhibitory function of aptamers and the possibility of oligonucleotide-based therapeutics for cancer.
Collapse
Affiliation(s)
- Akihiro Eguchi
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ayaka Ueki
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Hoshiyama
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keiko Kuwata
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yoko Chikaoka
- Proteomics
Laboratory, Isotope Science Center, The
University of Tokyo, 2-11-16, Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Takeshi Kawamura
- Proteomics
Laboratory, Isotope Science Center, The
University of Tokyo, 2-11-16, Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Satoru Nagatoishi
- The
Institute of Medical Science, The University
of Tokyo, 4-6-1 Shirokanedai,
Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The
Institute of Medical Science, The University
of Tokyo, 4-6-1 Shirokanedai,
Minato-ku, Tokyo 108-8639, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13061360. [PMID: 33802841 PMCID: PMC8002748 DOI: 10.3390/cancers13061360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary As the most common primary liver cancer, HCC is a tricky cancer resistant to systemic therapies. The fibroblast growth factor family and its receptors are gaining more and more attention in various cancers. Noticing an explosion in the number of studies about aberrant FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review discusses how FGF/FGFR signaling influences HCC development and its implications in HCC prediction and target treatment, and combination treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking third in cancer deaths worldwide. Over the last decade, several studies have emphasized the development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However, the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR signaling in HCC initiating, development and treatment status, and provide new insights into the treatment of HCC.
Collapse
|
18
|
Miao T, Little AC, Aronshtam A, Marquis T, Fenn SL, Hristova M, Krementsov DN, van der Vliet A, Spees JL, Oldinski RA. Internalized FGF-2-Loaded Nanoparticles Increase Nuclear ERK1/2 Content and Result in Lung Cancer Cell Death. NANOMATERIALS 2020; 10:nano10040612. [PMID: 32230722 PMCID: PMC7221911 DOI: 10.3390/nano10040612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Innovative cancer treatments, which improve adjuvant therapy and reduce adverse events, are desperately needed. Nanoparticles provide controlled intracellular biomolecule delivery in the absence of activating external cell surface receptors. Prior reports suggest that intracrine signaling, following overexpression of basic fibroblast growth factor (FGF-2) after viral transduction, has a toxic effect on diseased cells. Herein, the research goals were to (1) encapsulate recombinant FGF-2 within stable, alginate-based nanoparticles (ABNs) for non-specific cellular uptake, and (2) determine the effects of ABN-mediated intracellular delivery of FGF-2 on cancer cell proliferation/survival. In culture, human alveolar adenocarcinoma basal epithelial cell line (A549s) and immortalized human bronchial epithelial cell line (HBE1s) internalized ABNs through non-selective endocytosis. Compared to A549s exposed to empty (i.e., blank) ABNs, the intracellular delivery of FGF-2 via ABNs significantly increased the levels of lactate dehydrogenase, indicating that FGF-2-ABN treatment decreased the transformed cell integrity. Noticeably, the nontransformed cells were not significantly affected by FGF-2-loaded ABN treatment. Furthermore, FGF-2-loaded ABNs significantly increased nuclear levels of activated-extracellular signal-regulated kinase ½ (ERK1/2) in A549s but had no significant effect on HBE1 nuclear ERK1/2 expression. Our novel intracellular delivery method of FGF-2 via nanoparticles resulted in increased cancer cell death via increased nuclear ERK1/2 activation.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
| | - Andrew C. Little
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Alexander Aronshtam
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
| | - Taylor Marquis
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
| | - Spencer L. Fenn
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA;
| | - Albert van der Vliet
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Jeffrey L. Spees
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
- Correspondence: (J.L.S.); (R.A.O.); Tel.: +1-802-656-2388 (J.L.S.); +1-802-656-3338 (R.A.O.); Fax: +1-802-656-8932 (J.L.S.); +1-802-656-3358 (R.A.O.)
| | - Rachael A. Oldinski
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Materials Science Program, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence: (J.L.S.); (R.A.O.); Tel.: +1-802-656-2388 (J.L.S.); +1-802-656-3338 (R.A.O.); Fax: +1-802-656-8932 (J.L.S.); +1-802-656-3358 (R.A.O.)
| |
Collapse
|
19
|
Yang BC, Wu SY, Leung PS. Alcohol ingestion induces pancreatic islet dysfunction and apoptosis via mediation of FGF21 resistance. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:310. [PMID: 32355754 PMCID: PMC7186649 DOI: 10.21037/atm.2020.02.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Disruption of β-cell insulin secretion and viability caused by excessive ethanol consumption increases type 2 diabetes mellitus (T2DM) pathogenesis risk. Fibroblast growth factor 21 (FGF21) plays a significant role in regulating lipid and glucose homeostasis. Recently, FGF21, best known for its role in lipid and glucose homeostasis regulation, and its obligate co-receptor β-klotho have been shown to inhibit ethanol ingestion and metabolism. It remains unclear whether heavy ethanol intake modulates islet FGF21 expression and function. This study investigated the relationship between ethanol exposure, FGF21, and islet function in vivo/ex vivo islet and in vitro cell models. Methods Mice were gavaged with 3.5 g/kg ethanol or saline for 1–3 weeks (long-term exposure). Human MIN6 cells and isolated islets were cultured and treated with 80 mM ethanol for 24 h (short-term exposure) to mimic excessive ethanol consumption. We applied the oral glucose tolerance test (OGTT), blood glucometry, enzyme-linked immunosorbent assay (ELISAs) for insulin and FGF21, glucose stimulated insulin secretion (GSIS) testing, reverse-transcription (RT)-polymerase chain reaction (PCR), and western blot experiments. Results Long-term ethanol treatment induced FGF21 resistance in mouse pancreatic islets. Moreover, ethanol exposure damaged insulin secretory ability and glucose homeostasis. In vitro and ex vivo experiments showed that short-term ethanol treatment upregulated the expression of FGF21 signaling pathway-related genes and proteins, without affecting β-cell survival or function. Conclusions Long-term ethanol consumption induces FGF21 resistance-mediated pancreatic β-cell dysfunction, and thus diabetes pathogenesis risk.
Collapse
Affiliation(s)
- Bao Chen Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shang Ying Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Holzmann K, Marian B. Importance of Translational Research for Targeting Fibroblast Growth Factor Receptor Signaling in Cancer. Cells 2019; 8:cells8101191. [PMID: 31581712 PMCID: PMC6830323 DOI: 10.3390/cells8101191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Klaus Holzmann
- Medical University of Vienna, Comprehensive Cancer Center, Department of Medicine I, Division of Cancer Research, Borschkegasse 8a, 1090 Vienna, Austria.
| | - Brigitte Marian
- Medical University of Vienna, Comprehensive Cancer Center, Department of Medicine I, Division of Cancer Research, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|